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Abstract
We provide the first whole genome Copy Number Variant (CNV) study addressing Roma, along with reference populations 
from South Asia, the Middle East and Europe. Using CNV calling software for short-read sequence data, we identified 3171 
deletions and 489 duplications. Taking into account the known population history of the Roma, as inferred from whole 
genome nucleotide variation, we could discern how this history has shaped CNV variation. As expected, patterns of dele-
tion variation, but not duplication, in the Roma followed those obtained from single nucleotide polymorphisms (SNPs). 
Reduced effective population size resulting in slightly relaxed natural selection may explain our observation of an increase 
in intronic (but not exonic) deletions within Loss of Function (LoF)-intolerant genes. Over-representation analysis for LoF-
intolerant gene sets hosting intronic deletions highlights a substantial accumulation of shared biological processes in Roma, 
intriguingly related to signaling, nervous system and development features, which may be related to the known profile of 
private disease in the population. Finally, we show the link between deletions and known trait-related SNPs reported in the 
genome-wide association study (GWAS) catalog, which exhibited even frequency distributions among the studied popula-
tions. This suggests that, in general human populations, the strong association between deletions and SNPs associated to 
biomedical conditions and traits could be widespread across continental populations, reflecting a common background of 
potentially disease/trait-related CNVs.

Introduction

Structural variants (SVs) are a class of genomic rearrange-
ments, larger than 50 bp, comprising insertions, deletions, 
duplications, inversions and translocations, which are 
responsible for the largest fraction of base pair variation 
in the human genome (Weischenfeldt et al. 2013; Sudmant 
et al. 2015b). Within SVs, balanced mutations (inversions 
and translocations) do not alter the genomic dosage, while 
unbalanced rearrangements (insertions, duplications and 
deletions, the latter two also known collectively as Copy 
Number Variants, CNVs) involve losses or gains of genetic 
material. CNVs can exert their influence on gene expression, 
phenotypic traits, and diseases, and represent a main source 
of genetic variation on which natural selection can act upon 
(Stranger et al. 2007; Hurles et al. 2008; Perry et al. 2008; 

Handsaker et al. 2015; Audano et al. 2019; Collins et al. 
2020; Hollox et al. 2022). Indeed, CNVs have been linked 
to a number of traits such as Crohn’s disease, osteoporosis, 
HIV susceptibility, body mass index, cancers and psoriasis 
(McCarroll et al. 2008; Yang et al. 2008; De Cid et al. 2009; 
Willer et al. 2009; Mohamad Isa et al. 2020; Dentro et al. 
2021; Hamdan and Ewing 2022) and are intriguingly associ-
ated to neurodevelopmental disorders in humans (Sebat et al. 
2007; Stefansson et al. 2008; Girirajan et al. 2013; Singh 
et al. 2017; Morris-Rosendahl and Crocq 2020; Sekiguchi 
et al. 2020; Kato et al. 2022).

Most of the studies addressing human population genet-
ics have historically focused on SNPs to infer human popu-
lation demography, such as changes in effective population 
size due to bottlenecks or founder events, or gene flow due 
to migration. This is also the case for the investigation of 
the mutation load, that is, the global contribution of del-
eterious mutations to disease. However, research using 
CNVs as markers in population genetics surveys, both in 
large worldwide comparisons and on finer scales, has been 
increasingly accumulating over the last two decades and 
confirmed their potential in this field, highlighting among/
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within group variability, the functional potential of the vari-
ants (including pathogenic effects) and their evolutionary 
relevance (Redon et al. 2006; Itsara et al. 2008; Gautam 
et al. 2012; Sudmant et al. 2015b; Hehir-Kwa et al. 2016; 
Urnikyte et al. 2016; Dennis et al. 2017; Almarri et al. 2020; 
Collins et al. 2020; Bergström et al. 2020). Attention has 
also been given to the study of CNVs in underrepresented 
or isolated populations, with a putative intriguing demo-
graphic history. Earlier reports mainly focused on isolates 
of European ancestry, such as Scottish islands of Orkney, 
the Italian South Tyrol region, the Croatian Vis island and 
the Finnish populations. These studies highlighted the gen-
eral common sharing of CNVs among population as well as 
isolate-specific relatedness and the presence of novel vari-
ants, uncovering a previously hidden layer of CNV varia-
tion (Chen et al. 2011; Kanduri et al. 2013). Further analy-
ses focusing on Asian and North African samples showed 
enrichment of structural variant events in biomedically 
relevant genes (e.g., drug and wound response) (Lou et al. 
2015; Romdhane et al. 2021).

