Skip to main content

Advertisement

Log in

rs10924104 in the expression enhancer motif of CD58 confers susceptibility to human autoimmune diseases

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

CD58 plays roles in cell adhesion and co-stimulation with antigen presentation from major histocompatibility complex class II on antigen-presenting cells to T-cell antigen receptors on naïve T cells. CD58 reportedly contributes to the development of various human autoimmune diseases. Recently, genome-wide association studies (GWASs) identified CD58 as a susceptibility locus for autoimmune diseases such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), and primary biliary cholangitis (PBC). However, the primary functional variant and molecular mechanisms of susceptibility to autoimmune diseases in the CD58 locus were not clarified. Here, rs10924104, located in the ZNF35-binding motif within the gene expression regulatory motif, was identified as the primary functional variant for SLE, MS, and PBC among genetic variants showing stronger linkage disequilibrium (LD) with GWAS-lead variants in the CD58 locus. Expression-quantitative trait locus (e-QTL) data for each distinct blood cell type and in vitro functional analysis using the CRISPR/Cas9 system corroborated the functional role of rs10924104 in the upregulation of CD58 transcription by the disease-risk allele. Additionally, the strength of disease susceptibility observed in the CD58 locus could be accounted for by the strength of LD between rs10924104 and each GWAS-lead variant. In conclusion, the present study demonstrated for the first time the existence of a shared autoimmune disease-related primary functional variant (i.e., rs10924104) that regulates the expression of CD58. Clarifying the molecular mechanism of disease susceptibility derived from such a shared genetic background is important for understanding human autoimmune diseases and human immunology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Allen CD, Okada T, Cyster JG (2007) Germinal-center organization and cellular dynamics. Immunity 27:190–202. https://doi.org/10.1016/j.immuni.2007.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andlauer TF, Buck D, Antony G, Bayas A, Bechmann L, Berthele A, Chan A, Gasperi C, Gold R, Graetz C, Haas J, Hecker M, Infante-Duarte C, Knop M, Kümpfel T, Limmroth V, Linker RA, Loleit V, Luessi F, Meuth SG, Mühlau M, Nischwitz S, Paul F, Pütz M, Ruck T, Salmen A, Stangel M, Stellmann JP, Stürner KH, Tackenberg B, Then Bergh F, Tumani H, Warnke C, Weber F, Wiendl H, Wildemann B, Zettl UK, Ziemann U, Zipp F, Arloth J, Weber P, Radivojkov-Blagojevic M, Scheinhardt MO, Dankowski T, Bettecken T, Lichtner P, Czamara D, Carrillo-Roa T, Binder EB, Berger K, Bertram L, Franke A, Gieger C, Herms S, Homuth G, Ising M, Jöckel KH, Kacprowski T, Kloiber S, Laudes M, Lieb W, Lill CM, Lucae S, Meitinger T, Moebus S, Müller-Nurasyid M, Nöthen MM, Petersmann A, Rawal R, Schminke U, Strauch K, Völzke H, Waldenberger M, Wellmann J, Porcu E, Mulas A, Pitzalis M, Sidore C, Zara I, Cucca F, Zoledziewska M, Ziegler A, Hemmer B, Müller-Myhsok B (2016) Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Sci Adv 2:e1501678. https://doi.org/10.1126/sciadv.1501678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnas JL, Looney RJ, Anolik JH (2019) B cell targeted therapies in autoimmune disease. Curr Opin Immunol 61:92–99. https://doi.org/10.1016/j.coi.2019.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendall LJ, Kortlepel K, Gottlieb DJ (1995) Gm-CSF enhances IL-2-activated natural killer cell lysis of clonogenic Aml cells by upregulating target cell expression of ICAM-1. Leukemia 9:677–684

