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Abstract
Exome and genome sequencing (ES/GS) in genetic medicine and research leads to discovering genomic secondary findings 
(SFs) unrelated to the purpose of the primary test. There is a lack of agreement to return the SF results for individuals under-
going the test. The aim of this study is to investigate the frequency of actionable secondary findings using GS data obtained 
from the rare disease study and the Korean Genome and Epidemiology Study (KoGES) in the National Project of Bio Big 
Data pilot study. Pathogenic (P) or likely pathogenic (LP) variants of 78 SF genes recommended by the American College 
of Medical Genetics and Genomics (ACMG) were screened in the rare disease study and KoGES. The pathogenicity of SF 
gene variants was determined according to the ACMG interpretation. The overall SF rate was 3.75% for 280 individuals 
with 298 P/LP variants of 41 ACMG SF genes which were identified among 7472 study participants. The frequencies of 
genes associated with cardiovascular, cancer, and miscellaneous phenotypes were 2.17%, 1.22%, and 0.58%, respectively. 
The most frequent SF gene was TTN followed by BRCA2. The frequency of actionable SFs among participants with rare 
disease and general population participants in the Korean population presented here will assist in reporting results of medi-
cally actionable SFs in genomic medicine.

Introduction

Exome and genome sequencing (ES/GS) are rapidly inte-
grated into medicine as well as healthcare research globally 
owing to the decreasing cost of sequencing and advances in 
bioinformatics tools (Stark et al. 2019; Van El et al. 2013). 
Consequently, ES/GS have become crucial process in main-
stream medicine and healthcare systems, which contributes 
to precision medicine and improving the health of various 
populations (Suwinski et al. 2019). The use of ES/GS analy-
sis in a clinical context such as genetic diagnosis of rare 

diseases and cancers may potentially identify genomic inci-
dental/secondary findings (SFs) from the patients or their 
family regardless of the primary test’s purpose (Green et al. 
2013).

Genomic incidental findings/SFs represent major issues 
in clinical sequencing in terms of the range of the findings 
and the manner of reporting results to the patient/family or 
study participants. The American College of Medical Genet-
ics and Genomics (ACMG) has published a recommendation 
for reporting incidental/SFs (Green et al. 2013), which pro-
vides a minimal list of clinically actionable genes to actively 
screen for pathogenic (P) or likely pathogenic (LP) variants 
in clinical ES/GS. The actionability of genes was reviewed 
by the Secondary Finding Working Group in ACMG and 78 
actionable genes have been reported (version 3.1) (Miller 
et al. 2022). Based on the ACMG SF recommendation, iden-
tifying a pathogenic variant in the SF genes may represent 
an opportunity for enabling early intervention to prevent the 
development of SF-related diseases in individuals that have 
undergone clinical sequencing, although there may be addi-
tional ethical considerations reporting results depending on 
the individual medical circumstances (Venner et al. 2022; 
Zawatsky et al. 2021).
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Several studies have attempted to identify SFs across 
diverse studies and populations such as the NIH Undiag-
nosed Diseases Program (Lawrence et  al. 2014), 1000 
Genomes Project (Olfson et al. 2015), Qatar genome pro-
gram (Elfatih et al. 2021a), eMERGE network participants 
(Gordon et al. 2020), and DISCO study (Huang et al. 2022) 
representing the frequency of SFs from 0.59 to 17% (Elfatih 
et al. 2021b). However, previous studies using ES/GS analy-
sis were mainly performed in the western population; few 
studies have analyzed other populations, particularly in 
Asia (Chetruengchai and Shotelersuk 2022; Horiuchi et al. 
2021; Landry et al. 2018; Pan and Xu 2020; Sirugo et al. 
2019). Two studies have reported the screening of SFs in the 
Korean population by analyzing 196 and 1303 individuals’ 
whole-exome data from study participants, in which the SF 
rates have been found to be 6.63% and 2.46% respectively 
(Jang et al. 2015; Kwak et al. 2017). Previous SF analyses 
have reported contrasting SF rates despite evaluating the 
same ACMG SF 56 genes, which may be affected by differ-
ences in sample size, variant filtering criteria, and database 
used between studies (Elfatih et al. 2021b).