The Romani or Roma population (often referred to by the 
problematic misnomer Gypsies) nowadays forms the largest 
transnational minority ethnic group in Europe, numbering 
10–15 million. their origin has been traced back to North-
western India thanks to different sources of information. 
Linguistic studies and records from the populations that 
encountered the proto-Roma groups often suggest an Indian 
origin of this group, which left around 1000–1500 years ago 
and subsequently spread to Persia and Armenia (Boerger 
1984; Fraser 1992; Liégeois 1994). Records from Greece, 
present-day Romania, and the Czech Republic account for 
putative Roma presence in these territories through the 
fourteenth century, and by the fifteenth–sixteenth centuries, 
additional historical evidence documents Roma movements 
in many West European countries (Fraser 1992; Liégeois 
1994). The current distribution of Roma people through-
out Europe can be attributed to such early fifteenth-century 
expansions from the Balkans and to later nineteenth-century 
dispersals (Fraser 1992; Liégeois 1994; Reyniers 1995; 
Gresham et al. 2001). In more recent historical times, the 
Roma population size and distribution in Europe is also the 
consequence of the genocide they suffered, carried out by 
the Nazi Germany regime (Milton 1991; Lutz 1995; Sridhar 
2006). Finally, the fall of the communist regimes in Cen-
tral and Eastern Europe facilitated westward economically 
driven migrations.

The European Roma groups, indeed, have had a com-
plex history, both in terms of the movements and contacts 
with different populations. Population genetics studies 
traced back their South Asian-related ancestry, with sub-
sequent European admixture, from autosomal and unipa-
rental markers (Gresham et al. 2001; Moorjani et al. 2013; 

Font-Porterias et al. 2019; Ena et al. 2022). Their specific 
history also shaped the landscape of genetic diseases, as dif-
ferent deleterious mutations were detected at higher frequen-
cies, while other mutations are absent or at lower frequen-
cies compared to other non-Roma populations (Kalaydjieva 
et al. 2001; Morar et al. 2004; Mendizabal et al. 2013). Spe-
cifically, private disease-causing mutations, highlighting a 
scenario typically found in a founder population, have been 
identified also in the Roma. The traits associated to these 
mutations are, among others, polycystic kidney disease, 
congenital glaucoma, congenital myasthenia, galactokinase 
deficiency, different neuropathies and centronuclear myopa-
thy (Kalaydjieva et al. 1996, 1999, 2001; Piccolo et al. 1996; 
Angelicheva et al. 1999; Morar et al. 2004; Cabrera-Serrano 
et al. 2018).

