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Abstract
Recombination events establish the patterns of haplotypic structure in a population and estimates of recombination rates 
are used in several downstream population and statistical genetic analyses. Using suboptimal maps from distantly related 
populations may reduce the efficacy of genomic analyses, particularly for underrepresented populations such as the Native 
Hawaiians. To overcome this challenge, we constructed recombination maps using genome-wide array data from two study 
samples of Native Hawaiians: one reflecting the current admixed state of Native Hawaiians (NH map) and one based on 
individuals of enriched Polynesian ancestries (PNS map) with the potential to be used for less admixed Polynesian popula-
tions such as the Samoans. We found the recombination landscape to be less correlated with those from other continental 
populations (e.g. Spearman’s rho = 0.79 between PNS and CEU (Utah residents with Northern and Western European ances-
try) compared to 0.92 between YRI (Yoruba in Ibadan, Nigeria) and CEU at 50 kb resolution), likely driven by the unique 
demographic history of the Native Hawaiians. PNS also shared the fewest recombination hotspots with other populations 
(e.g. 8% of hotspots shared between PNS and CEU compared to 27% of hotspots shared between YRI and CEU). We found 
that downstream analyses in the Native Hawaiian population, such as local ancestry inference, imputation, and IBD segment 
and relatedness detections, would achieve similar efficacy when using the NH map compared to an omnibus map. However, 
for genome scans of adaptive loci using integrated haplotype scores, we found several loci with apparent genome-wide 
significant signals (|Z-score|> 4) in Native Hawaiians that would not have been significant when analyzed using NH-specific 
maps. Population-specific recombination maps may therefore improve the robustness of haplotype-based statistics and help 
us better characterize the evolutionary history that may underlie Native Hawaiian-specific health conditions that persist today.

Introduction

Knowledge of the recombination landscape across the 
genome informs patterns of haplotypic structure in a 
population and is used in several population and statisti-
cal genetic analyses such as imputation, local ancestry 
inference (LAI), identity-by-descent (IBD) inference, and 
genomic scans of adaptive loci, among others. Fine-scale 

differences in recombination landscapes are known to exist 
between populations (Hassan et al. 2021; Hinch et al. 2011; 
Spence and Song 2019; van Eeden et al. 2022; Wegmann 
et al. 2011). For example, recombination maps for HapMap 
populations CEU (Utah residents of predominantly North-
ern and Western European ancestries) and YRI (Yoruba in 
Ibadan, Nigeria) correlate well at large resolutions but have 
poorer correlation at finer scales (Wegmann et al. 2011). 
The deCODE map, based on pedigrees of individuals with 
European-ancestries from Iceland, also correlates better with 
CEU than YRI (Wegmann et al. 2011). These differences in 
recombination landscapes between populations can be due to 
both the divergent demographic histories as well as genetic 
differences in the usage of recombination hotspots (Hinch 
et al. 2011). However, we have limited understanding of the 
recombination landscape for populations not represented 
by the 1000 Genomes Project (1KGP) (Auton et al. 2015), 
although efforts in developing these maps are starting for 
diverse populations such as the Nama people of southern 
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Africa (van Eeden et al. 2022) and Japanese (Takayama 
et al. 2023). Because large-scale pedigree data are rarely 
available for diverse populations, most attempts to character-
ize the recombination landscape of a population begin with 
population-scaled rates or their derivatives.

Given the prevalent use of recombination maps in genetic 
analysis and the fine-scale differences between populations, 
it may be suboptimal to use a recombination map from a 
distantly related population. This underdevelopment of 
available genomic resources, in general, may further exac-
erbate the known disparity in transferring genomic insights 
and downstream benefits to populations relatively distant 
from the study populations. Furthermore, the utility of a 
population-specific recombination map on downstream 
analyses has not been extensively explored and studies 
have reached different qualitative conclusions. For a rela-
tively isolated and homogenous population like the Finns 
(Hassan et al. 2021), a population-specific map did not 
show a large impact on downstream analyses such as phas-
ing and imputation, although this could be due to general 
haplotypic similarity between Finns and the abundance of 
European-ancestry samples represented in 1000 Genomes or 
that information from recombination plays only a secondary 
role in the specific analyses evaluated. On the other hand, 
population-specific recombination maps have been shown 
to impact haplotype-based scans of positive selection in the 
Nama (van Eeden et al. 2022), a population not adequately 
represented by available maps that emphasize West African 
ancestry.

In this work, we focused on characterizing the recombi-
nation landscape for the Native Hawaiians, using genome-
wide genotyped individuals from the Multiethnic Cohort 
(MEC) Study (Kolonel et al. 2000). Native Hawaiians are 
an admixed, indigenous, and underrepresented population 
that, with a current population of approximately 680,000 
individuals, account for only 0.2% of the US population 
(US Census Bureau Releases Key Stats in Honor of 2023 
Asian American, Native Hawaiian, and Pacific Islander 
Heritage Month, 2023). The lack of resources to advance 
genomic research among Native Hawaiians has previously 
been detailed (Chiang 2021; Lin et al. 2020). We thus also 
explored the impact of a population-specific map on mul-
tiple downstream analyses for the Native Hawaiians. The 
lack of available whole genome sequencing data and the 
relatively small cohort size limited the applicable methods 
that could be used to accurately infer a recombination map 
for this population. We used LDhat (Auton and McVean 
2007) to estimate the recombination landscape. LDhat mod-
els the observed linkage disequilibrium (LD) between pairs 
of SNPs via the coalescent with recombination through a 
Bayesian reversible-jump Markov chain Monte Carlo pro-
cess. It has been shown to infer accurate recombination maps 
using array data with good concordance to maps inferred 

through other methods (Spence and Song 2019; Zhou et al. 
2020). Because of European colonization and subsequent 
waves of immigration to the Hawaiian islands, we modeled 
the Native Hawaiians to include African-, East Asian-, and 
European-related ancestries in addition to Polynesian ances-
tries following previous work on this population (Lin et al. 
2020; Sun et al. 2021). As a result, we created and char-
acterized two recombination maps from our study sample: 
one based on a random subset of our sample reflecting the 
current admixed state of Native Hawaiians, and one based 
on a subset of individuals with enriched Polynesian ances-
tries. The latter map was constructed to gain insights into the 
recombination landscape of ancestral Polynesians and poten-
tially provide a viable map for relatively unadmixed Polyne-
sian populations such as the Samoans. We then evaluated the 
impact of a Native Hawaiian-specific map for downstream 
analyses such as LAI, imputation, IBD segment inference, 
and genome-wide scans of adaptation using haplotype-based 
statistics.