The National Project of Bio Big Data is a national pro-
ject that aims to implement precision medicine and national 
health promotion; it has generated GS data, clinical infor-
mation, and lifestyle data of the Korean population (KISTI 
2021). In the rare disease study of this project, patients with 
rare diseases and their families were recruited for genetic 
diagnosis as well as for finding new genetic factors related 
to rare disorders based on the GS analysis. Additionally, 
the Korean Genome and Epidemiology Study (KoGES), 
another study in the project, generated GS data for a general 
population.

The aim of the present study is to identify clinically 
actionable variants of 78 ACMG SF genes and to investigate 
the frequency of SFs in 7472 Korean genomes obtained from 
the two studies, the rare disease study and the KoGES of the 
National Project of Bio Big Data pilot study.

Materials and methods

Study population

The pilot study of the National Project of Bio Big Data 
(KISTI 2021) consisted of independent studies including the 
rare disease study and KoGES. Genetic analyses were per-
formed for 4972 genomes and 2500 genomes obtained from 
the rare disease study and KoGES, respectively. The rare 
disease study participants consisted of singleton proband, 
duo, trio, and more than trio families. The rare diseases 
were classified into 19 disease categories including cardio-
vascular disorder, neurodevelopment disorder, congenital 
disorder, metabolic disorder, tumor syndrome, and so on 

(Supplementary Table 2). Basic information including age, 
sex, and ethnicity, as well as clinical information includ-
ing disease, medical history, family history, and phenotypes 
with HPO term were input by a clinician. The KoGES was 
a general population-based study that recruited community 
dwellers aged > 40 years at the baseline examination from 
two locations, Ansan and Ansung (Kim et al. 2017). A total 
of 7472 participants including 2186 probands, 2786 fami-
lies (without probands) in the rare disease study, and 2500 
KoGES participants were analyzed in the present study after 
they provided informed consent (Supplementary Table 1).

Genome sequencing data

GS data was generated using samples obtained from all 
study participants in the National Project of Bio Big Data 
pilot study (https:// www. cirn. re. kr). GS data were obtained 
using identical methods with standard operating procedures 
across the studies. Briefly, genomic DNA was extracted 
from peripheral whole blood of the study participants, fol-
lowed by sequencing conducted on the Illumina NovaSeq 
6000 platform with an average of 30-read coverage. FASTQ 
files were aligned to the human reference genome GRCh38 
using BWA software (v0.7.15-r1140). Variant calling was 
performed using Genome Analysis Toolkit (GATK, Broad 
Institute) based on Apache Spark (v4.2.4.1). Joint genotype 
calling was performed on individual gVCF files to improve 
the validity of the variants using a GATK joint genotyping 
pipeline to generate a joint-multi-sample VCF file. Variant 
quality score recalibration (VQSR) was performed to filter 
variants. All procedures were performed as described previ-
ously (https:// www. kobic. re. kr/ ngp/ pipel ine).

Variant classification

The variants obtained using the PASS filter after the filtering 
step were annotated using the Ensembl Variant Effect Pre-
dictor (McLaren et al. 2016) and ANNOVAR (Wang et al. 
2010). The variants of 78 ACMG SF genes were included 
only for the protein coding region or splice variants, and 
these had an allele frequency of < 0.05 (gnomAD) and a 
minimum coverage of 20 reads (Fig. 1). The variants were 
classified into five categories, pathogenic (P), likely patho-
genic (LP), likely benign (LB), benign (B), and uncertain 
significance (VUS), according to the ACMG variant inter-
pretation guidelines (Richards et al. 2015) using bioinfor-
matics software (Li and Wang 2017; Seo et al. 2020; Xiang 
et al. 2020), followed by considering the mode of inheritance 
in the ACMG SF genes associated with the phenotype and 
primary test indication of probands in rare disease study par-
ticipants. We then reclassified the P and LP variants manu-
ally considering the ACMG criteria and ClinGen Sequence 
Variant Interpretation recommendations (Abou Tayoun et al. 

https://www.cirn.re.kr
https://www.kobic.re.kr/ngp/pipeline
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2018; Biesecker and Harrison 2018; Brnich et al. 2020; 
Ghosh et al. 2018; Pejaver et al. 2022; Rehm et al. 2015; 
Tavtigian et al. 2018; Tavtigian et al. 2020).