The whole genome sequence of 46 Roma individu-
als revealed a strong, early founder effect followed by a 
drastic reduction of ∼44% in effective population size 
(Ne) (Bianco et al. 2020). It is known that mutations reach 
fixation faster in small populations due to drift and, as a 
consequence, some deleterious mutations may rise in fre-
quency and, under specific conditions (see Fig. 1 in Kimura 
et al. 1963), slightly deleterious variants can result in a 
larger load than more deleterious ones (Kimura et al. 1963; 
Kimura and Ohta 1969). In general, a rule of thumb is that 
drift will prevent the removal of deleterious mutations if 
Nes < 1, where s is the selection coefficient; still, this does 
not encompass the complexities of population growth and 
gene flow (Gazave et al. 2014; Lohmueller 2014). Differ-
ent studies not only observed these phenomena in general 
populations as the Europeans, but also confirmed them 
in smaller and isolated groups which experienced more 
recent bottlenecks (i.e., Finnish, French-Canadians, Inuit 
and Ashkenazi Jewish) (Kaklamani et al. 2008; Lohmueller 
et al. 2008; Thaler et al. 2009; Casals et al. 2013; Lim et al. 
2014; Pedersen et al. 2017). Moreover, disease-associated 
variants show specific haplotype ancestry backgrounds in 
Roma (European or South Asian), in line with the mutual 
contribution of these ancestries to Roma genetic makeup 
and, additionally, that the higher frequencies of SNPs map-
ping to drug-binding domains match the population higher 
proportion of diseases targeted by such drugs (Font-Por-
terias et al. 2021). This stresses how admixture dynamics, 
demographic history and the functional role of variants all 
contribute to the shaping of the extant diversity detectable 
nowadays in Roma.

In light of the information about Roma gathered so far, we 
hereby analyze for the first time CNVs in high-depth complete 
genomes from the underrepresented European Roma popula-
tion to understand how their demographic history may have 
contributed (if at all) to their mutation spectrum and muta-
tional load.
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Materials and methods

Samples

Our study comprises 40 complete genomes of Roma peo-
ple collected in five European countries (Spain, Lithu-
ania, Hungary, Ukraine and Macedonia) and belonging to 
four major migrant groups: 15 North/Western, 5 Vlax, 10 
Romungro and 10 Balkan as defined in a previous study 
(Bianco et al. 2020). Donors signed an informed consent 
and the project was approved by the Institutional Review 
Board of the Comitè Ètic d’Investigació Clínica-Institut 
Municipal d’Assistència Sanitària (CEIC-IMAS) in Bar-
celona, Spain, (2016/6,723/I). All participants self-iden-
tified as Roma and appropriate consent was obtained from 
all donors. The study was approved by our IRB (Comitè 
d’Ètica de la Investigació, Parc de Salut Mar, Barcelona) 
on June 7th 2016 (reference 2016/6723/I) and renewed 
on January 15th, 2020 (reference 2019/8900/I). Prelimi-
nary results were presented to the Roma community in 
a meeting on February 1st 2019 in Barcelona. All meth-
ods in this study were performed following the standard 
guidelines and regulations. Genome sequences were those 
analyzed in (Bianco et al. 2020), which fastq files had been 
deposited at the European Genome Archive with acces-
sion number EGAS00001004287. Reference samples with 
geographic origins matching the Roma diaspora comprised 
two main datasets: the Simons Genome Diversity Project 
(SGDP; samples from Europe, the Middle East and Paki-
stan) (Mallick et al. 2016) and Mondal et al. (Mondal et al. 
2016) (samples from India) (see supplementary Table 5). 
Throughout this manuscript, when we use term European 
to refer to reference samples, we mean it as shorthand for 
non-Roma Europeans, and we do not imply that Roma 
should not be regarded as Europeans.

Structural variant calling

We selected a set of six different programs using algo-
rithms based on different strategies to detect SVs from 
short read sequencing data, combining the strengths of 
each algorithm and integrating them. Our set is composed 
of CNVnator (version 0.4.1) (Abyzov et al. 2011), Break-
Dancer (version 1.4.5) (Chen et al. 2009), Pindel (version 
0.2.5b8) (Ye et al. 2009), Tardis (version 1.0.4) (Soylev 
et al. 2017), Lumpy (version 0.2.13) (Layer et al. 2014), 
and GenomeSTRiP (version 2.00.1918) (Handsaker et al. 
2011, 2015) callers, which implement read-depth, split-
read and read-pair methods. See Supplementary Methods 
for the implementation of each method.