Materials and methods

Study cohort and data

The primary genetic dataset is a subcohort of the Multiethnic 
Cohort (MEC) Study, which is a prospective epidemiologi-
cal cohort of >215,000 individuals established as a collabo-
ration between the University of Hawai‘i and University of 
Southern California (Kolonel et al. 2000). We focused on the 
3940 Native Hawaiian (MEC-NH) individuals genotyped on 
the Illumina MEGA array as part of the PAGE consortium 
(Wojcik et al. 2019). We additionally used MEGA array 
data from 5325 African Americans (MEC-AA) from the 
same cohort for specific comparisons in the present study. 
Detailed descriptions of sample processing and QC can be 
found in previous publications (Lin et al. 2020; Sun et al. 
2021). In short, we restricted our analysis to biallelic SNPs 
with positions found in 1KGP and genotyped in greater than 
95% of the individuals, leaving 1,326,678 and 1,370,385 
SNPs in MEC-NH and MEC-AA populations, respectively. 
We selected two sets of MEC-NH individuals and one set 
of MEC-AA individuals from these two datasets (selection 
details below) to construct an LD-based recombination map. 
We then used the remaining individuals for evaluations of 
the maps in downstream statistical and population genetic 
applications.

In addition to the primary datasets from the PAGE con-
sortium (N = 3940), we had access to 307 MEC-NH individ-
uals previously genotyped on the Illumina MEGAex array 
for a study of obesity (Lim et al. 2019) and 453 MEC-NH 
individuals previously genotyped on the Illumina 660W 
array for study of breast cancer (Siddiq et al. 2012). For a 
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subset of these NH individuals, we also had targeted exon 
sequencing data across 746 exons in 37 genes as part of 
a breast cancer study (Hu et al. 2021); we used these in 
combination to evaluate the impact of recombination maps 
on genotype imputation. In total, 607 sequenced individuals 
overlap with our MEC-NH data: 453 from the NHBC study 
(out of 453), 149 from the PAGE study (out of 3940), and 5 
from the obesity study (out of 307).

Native Hawaiian‑specific recombination map using 
LDhat and IBDrecomb

Recombination maps were inferred using LDhat (Auton and 
McVean 2007) with data ascertained on the MEGA array. 
We modeled the analytic pipeline using LDhat after previ-
ously published descriptions of similar efforts to infer the 
recombination landscape in humans and primates (Spence 
and Song 2019; Xue et al. 2020; Zhou et al. 2020). LDhat 
relies on lookup tables to allow for tractable computation. 
Because the creation of lookup tables is computationally 
taxing, we limited our analysis to the largest table based on 
192 haplotypes that was provided with the software. For this 
reason, we generated two recombination maps: one using 
96 individuals most enriched with the Polynesian ancestries 
that were found predominantly in Native Hawaiians (PNS, 
proportion of Polynesian ancestries were previously esti-
mated (Lin et al. 2020)), and one using 96 individuals ran-
domly selected from our Native Hawaiian samples reflecting 
admixtures in our study sample (NH; Lin et al. 2020; Sun 
et al. 2021). These subsets were chosen to generate maps 
representative of a population with predominantly Polyne-
sian ancestries and the current NH population, respectively. 
We limited our analysis to the autosomes.

We updated the genome build of our data to hg38 using 
Liftover (Hinrichs et al. 2006) and then phased all available 
individuals with Eagle (v2.4.1, without including a phased 
reference) using the default omnibus map based on HapMap 
populations (International HapMap Consortium et al. 2007; 
Loh et al. 2016a, b) as supplied by Eagle. As comparisons, 
we extracted 96 individuals from selected 1KGP populations 
to construct the recombination map. In the few cases where 
fewer than 96 individuals were available from a population 
in 1000 Genomes (i.e. ASW, CDX, GBR, LWK, MSL, and 
MXL), we extracted the number of individuals based on the 
next available precomputed LDhat table. For CEU, we also 
downloaded OMNI array data (ftp://​ftp.​1000g​enomes.​ebi.​ac.​
uk/​vol1/​ftp/​relea​se/​20130​502) to help benchmark our pipe-
line. Next, each chromosome was split into windows of 4000 
SNPs with 200 overlapping SNPs between windows. Finally, 
per previous studies (Auton et al. 2015; Xue et al. 2020; 
Zhou et al. 2020), the interval program from LDhat was run 
with the following settings: 30 million iterations, sampling 
set to every 15,000 iterations, 7.5 million iterations used for 

burn-in, and a block penalty of 5. The resulting estimates 
were integrated by removing the distal half of each overlap-
ping region for each window and combining all windows for 
each chromosome.

The LDhat interval program estimates the population-
scaled recombination rate, ρ, for a set of individuals using 
a composite likelihood method (Auton and McVean 2007). 
The sex-averaged recombination rate, r, can be recovered by 
the relationship ρ = 4Ner, where Ne is the effective popula-
tion size. Following the previous protocol (Auton et al. 2015; 
Kong et al. 2010), we regressed the population-scaled esti-
mates from LDhat for each population on the sex-averaged 
recombination rate from deCODE to estimate 4Ne (Supple-
mental Table 1). Regression was performed by aggregating 
corresponding rates in 5 Mb windows across the autosomes. 
After rescaling by the inferred 4Ne for each population, we 
then compute the recombination rate, r, per locus in centi-
morgan per megabase (cM/Mb).

To benchmark our pipeline, we applied it to OMNI array 
genotypes for 96 randomly selected CEU individuals from 
1KGP and then compared the inferred map from our pipeline 
to the publicly available map (downloaded from ftp://​ftp.​
1000g​enomes.​ebi.​ac.​uk/​vol1/​ftp/​techn​ical/​worki​ng/​20130​
507_​omni_​recom​binat​ion_​rates), which was originally also 
inferred from the OMNI array data.