Primary finding was defined as the P/LP variants of 
the ACMG SF gene relevant to the diagnostic indication 
of the patient for the purpose of sequencing (Green et al. 
2013). Based on the definition, the patients with rare dis-
eases who carried the P/LP variant of the SF genes were 
not considered to show SFs when their SF genes were 

relevant to the primary test phenotype. In addition, the 
individuals with monoallelic P/LP variants of SF genes 
related to autosomal recessive inheritance in the ACMG 
SF gene associated with phenotypes were identified, but 
not reported as SF. The SNV/indels variants were assessed 
in the analysis, but structural variants were not included 
in our analysis.

Results

Demographics of study population

A total of 7472 study participants included 4972 individu-
als from the rare disease study and 2500 individuals from 
the KoGES. Participants from the rare disease study com-
prised 669 singleton (13.5%), 590 duo (11.9%), 3309 trio 
(66.6%), 374 quartet and quintet (7.5%), and 30 others 
(1.1%) (Supplementary Table 1). More than half of the 
participants from the rare disease study comprised trio, 
quartet, or quintet families (n = 3683, 74.1%). The mean 
age of the participants from the rare disease study were 
21.5 ± 20.4 years for patients and 42.6 ± 10.4 years for 
family members. Participants from KoGES had a mean 
age of 51.8 ± 8.3 years at baseline examination (Supple-
mentary Table 1). Among the genomes of the 7472 par-
ticipants, 298 pathogenic/likely pathogenic variants of the 
78 ACMG genes were filtered (Fig. 1).

Overall rate of SFs

Among the 7472 study participants, 280 individuals car-
ried 298 P/LP variants (165 unique variants) of ACMG 
SF genes (3.75%) (Fig. 2a). The genes associated with 
cardiovascular phenotypes were the most frequent (2.17%) 
followed by those associated with cancer (1.22%), miscel-
laneous (0.58%), and inborn errors of metabolism (0.03%) 
in the two studies (Fig. 2b). The frequency of the find-
ings based on the subcategory of the phenotypes, patho-
genic variant, and studies are shown in the Supplementary 
Table 3. A total of 41 genes among the 78 ACMG genes 
included the P/LP variants (Supplementary Table 3); the 
most frequent SF gene was TTN (0.66%), followed by 
BRCA2 (0.50%) and RYR1 (0.48%) (Fig. 2c). Ten variants 
were identified commonly in more than five participants; 
the most frequent variant was c.10819G>T in TTN (n = 14) 
followed by c.170C>G in MYL3 (n = 11) and c.452G>A in 
TNNT2 (n = 10) (Table 1 and Supplementary data). Also, 
there were 17 participants who show double heterozy-
gosity and 1 participant who have the triple pathogenic 
variants.

53,747 variants

GS data in 7,472 participants
• Rare disease patient-family (rare disease cohort- 4,972 participants) 
• General population (KoGES - 2,500 participants)

ACMG SF v3.1 list (78 genes)
• Protein coding region
• Splice donor/acceptor variant
• AF < 0.05
• Allele depth ≥ 20 reads

Mode of inheritance in ACMG SF guideline

Annotating variant pathogenicity to five categories 
(P/LP/VUS/LB/B)  

844 P/LP variants
• Rare disease study: 545 
• KoGES: 299

Re-classification according to the ACMG/AMP and ClinGen
Sequence Variant Interpretation recommendation

Final reportable variants:

298 P/LP variants (165 unique variants)

501 P/LP variants
• Rare disease study: 361
• KoGES: 140

Indication for the primary testing in rare disease patients

442 P/LP variants
• Rare disease study: 302 
• KoGES: 140

Fig. 1  Flow chart for screening pathogenic/likely pathogenic variants 
in actionable secondary finding genes from the ACMG SF list v3.1. 
GS genome sequencing, KoGES Korean Genome and Epidemiology 
Study, AF allele frequency, P/LP pathogenic/likely pathogenic
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Fig. 2  Secondary finding rate in the study participants. a SF rate among the total participants. b SF variant rate according to phenotypes. c SF 
variant rate according to genes. SF secondary finding; the OTC is related to the inborn errors of metabolism phenotypes

Table 1  Pathogenic/likely pathogenic variants identified in five or more participants among the study participants

KoGES Korean Genome and Epidemiology Study, Rare-family family from rare disease study, Rare-patient participant from rare disease study