    CAS  PubMed  Google Scholar 

  • Calado DP, Sasaki Y, Godinho SA, Pellerin A, Köchert K, Sleckman BP, de Alborán IM, Janz M, Rodig S, Rajewsky K (2012) The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat Immunol 13:1092–1100. https://doi.org/10.1038/ni.2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordell HJ, Fryett JJ, Ueno K, Darlay R, Aiba Y, Hitomi Y, Kawashima M, Nishida N, Khor SS, Gervais O, Kawai Y, Nagasaki M, Tokunaga K, Tang R, Shi Y, Li Z, Juran BD, Atkinson EJ, Gerussi A, Carbone M, Asselta R, Cheung A, de Andrade M, Baras A, Horowitz J, Ferreira MAR, Sun D, Jones DE, Flack S, Spicer A, Mulcahy VL, Byan J, Han Y, Sandford RN, Lazaridis KN, Amos CI, Hirschfield GM, Seldin MF, Invernizzi P, Siminovitch KA, Ma X, Nakamura M, Mells GF, PBC Consortia; Canadian PBC Consortium; Chinese PBC Consortium; Italian PBC Study Group; Japan-PBC-GWAS Consortium; US PBC Consortium; UK-PBC Consortium (2021) An international genome-wide meta-analysis of primary biliary cholangitis: novel risk loci and candidate drugs. J Hepatol 75:572–581. https://doi.org/10.1016/j.jhep.2021.04.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crotty S (2014) T follicular helper cell differentiation, function, and roles in disease. Immunity 41:529–542. https://doi.org/10.1016/j.immuni.2014.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT, Piccio L, Raychaudhuri S, Tran D, Aubin C, Briskin R, Romano S, International MS Genetics Consortium, Baranzini SE, McCauley JL, Pericak-Vance MA, Haines JL, Gibson RA, Naeglin Y, Uitdehaag B, Matthews PM, Kappos L, Polman C, McArdle WL, Strachan DP, Evans D, Cross AH, Daly MJ, Compston A, Sawcer SJ, Weiner HL, Hauser SL, Hafler DA, Oksenberg JR (2009) Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet 41:776–782. https://doi.org/10.1038/ng.401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demetriou P, Abu-Shah E, Valvo S, McCuaig S, Mayya V, Kvalvaag A, Starkey T, Korobchevskaya K, Lee LYW, Friedrich M, Mann E, Kutuzov MA, Morotti M, Wietek N, Rada H, Yusuf S, Afrose J, Siokis A, Oxford IBD Cohort Investigators, Meyer-Hermann M, Ahmed AA, Depoil D, Dustin ML (2020) A dynamic CD2 rich compartment at the outer edge of the immunological synapse boosts and integrates signals. Nat Immunol 21:1232–1243. https://doi.org/10.1038/s41590-020-0770-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dustin ML, Sanders ME, Shaw S, Springer TA (1987) Purified lymphocyte function-associated antigen 3 binds to CD2 and mediates T lymphocyte adhesion. J Exp Med 165:677–692. https://doi.org/10.1084/jem.165.3.677

    Article  CAS  PubMed  Google Scholar 

  • Gitlin AD, Shulman Z, Nussenzweig MC (2014) Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509:637–640. https://doi.org/10.1038/nature13300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GTEx Consortium (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45:580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  • He W, Wang B, Li Q, Yao Q, Jia X, Song R, Li S, Zhang JA (2019) Aberrant expressions of co-stimulatory and co-inhibitory molecules in autoimmune diseases. Front Immunol 10:261. https://doi.org/10.3389/fimmu.2019.00261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitomi Y, Nakamura M (2023) The genetics of primary biliary cholangitis: a GWAS and post-GWAS update. Genes 14:405. https://doi.org/10.3390/genes14020405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitomi Y, Kawashima M, Aiba Y, Nishida N, Matsuhashi M, Okazaki H, Nakamura M, Tokunaga K (2015) Human primary biliary cirrhosis susceptible allele of rs4979462 enhances TNFSF15 expression by binding NF-1. Hum Genet 134:737–747. https://doi.org/10.1007/s00439-015-1556-3

    Article  CAS  PubMed  Google Scholar 

  • Hitomi Y, Kojima K, Kawashima M, Kawai Y, Nishida N, Aiba Y, Yasunami M, Nagasaki M, Nakamura M, Tokunaga K (2017) Identification of the functional variant driving ORMDL3 and GSDMB expression in human chromosome 17q12-21 in primary biliary cholangitis. Sci Rep 7:2904. https://doi.org/10.1038/s41598-017-03067-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitomi Y, Nakatani K, Kojima K, Nishida N, Kawai Y, Kawashima M, Aiba Y, Nagasaki M, Nakamura M, Tokunaga K (2019a) NFKB1 and MANBA confer disease-susceptibility to putative primary biliary cholangitis via independent primary functional variants. Cell Mol Gastroenterol Hepatol 7:515–532. https://doi.org/10.1016/j.jcmgh.2018.11.006