Data merging

We designed custom scripts to obtain the data both for the 
results for all callers for a single sample and among all sam-
ples. To do so, we first merged the output of the different 
software for each sample, specifically by merging those SVs 
residing on the same chromosome, deletions and duplica-
tions separately, with a reciprocal genomic coordinate over-
lap of at least 50% of their length. By doing so, we created 
clusters of overlapping pairs of calls and for each cluster 
(ranging from a pair of calls for two programs, up to the 
15 possible pairs among six different callers) we selected 
the coordinates and the genotype of the most confident 
caller, based on the evaluation of caller performance in 
(Kosugi et al. 2019). Using this information for each clus-
ter of calls mentioned above, we obtained a single call by 
retaining the best performing software for coordinates and 
genotype, respectively. To merge variants across samples, 
we proceeded in a similar manner as previously presented, 
where we joined all sample calls if variants of the same 
type resided on the same chromosome and reciprocally over-
lapped at least for 50% of their length. This allowed us to 
create a consensus set of calls listing the sharing of each 
variant among individuals.

Additional filters

We regenotyped the CNVs of each sample with a dedi-
cated software, GraphTyper2 (version 2.5.1) (Eggertsson 
et al. 2019), to accurately recover more reliable geno-
typic information (see supplementary methods). We fur-
ther filtered the results according to the best practices as 
described by the software authors, to retain only good 
quality genotypes. To additionally filter for false posi-
tives, we used the HardyWeinberg R package (version 
1.7.2) (Graffelman 2015) to remove variants violating 
Hardy–Weinberg equilibrium. We computed the chi-
squared test p-value for each CNV in each population 
and filtered out variants having a significant result after 
Bonferroni correction for multiple tests. Finally, we 
implemented an R package algorithm leveraging SNP 
data to infer reliable CNVs: CNVfilteR (version 1.8.0), 
which detects false positive heterozygous deletions and 
duplications by evaluating the frequencies of SNPs map-
ping to each variant (Moreno-Cabrera et al. 2021). We 
ran this software with default parameters and obtained a 
set of variants indicating false positive results that were 
subsequently filtered out from the dataset.
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Statistical analysis

Principal component analysis was carried out using the 
smartpca algorithm within the Eigensoft package (ver-
sion 6.0.1) (Patterson et al. 2006). Briefly, based on CNV 
genotypic calls, we coded biallelic deletions and duplica-
tions as zero, one, and two copy numbers and used those 
as input for the software to perform PCA on our samples. 
We additionally used another dimensionality reduction 
method, the uniform manifold approximation projection 
(UMAP) (McInnes et al. 2018) on copy number for dele-
tions and duplications. Population structure was further 
assessed using ADMIXTURE (version 1.3) (Alexander 
et al. 2009), running 10 random seeds for each ancestral 
component (K: 2–10), to evaluate ancestry profiles among 
the studied samples. We filtered out variants with minor 
allele frequency < 0.01 and violating structure-aware 
Hardy–Weinberg equilibrium before running the analysis, 
as best practices described in previous studies (Narang 
et al. 2014; Hao and Storey 2019; Linck and Battey 2019). 
Pong (Behr et al. 2016) was used to visualize ADMIX-
TURE results by representing Q matrices for modes in 
each value of K. ANOVA test was performed with the R 
car package (version 3.0.10) (Fox and Weisberg 2011), 
while Kruskal–Wallis and Chi-squared tests were com-
puted using the corresponding native R functions (R Core 
Team 2003). We estimated global differentiation values 
calculating FST statistics among pairwise populations 
using the StAMPP R package (Pembleton et al. 2013) 
and estimated p-values by performing 10,000 bootstraps. 
Taking advantage of the possibility to recapitulate popu-
lation differentiation using CNVs data by means of the 
Vst statistic (Redon et al. 2006; Sudmant et al. 2015a), 
using a custom script, we implemented a variation of the 
formula described in a previous study (Serres-Armero 
et al. 2021), comparing directly copy number variance 
rather than log2 ratios from CGH array data. We applied 
the statistic in pairwise population comparisons comput-
ing the differentiation for each CNV individually.