Gene Coding DNA change Protein change Variant class Type No. of par-
ticipants

Rare-patient Rare-family KoGES

TTN c.10819G>T p.Glu3607Ter Stop gained LP 14 5 3 6
MYL3 c.170C>G p.Ala57Gly Missense LP 11 3 4 4
TNNT2 c.452G>A p.Arg151Gln Missense LP 10 5 5 –
RYR1 c.1187A>C p.Glu396Ala Missense LP 7 3 3 1
RYR1 c.1186G>T p.Glu396Ter Stop gained P 7 3 3 1
TNNI3 c.434G>A p.Arg145Gln Missense P 7 2 2 3
BRCA2 c.1399A>T p.Lys467Ter Stop gained P 6 2 3 1
BRCA2 c.5576_5579del p.Ile1859LysfsTer3 Frameshift LP 5 2 3 –
BRCA1 c.3627dup p.Glu1210ArgfsTer9 Frameshift LP 5 1 1 3
KCNH2 c.1474C>T p.His492Tyr Missense LP 5 1 2 2
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SF rate across the two studies

The overall SF rates differ significantly based on the three 
groups in the two studies, rare disease study and KoGES 

(Table 2 and Supplementary Fig. 1a). Regarding the SF 
genes of phenotypes, the SF rate of genes associated with 
cardiovascular phenotypes was slightly lower in the rare 
disease family group (without probands, 53/2786, 1.90%) 
and in KoGES (52/2500, 2.08%) than in the rare disease 
patient group (57/2186, 2.61%). Further, the SF rate of 
genes associated with cancer phenotypes was lower in the 
KoGES (22/2500, 0.88%) than in the rare disease family 
group (39/2786, 1.40%) and in the rare disease patient group 
(30/2186, 1.37%). The SF rate indicated that the propor-
tion of pathogenic variants of TTN and LDLR was similar or 
higher in the KoGES compared with that in the rare disease 
study (Supplementary Fig. 1b).

Pathogenic variants shared between patients 
and parents in the rare disease study

Among the participants of the rare disease patient group, 
we investigated the frequency of SF variants shared 

Table 2  Secondary finding frequency according to the study partici-
pants

Rare-family family from rare disease study, Rare-patient participant 
from rare disease study, KoGES Korean Genome and Epidemiology 
Study

Rare-patient Rare-family KoGES

No. of participants 2186 2786 2500
Secondary findings (%) 96 (4.39) 106 (3.80) 78 (3.12)
Related phenotypes (%)
 Cardiovascular 57 (2.61) 53 (1.90) 52 (2.08)
 Cancer 30 (1.37) 39 (1.40) 22 (0.88)
 Inborn errors of metabolism 1 (0.05) 1 (0.04) –
 Miscellaneous 16 (0.73) 20 (0.72) 7 (0.28)
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between participants and their parents and de novo vari-
ants (Fig. 3a). Among the patients with trio/quartet/quintet 
families, 61.54% P/LP variants (n = 64/104) were shared 
with their parents, and there were 22.12% de novo P/LP 
variants (n = 23/104) and 16.35% were unknown (17/104). 
In the cardiovascular phenotype, 52.63% of P/LP variants 
were shared (n = 30/57) and 31.58% were de novo variants 
(n = 18/57). In the cancer phenotypes, 70.00% of SF variants 
were shared (n = 21/30) and 13.33% were de novo variants 
(n = 4/30). In the miscellaneous phenotypes, 75.00% of SF 
variants were shared (n = 12/16) and 6.25% were de novo 
variants (n = 1/16) (Fig. 3b). According to the SF genes, 
the de novo variants were identified in TTN, FBN1, MYL3, 
TNNI3, BRCA2, PTEN, PMS2, SMAD4, and RYR1 in our 
study population (Fig. 3c, Supplementary data).

Carrier status findings in autosomal recessive 
disorders

We identified participants who carried P/LP variants of 
ACMG genes related to autosomal recessive disorders; how-
ever, all P/LP variants in participants had a heterozygous sta-
tus in the present study. The P/LP variants of 6 genes out of 
8 genes related to autosomal recessive disorders in ACMG 
genes were identified; the most frequent gene was ATP7B 
(1.24%) followed by GAA  (0.32%) and MUTYH (0.31%) 
(Supplementary Fig. 2).