We also inferred a recombination map for NH using 
IBDrecomb (Zhou et al. 2020), which uses the end points 
of IBD segments to infer recombination rates for a given 
set of individuals. IBDrecomb has been shown to perform 
similarly to LDhat while outperforming admixture-based 
methods on simulated and real data. To infer the recom-
bination map using IBDrecomb, we first called IBD seg-
ments using Refined IBD (Browning and Browning 2013b) 
(version 17Jan20.102) with default settings on genotypes 
phased using the omnibus map. We then run the merge-ibd-
segments tool with 1 allowed error and a maximum distance 
of 0.5 cM. Finally, we infer maps at 10 kb scale using these 
merged segments with the remaining parameters at default 
settings. Because a large number of IBD segments are 
needed to have a sufficient number of informative historical 
recombination events, we used all individuals in our Native 
Hawaiian cohort to detect IBD segments before inferring a 
recombination map with IBDrecomb.

The inferred maps using both LDhat and IBDrecomb are 
released on https://​github.​com/​bldinh/​NH_​recom​binat​ion_​
maps in hg38.

Evaluating the impact of population‑specific 
recombination map on downstream statistical 
and population genetic applications

With each constructed Native Hawaiian-specific recombina-
tion map, we evaluated its impact on four distinct statistical 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rates
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rates
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rates
https://github.com/bldinh/NH_recombination_maps
https://github.com/bldinh/NH_recombination_maps
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and population genetic applications where information on 
the recombination landscapes are usually required for infer-
ence: imputation, local ancestry inference, IBD segment 
calling and relatedness inference, and genome scans of posi-
tive selection. In each case, we compared the performance 
and efficacy between using a Native Hawaiian-specific map 
(NH map) or the default omnibus map released by Eagle 
(Eagle map). We generally used the NH map for evaluation 
as most analyses incorporated the entirety of the admixed 
NH study samples that were not used in map constructions. 
In all cases, we excluded the 192 individuals that were 
used to construct both Native Hawaiian-specific maps from 
evaluation.

Imputation

We phased and imputed our Native Hawaiian cohort (remov-
ing individuals that were used to construct the recombination 
map after phasing) using either the NH map or the omnibus 
Eagle map with HGDP+1KGP individuals (N = 3942) from 
gnomAD v3.1 as the imputation reference panel (Karcze-
wski et al. 2020). Phasing was completed using Eagle v2.4.1 
(Loh et al. 2016a; b) with the same reference, and impu-
tation was performed in-house using Minimac4 version 
1.0.2 (Das et al. 2016; Fuchsberger et al. 2015; Howie et al. 
2012). To evaluate the imputation accuracy, we compared 
the imputed genotype to targeted exon sequencing data (see 
“Study cohort and data” section) for a subset of 607 MEC-
NH individuals. Imputation accuracy was measured by the 
squared Pearson correlation of the sequenced genotype to 
the imputed dosage for variants that are found in both data-
sets. In total, we compare 1,248,599 genotypes across 607 
individuals and 2057 SNPs.

Local ancestry inference

We modeled Native Hawaiian individuals with four ancestry 
components corresponding to those found most prevalently 
in Africa, East Asia, Europe, and Polynesia (Lin et al. 2020). 
A total of 708, 800, and 671, individuals were selected from 
the HGDP+1KGP (from gnomAD v3.1) representing Afri-
can, East Asian, and European ancestries (Supplemental 
Table 2). In addition, we added 176 MEC-NH individuals 
previously estimated to have more than 90% Polynesian 
ancestry to create a set of reference individuals for local 
ancestry inference (Lin et al. 2020; Sun et al. 2021; after 
removing any individuals used in recombination map con-
structions). In total, 3665 MEC-NH individuals not used as 
ancestry references or in map construction were available 
to assess local ancestry inference (LAI) concordance. We 
pre-phased every MEC-NH individual in the study sample 
together with the HGDP+1KGP reference individual before 
separating the reference and test sets for LAI with RFMIX 

v2.03-r0 (Maples et al. 2013). Because recombination maps 
are also used during phasing, we performed our evaluation in 
two main comparisons: (1) comparison of RFMIX inference 
using the same initial pre-phased data using the NH map and 
(2) comparison of RFMIX inference after separately phasing 
the data on different maps. The former compares the direct 
effect a recombination map has on LAI and the latter encom-
passes the difference a recombination map would make on 
an analysis pipeline.

To compute concordance of LAI, at each site output by 
RFMIX and for each individual we calculated the joint prob-
abilities of the inferred ancestry between the recombination 
maps. We compared these inferences in a similar manner to 
a previous local ancestry study (Browning et al. 2016): if an 
individual has a segment inferred as belonging to ancestry A 
and ancestry B using map 1 and from ancestry C and ances-
try A using map 2, we compare the inferred haplotypes so as 
to maximize their agreement. In this example, we calculate 
the inference as both maps agreeing on haplotype A and 
disagreeing with the other. Our joint probability calculation 
uses the marginal probabilities for this maximal haplotype 
combination.

Integrated haplotype score

To evaluate the impact of recombination maps on genomic 
scans for signatures of positive natural selection, we ran-
domly selected 150 individuals from our Native Hawaiian 
cohort and calculated integrated haplotype scores (iHS) 
using the selscan program (Szpiech and Hernandez 2014). 
These scores were then normalized using the norm program 
included with selscan. We compared the normalized iHS 
results from our NH recombination map and two alternatives 
that would be commonly used in practice: the omnibus Eagle 
map and the pedigree-based European map from deCODE. 
We used a normalized z-score of |4| as the threshold for 
declaring a putative positively selected locus using either the 
omnibus or the pedigree map and examined the correspond-
ing score on the NH map.

IBD segment calling and inference of relatedness

Using genotypes phased previously for LAI (above), we 
called IBD segments using Refined IBD version 17Jan20.102 
(Browning and Browning 2013b). We then merged nearby 
IBD segments that could be spuriously broken up using the 
merge-ibd-segments tool provided by the authors of Refined 
IBD with the recommended parameters (1 allowed error, less 
than 0.6 cM distance). Initial analysis showed an elevated 
number of spurious IBD segments within both maps. For 
example, 70% of all detected IBD segments on chromosome 
16 of length 15–20 cM map to the region located approxi-
mately at 15,000,000 to 17,000,000 bp. This region appears 
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to have spuriously elevated recombination rate estimates; 
upon closer examination, the spurious pileup of IBD seg-
ments is due to genomic regions with very low variant cover-
age. We thus instituted a heuristic to create analysis masks 
(below) to be applied to the recombination maps before con-
tinuing IBD and relatedness analyses. We excluded the gap-
filling step to reduce potential overestimations of shared IBD 
and excluded portions of IBD segments overlapping masked 
regions (additionally excluding them from the length of 
genome calculations that are specific to each map). Follow-
ing previous descriptions in literature (Ramstetter et al. 
2017), we used the IBD segments to infer genetic relatedness 
between any pair of individuals by the following calculation: 
� =

sum IBD segments

4×length of genome
 , where φ is the kinship coefficient. We 

used KING (Manichaikul et al. 2010), an allele-frequency-
based method, to independently call genetic relatedness and 
restricted our comparisons between different recombination 
maps to individuals estimated to be 3rd-degree relatives and 
higher (kinship estimate > 0.0442). Our comparisons were 
restricted to the intersection of pairs of individuals with esti-
mated shared IBD segments on both maps.