    Article  PubMed  Google Scholar 

  • Hitomi Y, Ueno K, Kawai Y, Nishida N, Kojima K, Kawashima M, Aiba Y, Nakamura H, Kouno H, Kouno H, Ohta H, Sugi K, Nikami T, Yamashita T, Katsushima S, Komeda T, Ario K, Naganuma A, Shimada M, Hirashima N, Yoshizawa K, Makita F, Furuta K, Kikuchi M, Naeshiro N, Takahashi H, Mano Y, Yamashita H, Matsushita K, Tsunematsu S, Yabuuchi I, Nishimura H, Shimada Y, Yamauchi K, Komatsu T, Sugimoto R, Sakai H, Mita E, Koda M, Nakamura Y, Kamitsukasa H, Sato T, Nakamuta M, Masaki N, Takikawa H, Tanaka A, Ohira H, Zeniya M, Abe M, Kaneko S, Honda M, Arai K, Arinaga-Hino T, Hashimoto E, Taniai M, Umemura T, Joshita S, Nakao K, Ichikawa T, Shibata H, Takaki A, Yamagiwa S, Seike M, Sakisaka S, Takeyama Y, Harada M, Senju M, Yokosuka O, Kanda T, Ueno Y, Ebinuma H, Himoto T, Murata K, Shimoda S, Nagaoka S, Abiru S, Komori A, Migita K, Ito M, Yatsuhashi H, Maehara Y, Uemoto S, Kokudo N, Nagasaki M, Tokunaga K, Nakamura M (2019b) POGLUT1, the putative effector gene driven by rs2293370 in primary biliary cholangitis susceptibility locus chromosome 3q13.33. Sci Rep 9:102. https://doi.org/10.1038/s41598-018-36490-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitomi Y, Aiba Y, Kawai Y, Kojima K, Ueno K, Nishida N, Kawashima M, Gervais O, Khor SS, Nagasaki M, Tokunaga K, Nakamura M, Tsuiji M (2021) rs1944919 on chromosome 11q23.1 and its effector genes COLCA1/COLCA2 confer susceptibility to primary biliary cholangitis. Sci Rep 11:4557. https://doi.org/10.1038/s41598-021-84042-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitomi Y, Aiba Y, Ueno K, Nishida N, Kawai Y, Kawashima M, Tsuiji M, Iwabuchi C, Takada S, Miyake N, Nagasaki M, Tokunaga K, Nakamura M (2022a) A genetic variant associated with multiple immunological traits regulates CD28 alternative splicing. Hum Genom 16:46. https://doi.org/10.1186/s40246-022-00419-7

    Article  CAS  Google Scholar 

  • Hitomi Y, Aiba Y, Ueno K, Nishida N, Kawai Y, Kawashima M, Yasunami M, Gervais O, Ito M, Cordell HJ, Mells GF, Nagasaki M, Tokunaga K, Tsuiji M, Nakamura M (2022b) rs9459874 and rs1012656 in CCR6/FGFR1OP confer susceptibility to primary biliary cholangitis. J Autoimmun 126:102775. https://doi.org/10.1016/j.jaut.2021.102775

    Article  CAS  PubMed  Google Scholar 

  • International Multiple Sclerosis Genetics Consortium (IMSGC) (2013) Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 45:1353–1360. https://doi.org/10.1038/ng.2770

    Article  CAS  Google Scholar 

  • International Multiple Sclerosis Genetics Consortium (2019) Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365:eaav7188. https://doi.org/10.1126/science.aav7188

    Article  CAS  PubMed Central  Google Scholar 

  • Kaplan MM, Gershwin ME (2005) Primary biliary cirrhosis. N Engl J Med 353:1261–1273. https://doi.org/10.1056/NEJMra043898

    Article  CAS  PubMed  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006. https://doi.org/10.1101/gr.229102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kose O, Stewart J, Waseem A, Lalli A, Fortune F (2008) Expression of cytokeratins, adhesion and activation molecules in oral ulcers of Behçet’s disease. Clin Exp Dermatol 33:62–69. https://doi.org/10.1111/j.1365-2230.2007.02558.x