Discussion

In this present study, the overall SF rate was 3.75% including 
individuals carrying the P/LP variant of clinically actionable 
genes included in the latest version (3.1) of the ACMG SF 
list. A previous SF analysis of a Korean population reported 
an SF rate of 6.6% (Jang et al. 2015), which was consid-
erably higher than that reported in the present study. This 
difference could arise from several factors, including the 
fact that the previous study population included candidate 
patients with Mendelian diseases; however, the study did 
not exclude individuals with a primary indication for the 
test because there were no phenotype data in the analysis 
(Jang et al. 2015). Further, the study used a different clinical 
database (HGMD) to classify P/LP variants as SFs compared 
to that used in the present study. Also, the SF rate showed 
2.64% of study participants even though the variants based 
on the ClinVar database (P/LP in ClinVar) (Supplementary 
Fig. 3). Moreover, the SF rate in the present study was in 
agreement with findings of a recent review that reported 
varying frequencies of incidental findings in the range of 
0.5–17% (Elfatih et al. 2021b). We excluded patients carry-
ing the P/LP variant of SF gene associated with phenotypes 
corresponding to the primary test indication. The primary 

findings of patients might have been missed owing to the 
lack of phenotype information of the study participants; it 
was likely that the SF rate was overestimated in the analy-
ses (Biesecker 2016). To moderate the overestimation in the 
rare disease study group, patients were excluded when their 
phenotypes were included in one of four broad categories: 
cancer, cardiovascular disorder, inborn errors of metabo-
lism, and miscellaneous disorders. Although the action-
ability of the ACMG SF genes (v3.1) may differ between 
the Korean population and other ethnic populations based 
on the characteristics of study participants such as different 
penetrance and genetic background. Our results can help 
preparing clinical guidelines for reporting results of SFs to 
the Korean population.

The ACMG SF list has not been validated for screening 
the general population. However, the ACMG SF genes can 
support continued research and discussions regarding the 
factors to consider in population screening programs. Such 
factors include penetrance and genotype–phenotype correla-
tions to examine the efficacy of using such genomic screening 
in asymptomatic individuals, and the SFs may provide an 
opportunity to identify a potentially life-threatening genetic 
risk factor (Miller et al. 2021b). A recent study showed that 
the disability-adjusted life years (DALYs) of an individual 
harboring rare variants of ACMG genes are higher than those 
of individuals that have relatively more common variants 
(Jukarainen et al. 2022). Thus, the results can help explain 
the DALYs attributable to the presence of a deleterious rare 
variant of ACMG genes which has a considerable impact on 
healthy life years. In the present study, we investigated the 
lipid profile at baseline examination among the KoGES par-
ticipants who carried the pathogenic variant of LDLR (Sup-
plementary Table 4). The participants showed a high lipid 
profile; however, the lipid level in most participants at the 
final examination exceeded the criterion for dyslipidemia; 
thus, further analysis is required in follow-up studies.

TTN had the most frequent pathogenic variant among 
the 78 SF genes in our results. TTN was included in the SF 
list at v3.0 for TTN truncating variants (TTNtvs) alone. The 
frequency of TTNtvs has been reported to be 0.5–1% in a 
previous large population study (Miller et al. 2021a); we 
found a similar frequency of TTNtvs (0.66%). In a previ-
ous study, TTNtvs have been associated with clinical phe-
notypes such as increasing left ventricular size (Haggerty 
et al. 2019). Moreover, individuals of African ancestry 
show a relatively weaker association between TTNtvs and 
dilated cardiomyopathy; thus, follow-up of the cardiovas-
cular symptom/phenotype in individuals with TTNtvs is 
needed in our population. This will benefit participants 
and help prepare guidelines to improve the utility of TTN 
in clinical settings. In previous SF studies performed in 
Asian populations, the frequency of the TTN variant has 
been found to be 1.2% in the Chinese population (Huang 
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et al. 2022); a large-scale Asian genomics study compris-
ing three populations reported TTN carrier frequencies of 
0.60% in Chinese, 0.67% in Indian, and 0.44% in Malay 
populations (Chan et al. 2022). The most frequent variant 
in the present analysis, c.10819G>T in TTN, showed an 
allele frequency of 0.0005778 in the East Asian population; 
however, the overall allele frequency was 0.00001971 (gno-
mAD v3.1). The variant was more frequent in East Asian 
populations than in European populations. In the present 
study, the frequency of the variant was 0.0019, which is 
considerably higher than that reported in the public data-
base. Although the variant was an LoF variant, there are 
no report on the pathogenicity of the variant in ClinVar or 
other databases. Thus, further analyses such as penetrance 
of the variant and functional studies are needed to validate 
the pathogenicity of the variant in our population.