Analysis masks for recombination maps

Upon closer inspection of the distribution of IBD segments 
generated using the default omnibus map and the NH map, 
we found an increase in segments with lengths ranging 
between 15 and 30 cM. We noticed that genomic regions 
with sparse SNP density and the resulting elevated inferred 
rate of recombination would lead to accumulations of spuri-
ous IBD segments. These spurious accumulations of lengthy 
IBD segments had been previously noted (Ramstetter et al. 
2017), and if unadjusted, will lead to erroneous inference of 
familial relationships. To avoid inaccurate results in down-
stream applications of the recombination maps, we created 
a filter to detect regions with conditions that may bias analy-
ses. In tiling windows of 500 kb length (shifting in 50 kb 
increments), we flagged the region within the window to 
be considered for removal from downstream analysis if the 
number of markers available is less than 15 (compared to an 
average of 242.50 markers per 500 kb across the autosome 
for our Native Hawaiian cohort on the MEGA array, Sup-
plemental Fig. 1). Other thresholds were considered, but we 
defined our threshold to attain a balance between detection 
of regions that are outliers and minimizing the total length 
of regions filtered out. Specifically, for our IBD analyses, we 
effectively set the genetic distance across these regions to 
0 cM to dampen the inflation of inferred segment lengths and 
counts seen in our initial analysis. In total, our masks span 
160.94 Mb (5.60%) of the autosome, and the coordinates for 
the Native Hawaiians on the MEGA array in hg38 can be 
found in Supplemental Table 3.

Results

Benchmarking the recombination map inference 
pipeline

We implemented a pipeline to generate recombination 
maps using LDhat (see “Materials and methods” sec-
tion). Notably, LDhat infers the relative, population-level 
recombination rate, ρ. Population-level rates, and the LD 
information used in inferring these rates, can be influenced 
by past population sizes. Therefore, following previous 
practices, we inferred and regressed the contribution of the 
demographic history as measured by effective population 
size, Ne (see “Materials and methods” section), to bet-
ter compare the inferred recombination landscape across 
populations (but also see “Discussion” for limitations). 
We benchmarked our pipeline by applying it to OMNI 
array genotypes for 96 randomly selected CEU individu-
als from 1KGP and comparing the resulting map from 
our pipeline to the publicly available map originally also 
inferred from the OMNI array data. Overall, we observed 
high correlations (r = 0.93–0.96) across all scales of the 
map, ranging from 50 kb to 5 Mb (Table 1). The correla-
tion was lower at the finest scale of 10 kb (r = 0.86), likely 
due to noise in LD estimates at fine scales given a finite 
sample size (Bhérer et al. 2017). We also extracted the 
set of OMNI array SNPs from the public release of 1KGP 
phase 3 sequencing data for the CEU population to infer 
the recombination map, which again showed a high cor-
relation across all scales when compared to that inferred 
from the OMNI array genotype using the same in-house 
pipeline (r = 0.91–0.98; Table 1). Therefore, we concluded 
that our implemented pipeline near-faithfully recreated the 
previously published map, and that, given the same SNP 
content, differences in the distribution of any genotyping 
errors attributed to the data generation platform (OMNI 
array vs. low pass sequencing) did not substantially impact 
the recombination map inference.

Because the Native Hawaiian genetic data from the 
MEC is only available on the MEGA array, we also bench-
marked the impact using a different set of SNPs on map 
inference. Again, using the CEU 1KGP population as a 
model, we extracted the genotypes found on the MEGA 
array to infer a recombination map. The resulting map 
is highly correlated with the version generated based on 
extracted OMNI array SNPs, at least for a 50 kb scale or 
higher (r > 0.91; Table 1). Taken together, our LDhat infer-
ence pipeline, when applied to SNPs found on the MEGA 
array for the CEU population, would produce highly con-
cordant recombination maps at 50 kb scale or higher com-
pared to the published map. Therefore, the recombination 
landscape for Native Hawaiians that we inferred here can 
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be compared to those published for other 1KGP popula-
tions. Nevertheless, for between-population comparisons 
of the recombination landscape we compared the inferred 
NH maps to those based on the MEGA array SNP content 
extracted from 1KGP sequence data.

Contrasting the Native Hawaiian recombination 
landscape

We proceeded to infer a recombination map for 96 randomly 
selected admixed Native Hawaiians from our study sample 
(NH map) to represent the current Native Hawaiian popula-
tion and a map for 96 individuals from our study sample 
previously estimated to be most enriched with the Polyne-
sian ancestries found predominantly in Native Hawaiians 
(PNS map; see “Materials and methods” section). The PNS 
map was constructed to provide insights into the recombi-
nation landscape of the ancient Polynesians and how it may 
differ from other continental populations around the world. 
However, we caution that the Polynesian ancestries found 
predominantly in Native Hawaiians may or may not have 
diverged from those found in other Polynesian populations 
such as the Samoans. Consistent with their known history of 
serial bottleneck and long-term isolation (Chiang 2021), the 
inferred past population size, parameterized by the effective 
population size (Ne), was substantially smaller for PNS than 
other populations in 1KGP (Supplemental Table 1). The esti-
mated Ne for NH was larger, more in line with other conti-
nental and admixed populations in 1KGP. Regressing out the 
effect of demographic history (see “Materials and methods” 
section), we then compared the inferred Native Hawaiian 
recombination landscape with that from other populations 
that were similarly constructed using MEGA array geno-
types extracted from the 1KGP phase 3 datasets. Because 
previous work assessed differences in recombination 

landscapes between populations at 50 kb (Wegmann et al. 
2011), we also compare maps inferred through our pipeline 
at this scale.