    Article  CAS  PubMed  Google Scholar 

  • Leitner J, Herndler-Brandstetter D, Zlabinger GJ, Grubeck-Loebenstein B, Steinberger P (2015) CD58/CD2 is the primary costimulatory pathway in human CD28−CD8+ T cells. J Immunol 195:477–487. https://doi.org/10.4049/jimmunol.1401917

    Article  CAS  PubMed  Google Scholar 

  • Machiela MJ, Chanock SJ (2015) LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31:3555–3557. https://doi.org/10.1093/bioinformatics/btv402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura M (2014) Clinical significance of autoantibodies in primary biliary cirrhosis. Semin Liver Dis 34:334–340. https://doi.org/10.1055/s-0034-1383732

    Article  CAS  PubMed  Google Scholar 

  • Nakayama J, Terao H, Koga T, Furue M (2001) Induction of CD54 and CD58 expression in cultured human endothelial cells by beta-interferon with or without hyperthermia in vitro. J Dermatol Sci 26:19–24. https://doi.org/10.1016/s0923-1811(00)00150-x

    Article  CAS  PubMed  Google Scholar 

  • Oprea M, Perelson AS (1997) Somatic mutation leads to efficient affinity maturation when centrocytes recycle back to centroblasts. J Immunol 158(1997):5155–5162

    Article  CAS  PubMed  Google Scholar 

  • Ota M, Nagafuchi Y, Hatano H, Ishigaki K, Terao C, Takeshima Y, Yanaoka H, Kobayashi S, Okubo M, Shirai H, Sugimori Y, Maeda J, Nakano M, Yamada S, Yoshida R, Tsuchiya H, Tsuchida Y, Akizuki S, Yoshifuji H, Ohmura K, Mimori T, Yoshida K, Kurosaka D, Okada M, Setoguchi K, Kaneko H, Ban N, Yabuki N, Matsuki K, Mutoh H, Oyama S, Okazaki M, Tsunoda H, Iwasaki Y, Sumitomo S, Shoda H, Kochi Y, Okada Y, Yamamoto K, Okamura T, Fujio K (2021) Dynamic landscape of immune cell-specific gene regulation in immune-mediated diseases. Cell 184:3006–3021. https://doi.org/10.1016/j.cell.2021.03.056

    Article  CAS  PubMed  Google Scholar 

  • Patsopoulos NA, Bayer Pharma MS Genetics Working Group; Steering Committees of Studies Evaluating IFNβ-1b and a CCR1-Antagonist; ANZgene Consortium; GeneMSA; International Multiple Sclerosis Genetics Consortium, Esposito F, Reischl J, Lehr S, Bauer D, Heubach J, Sandbrink R, Pohl C, Edan G, Kappos L, Miller D, Montalbán J, Polman CH, Freedman MS, Hartung HP, Arnason BG, Comi G, Cook S, Filippi M, Goodin DS, Jeffery D, O’Connor P, Ebers GC, Langdon D, Reder AT, Traboulsee A, Zipp F, Schimrigk S, Hillert J, Bahlo M, Booth DR, Broadley S, Brown MA, Browning BL, Browning SR, Butzkueven H, Carroll WM, Chapman C, Foote SJ, Griffiths L, Kermode AG, Kilpatrick TJ, Lechner-Scott J, Marriott M, Mason D, Moscato P, Heard RN, Pender MP, Perreau VM, Perera D, Rubio JP, Scott RJ, Slee M, Stankovich J, Stewart GJ, Taylor BV, Tubridy N, Willoughby E, Wiley J, Matthews P, Boneschi FM, Compston A, Haines J, Hauser SL, McCauley J, Ivinson A, Oksenberg JR, Pericak-Vance M, Sawcer SJ, De Jager PL, Hafler DA, de Bakker PI (2011) Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol 70:897–912. https://doi.org/10.1002/ana.22609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousset F, Billaud M, Blanchard D, Figdor C, Lenoir GM, Spits H, De Vries JE (1989) IL-4 induces LFA-1 and LFA-3 expression on Burkitt’s lymphoma cell lines. Requirement of additional activation by phorbol myristate acetate for induction of homotypic cell adhesions. J Immunol 143:1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Selmi C, Bowlus CL, Gershwin ME, Coppel RL (2011) Primary biliary cirrhosis. Lancet 377:1600–1609. https://doi.org/10.1016/S0140-6736(10)61965-4