Among the rare disease study group, we investigated 
whether the SF P/LP variants were shared between partici-
pants and their parents or were de novo variants; more than 
half of the P/LP variants in the participants were shared 
with at least one of their parents. Identifying these shared 
P/LP variants can provide opportunities for early diagno-
sis, medical management, or effective clinical intervention 
to the participants and their parents or other family mem-
bers who did not exhibit the related disease phenotypes 
despite a lack of sufficient clinical information of the par-
ticipants (Miner et al. 2022; Thompson et al. 2018).

All identified SF genes were related to autosomal domi-
nant disorders according to the ACMG SF list; however, 
there were several participants carrying the P/LP variants 
with heterozygous status for the autosomal recessive dis-
orders related to genes such as ATP7B and MUTYH (Sup-
plementary Fig. 2). The ACMG guidelines recommend 
reporting pathogenic bi-allelic variants only in autoso-
mal recessive disorder-related genes; we did not include 
them as actionable SFs in the present study. The burden of 
analysis would have increased when investigating the P/
LP variants of autosomal recessive disorder-related genes 
with heterozygous status, and carrier screening and dis-
covery efforts would have increased Sanger sequencing 
validation costs and the time required for genetic counse-
lors and medical geneticists to report results (Green et al. 
2013). However, the carrier status of the study participants 
was investigated in our SF screening; it may provide valu-
able information concerning their offspring or for planning 
children. In addition, an analysis was performed regarding 
the Wilson disease that is associated with ATP7B homozy-
gous mutation showing a prevalence of 38.7 per million 
people in Korea (Choe et al. 2020). Thus, screening the P/
LP variant of ATP7B and even carrier status may be ben-
eficial to the Korean population; however, it needs exten-
sive evaluation before reporting the results to the study 
participants.

There were several limitations in the present study. 
First, the size of our project was small compared to that of 
other large-scale projects conducted in the western popu-
lation (All of Us Research Program et al. 2019; Gordon 
et al. 2020; Van Hout et al. 2020). However, our study size 
was comparatively large for an Asian population (Huang 
et al. 2022; Yamaguchi-Kabata et al. 2018), particularly in 
terms of single national population (Chan et al. 2022; Jang 
et al. 2015; Kwak et al. 2017), as well as other popula-
tions (Elfatih et al. 2021a; Rodríguez-Salgado et al. 2022). 
Second, we could not determine the exact penetrance of 
the P/LP variants in our study population because par-
ticipants who carried the P/LP variant could not be fol-
lowed. The penetrance likely differs based on ethnicity 
(Forrest et al. 2022); thus, further analyses are required to 
evaluate the penetrance of the P/LP variants in our popu-
lation with large-scale follow-up studies. Also, this study 
is to investigate the frequency of secondary finding in the 
study participants, not to return the SF results to the study 
participants. Thus, the study participants could not obtain 
the SF results, genetic counseling about SF. Lastly, we 
assessed SNV and indel only, not the structural variations, 
large rearrangements or exon-range alteration even using 
the genome data. There might be the pathogenic structural 
variants of SF genes, thus, further analyses will be needed.

In summary, we determined a rate of actionable SFs of 
3.75% among participants in the two studies: rare disease 
and KoGES according to the ACMG SF gene list v3.1. 
The most frequent gene associated with disease domain 
was cardiovascular phenotypes (2.17%) followed by can-
cer phenotypes (1.22%) and miscellaneous phenotypes 
(0.58%). The most frequent SF gene was TTN (0.66%). 
We found that the frequencies of pathogenic variants of 
actionable SF genes differed to a minor extent between the 
general population and rare disease group family–patient 
population. Our findings can help evaluate the clinical SF 
guidelines for the general population and patient–families 
with rare diseases who underwent genome sequencing 
analysis.
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