We found that populations with recent shared history dis-
played higher levels of correlation, as expected (Fig. 1a). 
This is notable for populations representing each of the 
major ancestral components found: African (MEC-AA, 
ASW, and YRI), East Asian (CHB, CHS, and JPT), and 
European (CEU, TSI). At the 50 kb scale, the recombination 
landscape as indicated by the NH map showed intermedi-
ate correlations with the non-Native Hawaiian populations 
(r = 0.865–0.899), tending to correlate best with populations 
representing East Asian (r = 0.892–0.898) and European 
ancestry (r = 0.895–0.899), likely due to substantial admix-
ture from these two ancestral components. In contrast, the 
landscape from PNS showed the lowest correlations with 
almost all populations compared (r = 0.774–0.847). PNS 
correlated most strongly with NH (r = 0.847) and most 
weakly with Peruvian in Lima, Peru (PEL; r = 0.774). Over-
all, PNS correlated more poorly with other populations than 
PEL, a population with a known history of isolation. Taken 
together, our results are consistent with PNS representing a 
previously unrepresented component of ancestry by 1KGP 
and may suggest a stronger effect of isolation or enhanced 
genetic drift in the past compared to PEL (although we also 
note that we did not prune PEL to enrich for Indigenous 
American ancestry due to small sample size).

These trends were also observed when we compared 
recombination hotspot sharing between populations 
(Fig. 1b). We defined hotspots for each population as the 
50 kb windows in the top 1 percentile or 10 percentile with 
the highest average recombination rate. For each pair of 
populations, we then computed the proportion of shared hot-
spots. The relationships at both hotspot thresholds were sim-
ilar to the ones observed for correlations of the genome-wide 

Table 1   Benchmarking LDhat inference pipeline

Each map was inferred from 96 randomly selected individuals from the corresponding 1KGP population via our LDhat pipeline. The inferred 
map would either be based on OMNI array genotypes, OMNI array SNPs extracted from WGS genotypes, or MEGA array SNPs extracted 
from WGS genotypes. The inferred maps were compared to the corresponding 1KGP recombination map for the same population or another 
inferred map using our in-house pipeline. We measured concordance between maps by the Pearson correlation coefficient. The first comparison 
established that our implemented pipeline faithfully recreated the published recombination map for CEU using the same input dataset. The sec-
ond comparison established that the inferred map is robust to any differences in genotype quality between genotyping or sequencing. The third 
comparison established that maps based on the set of OMNI array SNPs or MEGA array SNPs are highly concordant, at least for a 50 kb scale 
or higher. The last comparison in YRI suggested that maps inferred using MEGA array genotypes can be compared directly to published 1KGP 
maps

Inferred map data source Comparison data source Resolution

Population SNP set Data source 10 kb 50 kb 100 kb 1 Mb 5 Mb

CEU OMNI Array Published 0.86 0.93 0.94 0.95 0.96
CEU OMNI WGS OMNI array data, in-house (above) 0.91 0.95 0.95 0.96 0.98
CEU MEGA WGS OMNI SNPs from WGS data, in-house (above) 0.78 0.91 0.93 0.94 0.97
YRI MEGA WGS Published 0.82 0.92 0.94 0.95 0.97
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Fig. 1   Correlation of recombi-
nation landscape and hotspots 
between populations. Correla-
tions between populations at 
50 kb scale (Top) and sharing of 
recombination hotspots defined 
as the top 1% (lower left) or 
10% (upper right) windows 
50 kb in size by inferred recom-
bination rate (Bottom). Both 
the correlations and proportion 
of sharing were calculated by 
excluding genomic regions that 
fall within the analysis masks 
(“Materials and methods” sec-
tion). All landscape and hotspot 
comparisons here were based 
on recombination maps inferred 
in-house using MEGA array 
SNPs from genotyping (PNS, 
NH, AA) or extracted from 
WGS data (1KGP populations 
with Indigenous American- 
[PEL], African- [ASW, YRI], 
East Asian- [JPT, CHS, CHB], 
and European-ancestries [TSI, 
CEU]). AA is African Ameri-
can data from MEC
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recombination landscape (Fig. 1a): populations expected to 
represent recent shared history had the highest sharing at 
both thresholds. In contrast, PNS had lower hotspot shar-
ing relative to other populations except for NH, with the 
lowest sharing with PEL. Compared to PNS, the NH map 
has better relative sharing with the other 1KGP populations, 
including slightly higher sharing with European and East 
Asian populations. While PNS’s low correlation genome-
wide in recombination rate variations and hotspot sharing 
with other populations is suggestive of a unique recombi-
nation landscape, we also note that residual differences in 
demographic history between populations may account for 
these observations, since population bottlenecks can result 
in spurious inference of hotspots (Dapper and Payseur 2018; 
Johnston and Cutler 2012; Kamm et al. 2016) and the impact 
of demographic history on recombination inference may not 
be completely modeled and accounted for by regressing out 
Ne as we have done here.

Impact of the recombination map on imputation

We evaluated the impact of a population-specific map for 
Native Hawaiians on downstream statistical and population 
genetic applications, focusing on the impact of the recom-
bination map on genotype imputation, local ancestry infer-
ence, IBD and relatedness inference, and genomic scans for 
positive selection.

Imputation is a common analysis that uses haplotype 
sharing to infer genotypes at variants not directly observed in 
a given dataset. The recombination map is needed for phas-
ing (a pre-requisite for imputation) and for imputation itself 

as it provides the prior that the ancestral haplotype may have 
switched from one haplotype to another at a given genomic 
location. We thus evaluated the impact of using a potentially 
mis-specified omnibus map [i.e. the default recombination 
map released by the commonly used phasing software, Eagle 
(Loh et al. 2016a; b)] in phasing and imputation, compared 
to the population-specific map constructed in the present 
study.