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj P, Plunkett ML, Dustin M, Sanders ME, Shaw S, Springer TA (1987) The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3. Nature 326:400–403. https://doi.org/10.1038/326400a0

    Article  CAS  PubMed  Google Scholar 

  • Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y (1995) HLA-DRB4*0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med 181:1835–1845. https://doi.org/10.1084/jem.181.5.1835

    Article  CAS  PubMed  Google Scholar 

  • Shimoda S, Van de Water J, Ansari A, Nakamura M, Ishibashi H, Coppel RL, Lake J, Keeffe EV, Roche TE, Gershwin ME (1998) Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis. J Clin Investig 102:1831–1840. https://doi.org/10.1172/JCI4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, Groza T, Güneş O, Hall P, Hayhurst J, Ibrahim A, Ji Y, John S, Lewis E, MacArthur JAL, McMahon A, Osumi-Sutherland D, Panoutsopoulou K, Pendlington Z, Ramachandran S, Stefancsik R, Stewart J, Whetzel P, Wilson R, Hindorff L, Cunningham F, Lambert SA, Inouye M, Parkinson H, Harris LW (2023) The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res 51:D977–D985. https://doi.org/10.1093/nar/gkac1010

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Söderström K, Nilsson E, Kiessling R, Patarroyo M (1992) Integrins and other adhesion molecules on lymphocytes from synovial fluid and peripheral blood of rheumatoid arthritis patients. Eur J Immunol 22:2879–2885. https://doi.org/10.1002/eji.1830221119

    Article  CAS  PubMed  Google Scholar 

  • Takai Y, Reed ML, Burakoff SJ, Herrmann SH (1987) Direct evidence for a receptor-ligand interaction between the T-cell surface antigen CD2 and lymphocyte-function-associated antigen 3. Proc Natl Acad Sci USA 84:6864–6868. https://doi.org/10.1073/pnas.84.19.6864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Multiple Sclerosis Genetics Consortium and The Wellcome Trust Case Control Consortium 2 (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219. https://doi.org/10.1038/nature10251

    Article  CAS  Google Scholar 

  • Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, Alm T, Asplund A, Björk L, Breckels LM, Bäckström A, Danielsson F, Fagerberg L, Fall J, Gatto L, Gnann C, Hober S, Hjelmare M, Johansson F, Lee S, Lindskog C, Mulder J, Mulvey CM, Nilsson P, Oksvold P, Rockberg J, Schutten R, Schwenk JM, Sivertsson Å, Sjöstedt E, Skogs M, Stadler C, Sullivan DP, Tegel H, Winsnes C, Zhang C, Zwahlen M, Mardinoglu A, Pontén F, von Feilitzen K, Lilley KS, Uhlén M, Lundberg E (2017) A subcellular map of the human proteome. Science 356:eaal3321. https://doi.org/10.1126/science.aal3321

    Article  CAS  PubMed  Google Scholar 

  • Uhlén M, Björling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergström K, Brumer H, Cerjan D, Ekström M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Björklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Sköllermo A, Steen J, Stenvall M, Sterky F, Strömberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Waldén A, Wan J, Wernérus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Pontén F (2015) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteom 4:1920–1932. https://doi.org/10.1074/mcp.M500279-MCP200

    Article  CAS  Google Scholar 

  • Victora GD, Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30:429–457. https://doi.org/10.1146/annurev-immunol-020711-075032