We imputed 453 and 154 Native Hawaiian individu-
als genotyped on the Illumina Human660W (NHBC) and 
MEGA arrays, respectively, against the 1KGP+HGDP refer-
ence panel released by gnomAD (Karczewski et al. 2020). 
Compared to the targeted exon sequencing data we have on 
overlapping individuals, we were able to evaluate imputation 
accuracy in the 658 and 482 SNPs for NHBC and MEGA 
cohorts, respectively. Across three minor allele frequency 
(MAF) bins, 0.5–1%, 1–5%, and 5–50%, we observed no 
notable difference in imputation accuracy when imputation 
was performed using the NH map compared to the omnibus 
map (P = 0.588 and 0.282 for NHBC and MEGA arrays, 
respectively, by Wilcoxon signed-rank test among all SNPs; 
Fig. 2, Supplemental Table 4). The negligible impact of a 
population-specific recombination map in imputation accu-
racy has been previously reported in Finns and Japanese 
(Hassan et al. 2021; Takayama et al. 2023).

Impact of recombination map on local ancestry 
inference

We inferred the local ancestries across 3665 Native Hawai-
ian individuals genotyped on the MEGA array using RFMIX 

Fig. 2   Evaluation of the impact of recombination maps on imputa-
tion accuracy. Comparison of imputation accuracy using the NH 
map (blue, left portion of each MAF bin) and the omnibus map 
(orange, right portion of each MAF bin). MAF for each SNP was 
computed using the sequencing data. Left: 154 individuals on the 
MEGA array were compared across 482 available SNPs. Restrict-

ing to MAF ≥ 0.5% resulted in bins with 134, 112, and 168 SNPs, 
respectively. Right: 453 individuals on the Human660W array were 
compared across 658 overlapping SNPs. More SNPs are available for 
comparison here due to the larger number of individuals available for 
analysis. Restricting to MAF ≥ 0.5% resulted in bins with 64, 94, and 
165 SNPs, respectively (Color figure online)
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(Maples et al. 2013), with either the NH map or the omni-
bus map that provided information on recombination rates 
genome-wide. Overall, there is a large agreement between 
local ancestries inferred based on the NH map and those 
based on the omnibus map (concordance = 97.2%, Table 2), 
particularly when phasing was performed only once before 
local ancestry inference with two separate maps. If we sepa-
rately phased and ran RFMIX with different maps, the result-
ing concordance lowered to 95.8% (Table 2), suggesting that 
the choice of the recombination map could make a difference 
in the LAI calls, though perhaps not strongly. These results 
are also consistent with previous findings that even a naïve 
uniform recombination map would produce <10% discord-
ance in inferred ancestry calls (Sun et al. 2021).

Impact of recombination map on IBD segment 
calling and relatedness inference

Our initial IBD analysis identified regions of the genome 
where we observed extreme pileups of IBD segments that 
are spurious (>90% of individuals would share IBD seg-
ments locally). We thus created analysis masks to remove 
these spurious regions driven by insufficient SNP coverage 
(see “Materials and methods” section; Supplemental Fig. 2). 
When comparing the distribution of IBD segments using 
masked versions of both maps, we observed little difference 
(Supplemental Fig. 2). Given that the inferred recombination 
rates in regions of sparse SNP density could be unreliable 
and confound downstream analysis such as IBD segment 
calling, we also released a set of masked regions (Supple-
mental Table 3) for users to apply when using these recom-
bination maps.

We used the kinship coefficient (φ) based on the pairwise 
proportion of IBD sharing to compare differences in related-
ness inference due to the recombination map (see “Materials 
and methods” section). Of the 218,132 pairs of individu-
als inferred by KING to be 3rd-degree or closer relatives, 
200,617 were found in both the omnibus and NH maps to 
compare. The estimated kinship coefficient from each map 
was calculated independently and the maps were found to 
be highly concordant with a Pearson correlation coefficient 
of 0.995.

Impact of recombination map on genomic scans 
for positive selection using integrated haplotype 
score

Lastly, we evaluated the impact of recombination maps 
on the robustness of a haplotype-based metric of positive 
selection, the integrated haplotype score (iHS) (Voight et al. 
2006). We considered loci with normalized iHS absolute 
Z-score (|Z|) > 4 as candidate loci under positive selection. 
Most SNPs in our scans using different recombination maps 
were concordant with similar iHS values (Fig. 3). However, 
we identified 6 SNPs across 4 loci (nearby genes: DISP1, 

Table 2   Concordance of inferred local ancestry calls based on differ-
ent recombination maps

The Native Hawaiian population is modeled as a four-way admixture, 
with ancestry components from Polynesia (PNS), Africa (AFR), East 
Asia (EAS), and Europe (EUR). We defined concordance as the per-
centage where both maps inferred the same ancestry (the sum of the 
“diagonal”)

Omnibus map NH map

PNS (%) AFR (%) EAS (%) EUR (%)

LAI with different maps (data is pre-phased using NH map)
PNS 49.21 0.01 0.92 0.30
AFR 0.01 1.13 0.00 0.03
EAS 1.00 0.00 19.21 0.07
EUR 0.35 0.03 0.07 27.64
Phasing and LAI with different maps
PNS 48.61 0.02 1.37 0.48
AFR 0.02 1.10 0.01 0.04
EAS 1.46 0.01 18.69 0.13
EUR 0.49 0.04 0.13 27.39

Fig. 3   Genomic scan for positive selection using haplotype-based sta-
tistics is sensitive to the choice of recombination map. Genomic scan 
of adaptation was measured using iHS as a metric, as implemented in 
selscan. We estimated iHS for 486,600 SNPs in 150 Native Hawai-
ian individuals from the MEC genotyped on the MEGA array using 
either the omnibus map (x-axis) or the NH LDhat (y-axis) map. After 
normalization by selscan, a score of |z|> 4 is considered genome-wide 
significant. We identified six SNPs across four loci that would have 
significant evidence of adaptation using iHS based on the omnibus 
map when all of the statistical evidence would be much more attenu-
ated if a population-specific map was used
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TLCD1, FAM222B, and WNT7B; Supplemental Figs. 3–6) 
that showed |Z| values > 4 when using the omnibus map but 
normalized |Z| values between 0 and 2 when using the NH 
map. Only an average of 0.116 SNPs would be expected 
to show such difference in |Z| values based on 500 sets of 
permutations using the same map (Supplemental Fig. 7). 
Manual inspection of the four nearby genes identified no 
biological functions that could suggest the genes as can-
didates for positive selection, and the 6 putatively selected 
SNPs also were unremarkable in terms of genome-wide 
annotation of evolutionary or functional constraints (Sup-
plemental Fig. 8; Chen et al. 2022; Kent et al. 2010; Nassar 
et al. 2023). Moreover, there are additional loci that would 
have attenuated evidence of selection in analysis using the 
NH map (|Z|< 2) but fall short of our conservative cutoff of 
4 standard deviations when using the omnibus map. Selec-
tion scans may also be performed using a pedigree-based 
map, such as one from deCODE, to avoid any confounding 
between haplotype-based statistics and local LD patterns. 
We also compared the analysis using the deCODE pedigree 
map (Supplemental Fig. 9), which is based on a European-
ancestry population in Iceland. We observed 46 outlier SNPs 
across 19 loci that would have attenuated evidence of selec-
tion (|Z|> 4 using the deCODE map, but <2 using the NH 
map). Due to the substantial increase of candidate loci under 
positive selection with the deCODE map and the overall 
larger iHS after normalization (the largest |Z| near 15), it is 
clear that haplotype-based selection analyses are sensitive 
to the choice of recombination maps. Therefore, using the 
population-specific recombination map in haplotype-based 
selection scans may better protect against spurious detec-
tions of loci under positive selection.

A recombination map based on IBD segments

In addition to LDhat, an alternative approach to infer 
genome-wide recombination maps based on array data is to 
utilize information from IBD segments. As a larger sample 
size is needed to have a sufficient number of IBD segments 
for inference, we inferred a recombination map using 3937 
individuals using IBDrecomb (Zhou et al. 2020), which 
would be more akin to the NH map constructed using LDhat. 
The resulting IBD-based map showed large concordance 
with the NH map (Supplemental Table 5), although the cor-
relation may be lower compared to that reported previously 
for African Americans (Zhou et al. 2020). For instance, 
the correlation between an IBD-based map of an African 
American cohort and an LDhat map from ASW was previ-
ously reported to be as high as 0.95 at the 500 kb scale; we 
observed a correlation of 0.90, 0.90, and 0.92 at the 500 kb, 
1 Mb, and 5 Mb scales (Supplemental Table 5). This may 
be due to the differences in the precision in IBD segment 
detection using array versus sequencing data (Browning and 

Browning 2013a; Chiang et al. 2016), which may percolate 
to the precision in the constructed recombination maps, or it 
may be due to differences in ancestry composition between 
our African American cohort (sampled largely in Southern 
California) with that tested previously (Zhou et al. 2020). In 
comparison, the correlation between the IBD-based map and 
the LDhat map from NH is between 0.85 and 0.89 across the 
same scales (Supplemental Table 5). Nevertheless, we found 
that compared to the omnibus map, the IBD-based map 
also did not substantially impact the downstream inference 
for imputation (Supplemental Fig. 10), LAI (Supplemen-
tal Table 6; 94.9% concordance, comparing IBD-based to 
LDhat-based map), and kinship coefficient estimates (Pear-
son correlation with NH map: 0.9945). We also found that 
a genomic scan for positive selection using iHS would be 
more robust if we were to use an IBD-based recombination 
map for NH as well (Supplemental Fig. 11), confirming our 
previous observation that a population-specific recombina-
tion map would be important for performing and interpreting 
haplotype-based analyses.

Discussion

In the present study, we implemented a pipeline to infer 
recombination maps for populations using LDhat. By uti-
lizing both array and sequence data from 1KGP populations 
and comparing them to the corresponding publicly available 
recombination maps, we demonstrated that our implemented 
pipeline could faithfully produce precise recombination 
maps. We also showed that recombination maps based on 
SNP content on the MEGA array have high concordance 
with published 1KGP maps. These results suggest that our 
constructed maps for the Native Hawaiian population based 
on the MEGA array data would be comparable to those 
already available for 1KGP populations based on the OMNI 
array data.

To characterize the recombination landscape of Native 
Hawaiians and to generate a commonly used genomic 
resource for future genetic studies for Polynesian-ancestry 
individuals, we created two recombination maps, the PNS 
map and the NH map, from Native Hawaiian individuals 
estimated to have the highest proportion of Polynesian 
ancestry and individuals randomly sampled from the cohort, 
respectively. The former map was constructed to provide 
insights into the recombination landscape in the ancestral 
Polynesians prior to European colonization and subsequent 
waves of immigration. However, we note that Polynesian 
ancestries are complex. This component of ancestry is one 
that is found prevalently in the MEC Native Hawaiian cohort 
but could represent a mixture of Polynesian, Austronesian, 
and other ancestries that are unique to our sample. Therefore, 
a future evaluation of the applicability of the PNS map to 
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other Polynesian populations across the Pacific would be of 
interest. The admixture history specific to the Native Hawai-
ians also contributed to the health disparity experienced by 
the population today, and the genetic risks to diseases must 
be evaluated considering this history (Chiang 2021; Taparra 
et al. 2021). As such, we also constructed the latter map, to 
better reflect the genomic composition of the Native Hawai-
ians today. The NH map would be more suited for genetic 
epidemiologic studies that use a population-based sample 
and is the primary map that we evaluated throughout this 
study.

Overall, we found that the recombination landscape from 
the PNS map stood out to be the most unique compared 
to other 1KGP and MEC populations based on the corre-
lation of recombination rate variations across the genome 
and the proportion of hotspot sharing. Notably, the pairwise 
sharing between YRI and CEU, two populations known to 
have divergent population histories, have a higher correla-
tion with one another (r = 0.876) than either population with 
PNS (0.793 and 0.783 for YRI and CEU, respectively). The 
landscape based on the NH map, in contrast, showed higher 
correlations with the maps from other populations, with a 
slightly higher correlation with the maps inferred from Euro-
pean and East Asian populations. This is likely due to the 
recent admixture from other continental populations seen 
within the NH cohort today (Sun et al. 2021). Lastly, the 
PNS map showed the lowest correlation with PEL, and both 
PNS and PEL maps showed relatively low correlations with 
maps from other populations examined here. The Peruvian 
from Lima, Peru, is known for its history of isolation relative 
to other 1KGP populations (Harris et al. 2018). The obser-
vation here thus suggests that long-term isolation and lower 
effective population sizes are driving the LD pattern and 
shaping the recombination landscape. Similar to the previous 
observation that the landscape of isolated Europeans from 
Finland differs from that of non-Finnish Europeans (Has-
san et al. 2021), the low correlation between PNS and PEL, 
and between the two with other populations, are potentially 
reflecting their respective independent isolation histories.