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Song F, Zhang B, Zhang L, Xu J, Kuang D, Li D, Choudhary MNK, Li Y, Hu M, Hardison R, Wang T, Yue F (2018) The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol 19:151. https://doi.org/10.1186/s13059-018-1519-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YF, Zhang Y, Lin Z, Zhang H, Wang TY, Cao Y, Morris DL, Sheng Y, Yin X, Zhong SL, Gu X, Lei Y, He J, Wu Q, Shen JJ, Yang J, Lam TH, Lin JH, Mai ZM, Guo M, Tang Y, Chen Y, Song Q, Ban B, Mok CC, Cui Y, Lu L, Shen N, Sham PC, Lau CS, Smith DK, Vyse TJ, Zhang X, Lau YL, Yang W (2021) Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nat Commun 12:772. https://doi.org/10.1038/s41467-021-21049-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingender E, Dietze P, Karas H, Knüppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24:238–241. https://doi.org/10.1093/nar/24.1.238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Kim K, Suetsugu H, Bang SY, Wen L, Koido M, Ha E, Liu L, Sakamoto Y, Jo S, Leng RX, Otomo N, Laurynenka V, Kwon YC, Sheng Y, Sugano N, Hwang MY, Li W, Mukai M, Yoon K, Cai M, Ishigaki K, Chung WT, Huang H, Takahashi D, Lee SS, Wang M, Karino K, Shim SC, Zheng X, Miyamura T, Kang YM, Ye D, Nakamura J, Suh CH, Tang Y, Motomura G, Park YB, Ding H, Kuroda T, Choe JY, Li C, Niiro H, Park Y, Shen C, Miyamoto T, Ahn GY, Fei W, Takeuchi T, Shin JM, Li K, Kawaguchi Y, Lee YK, Wang Y, Amano K, Park DJ, Yang W, Tada Y, Yamaji K, Shimizu M, Atsumi T, Suzuki A, Sumida T, Okada Y, Matsuda K, Matsuo K, Kochi Y, Japanese Research Committee on Idiopathic Osteonecrosis of the Femoral Head, Kottyan LC, Weirauch MT, Parameswaran S, Eswar S, Salim H, Chen X, Yamamoto K, Harley JB, Ohmura K, Kim TH, Yang S, Yamamoto T, Kim BJ, Shen N, Ikegawa S, Lee HS, Zhang X, Terao C, Cui Y, Bae SC (2021) Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann Rheum Dis 80:632–640. https://doi.org/10.1136/annrheumdis-2020-219209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all patients and volunteers who enrolled in the study. We also thank Dr. Noriko Miyake for the valuable suggestions. We also thank Ms. Yoshimi Shigemori, Ms. Ayumi Nakayama, Ms. Mayumi Ishii, Ms. Takayo Tsuchiura, Ms. Tomoko Suzuki, Ms. Nozomi Komatsuzaki, Ms. Hikari Tokunaga, Ms. Yuko Maeda, Ms. Mizuki Kobayashi (National Center for Global Health and Medicine), Ms. Hitomi Nakamura, and Ms. Yumi Ogami (Nagasaki Medical Center) for technical and administrative assistance.

Funding

This work was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to Yuki Hitomi (22K08065, 19K08413), Yoshihiro Aiba (20K08370), and Minoru Nakamura (17H04169); the NCGM Intramural Research Fund to Yuki Hitomi (23A1007); Clinical Research from the NHO to Minoru Nakamura; Research Program for Rare/Intractable Diseases provided by the Ministry of Health, Labour, and Welfare of Japan to Minoru Nakamura; Platform Program for Promotion of Genome Medicine (19km0405205h9904) from the Japan Agency for Medical Research and Development to Katsushi Tokunaga and Masao Nagasaki; and Takeda Foundation to Yuki Hitomi.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: YH, M. Nagasaki, TK, M. Nakamura; Acquisition of data: YH, KU, ST, CI, M. Nagasaki; Analysis and interpretation of data: YH, YA, KU, NN, YK, MK, SK, ST, CI, M. Nagasaki, M. Nakamura; Drafting of the manuscript: YH, M. Nakamura; Obtained funding: YH, YA, M. Nagasaki, KT, M. Nakamura; Study supervision: M. Nagasaki, KT, M. Nakamura. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuki Hitomi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethics approval

The study was approved by the Committee on Research Ethics of the National Center for Global Health and Medicine, and the National Hospital Organization. All methods were performed in accordance with the ethical guidelines and regulations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hitomi, Y., Ueno, K., Aiba, Y. et al. rs10924104 in the expression enhancer motif of CD58 confers susceptibility to human autoimmune diseases. Hum. Genet. 143, 19–33 (2024). https://doi.org/10.1007/s00439-023-02617-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-023-02617-2

Navigation