We evaluated the impact of a population-specific map on 
downstream population and statistical genetic analyses. In 
general, we found little difference due to the choice of the 
recombination maps, particularly for imputation accuracy, 
local ancestry inference, and IBD segment detections and 
genetic relatedness inference. In local ancestry inference, we 
did observe an increased discordance between the two maps, 
if the input data were also phased separately using different 
maps (Table 2), suggesting that the choice of recombination 
maps would have a small but tangible impact on these down-
stream analyses. However, in each of these applications, the 
recombination maps are used mostly as priors while the 
actual inference is ultimately driven by the genetic data. 
Therefore, even though there are fine-scale differences in 

the recombination landscape between Native Hawaiians and 
other 1KGP populations, the accuracy of these downstream 
applications will not be substantially impacted by the choice 
of the map used.

On the other hand, our findings suggest that the choice of 
the recombination map could make qualitative differences 
in population genetic analyses such as genomic scans for 
positive selection using the integrated haplotype score (iHS). 
These statistics would incorporate recombination informa-
tion in their calculation for the haplotype length surrounding 
an SNP. We found that 6 SNPs across 4 loci appeared to be 
putative selection loci (using a threshold of |Z|> 4) but have 
attenuated signals using the NH map (|Z|< 2). The signals 
in the four loci are driven by the genes DISP1, TLCD1, 
FAM222B, and WNT7B. We examined each locus manu-
ally and did not find clear evidence for them to be under 
selection. DISP1 impacts signaling and transport for cellular 
proliferation and differentiation (Ehring et al. 2021). Muta-
tions in the gene are associated with neuronal and endocrine 
diseases. TLCD1 affects membrane assembly and regulates 
membrane composition and tolerance to fatty acids (Ruiz 
et al. 2018). FAM222B has been associated with red blood 
cell regulation and protein binding using gene ontology 
(Luck et al. 2020). WNT7B is part of a pathway for embry-
onic developmental processes and is linked to carcinogenesis 
and cancer development, in particular, gastric cancer (Gao 
et al. 2021; Goessling et al. 2009; Kirikoshi et al. 2001). 
These 6 SNPs were also unremarkable in terms of meas-
ures of genome-wide functional or evolutionary constraints 
(Supplemental Fig. 8). Overall, we found no suggestive 
functional basis to implicate these loci as under selection in 
Native Hawaiians. Moving forward, in addition to generat-
ing genomic resources tailored to underserved populations, 
future efforts focused on incorporating functional annota-
tions and experimental studies of genes would also further 
improve the interpretability of selection scan results.

We postulate that even though the NH map displayed 
elevated correlation of recombination rates genome-wide 
with many of the populations in 1KGP due to its recent 
admixture, it still accurately reflects the recombination 
events pertaining to the Polynesian ancestries as evidenced 
by its high correlation and overlap of hotspots with the PNS 
map. Assuming that much of the signals of positive selec-
tion should predate the recent admixture times over the last 
10 generations or so, a population-specific map like the NH 
map captured much of the recombination landscape from 
the Polynesian ancestry component and should improve the 
robustness of haplotype-based scans of selection such as 
iHS. Indigenous populations such as the Native Hawaiians 
have been understudied with respect to their present-day 
medical conditions and healthcare considerations (Taparra 
2021). Their evolutionary or adaptive histories for surviving 
the most geographically isolated habitats on the planet for 
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centuries could also contribute to the genetic causes of dif-
ferences in disease risk between the Native Hawaiians and 
other continental populations. However, studies of indig-
enous populations have also been fraught with “just-so” sto-
ries that only superficially tied evolutionary hypotheses to 
the apparent disparity in diseases (Chiang 2021; Fox et al. 
2020; Gosling et al. 2015). The availability of population-
specific recombination maps could help weed out false posi-
tive findings, thus making the resulting conclusions more 
robust and less harmful in future studies.

Finally, there are a number of limitations to our study, 
largely driven by the scarcity of genomic knowledge and 
data for Native Hawaiians. We chose to use LDhat to con-
struct the recombination maps here because the available 
genomic data for Native Hawaiians are largely restricted to 
the MEGA array data. When WGS data become available 
for Native Hawaiians, we would be able to evaluate more 
deeply the statistical genetic applications presented here. For 
instance, WGS data would allow us to evaluate the impact of 
recombination maps on imputation more thoroughly across 
the genome and different functional annotations. WGS data 
would also allow us to model the demographic history of 
the Native Hawaiians, thus enabling the creation of more 
accurate recombination maps using methods, such as pyrho 
(Spence and Song 2019). In addition, pyrho can also infer 
recombination maps using hundreds of individuals and from 
unphased data. The former will allow us to reduce noise by 
including many more individuals. The latter will allow us to 
avoid phasing the data based on an existing recombination 
map prior to inferring a population-specific recombination 
map, a current requirement with LDhat that could bias the 
resulting map. Furthermore, LDhat infers the relative, pop-
ulation-scaled, recombination rates, ρ, rather than absolute 
recombination rates, r. Despite the effort to control for the 
impact of population history through estimating and regress-
ing the long-term effective population size, we presumed 
the differences in recombination landscapes observed across 
populations largely reflected differences in LD pattern due to 
the Hawaiian’s unique demographic history. We were unable 
to assess differences in recombination between Native Hawai-
ians and other populations due to, for example, PRDM9 motif 
usage variations (Hinch et al. 2011). To directly and reliably 
estimate the underlying recombination rates would require 
large-scale pedigree data with sequencing information, such 
as the one amassed by deCODE (Kong et al. 2010), but is 
extremely difficult to ascertain for a vulnerable, indigenous 
population such as Native Hawaiians. Nevertheless, the rates 
estimated by LDhat within Native Hawaiians are highly cor-
related with IBD-based maps, and these maps can inform 
and improve genetic analyses using haplotype-based statistics 
for this population, as we have evaluated here. This is thus 
an important step towards inclusion and lessening further 
irresponsible construct of selection stories for the Native 

Hawaiians. Finally, we also acknowledge that the underlying 
genetics and genomics should not supplant current stand-
ards through self-identity or genealogical records for defin-
ing community memberships; there is one Native Hawaiian 
population that cannot be discretized through genomics. The 
implications of these and future genetic findings on Pacific 
Islander health must be viewed through the lens of the social 
determinants of health with the goals to improve inclusion 
and equitable benefit sharing with the indigenous communi-
ties (Fox 2020; Pineda et al. 2023).
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