Copy Number Variant annotation

We used the software AnnotSV (version 3.0.7) (Geof-
froy et al. 2018, 2021) for multiple database annotation to 
retrieve the possible clinical or functional roles of the CNVs 
in our dataset. Since results from AnnotSV provided differ-
ent information, we focused on: (1) the genes intersected by 
the CNV, (2) whether the intersection involved an intron, 
an exon, or both, (3) diseases associated to the intersected 
gene provided by OMIM catalog (Hamosh et al. 2005), (4) 
gene tolerance to loss of function. Specifically, the toler-
ance to loss of function for genes intersected by CNVs is 

ranked as Loss-of-function Observed/Expected Upper Frac-
tion (LOEUF) bins (range 0–9) from genomAD database 
(Karczewski et al. 2020). The LOEUF metric refines over 
the widely used pLI (probability of Loss of function Intol-
erance), providing a continuous rather than a dichotomous 
scale (e.g., pLI < 0.9; pLI > 0.9). We carried out permuta-
tion tests to screen for possible intra-population higher/lower 
than expected abundance of deletions intersecting intronic 
portions of loss of function (LoF) intolerant genes. To do 
so, we downloaded the LOEUF information for each gene 
present in the gnomAD database and obtained those genes’ 
annotations via Ensembl database (version 86) (Cunningham 
et al. 2022) using the EnsDb.Hsapiens.v86 and ensembldb 
R packages (Rainer 2017; Rainer et al. 2019). For this list of 
genes we extracted the intronic coordinates using Genom-
icFeatures R package (Lawrence et al. 2013) of those genes 
with a LOEUF ≤ 4 (Lof intolerant) and LOEUF > 4 or not 
reported (LoF tolerant). Then, with our list of population-
specific gene-intersecting deletions and introns coordinates 
of LoF tolerant/intolerant genes, we performed permuta-
tion tests separately in each population using the regioneR 
R package (Gel et al. 2016) performing 5000 permutations 
and estimating the numOverlaps and randomizeRegions as 
the evaluate and randomize functions.

Over‑representation analysis

To assess putative significant enrichment in biological 
pathways for our gene-intersecting SVs, we interrogated 
the Gene Ontology Resource (Ashburner et al. 2000) using 
the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) 
(Zhang et al. 2005; Liao et al. 2019), an online tool to inter-
pret and analyze gene lists of specific interest. We tested 
whether the list of genes classified with a LOEUF score from 
0 to 4 and hosting intronic variants was enriched in spe-
cific GO terms in each population. Accordingly, the inputs 
passed to the software were the above mentioned gene list 
as well as a reference set, namely all genes (regardless of 
their known intolerance level) having intronic deletions. We 
focused our analysis on biological and molecular function 
database categories, performing the analysis with default 
parameters and considering as significant the associations 
having an FDR < 0.05.

CNVs and GWAS catalog

We evaluated the level of association between our set of 
CNVs and diseases identified in the GWAS catalog (Bun-
iello et al. 2019), using linkage disequilibrium (LD) with 
trait-associated SNPs as a proxy. The selected common 
variants underwent filtering using PLINK (version 1.9; 
www.​cog-​genom​ics.​org/​plink/1.​9/) (Chang et al. 2015), 

http://www.cog-genomics.org/plink/1.9/
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removing individuals with a missing genotype rate > 0.1 
and SNPs with missing call rate > 0.1, with minor allele fre-
quency < 0.01 and those failing the Hardy–Weinberg equi-
librium test. This set of filtered SNPs and our CNV set were 
merged together and phased using two programs, WhatsHap 
(version 1.1) (Patterson et al. 2015) and ShapeIt4 (version 
4.1.3) (Delaneau et al. 2019), following procedures previ-
ously described (Valls-Margarit et al. 2022). The result pro-
vided the input for PLINK, where we computed LD between 
variants in our dataset (CNVs and SNPs) and those SNPs 
shared with the GWAS catalog, only including variants in 
high LD (r2 > 0.8) and mapping within 1 MB around the 
pathogenic SNP.

Results

Calling CNVs from whole genome sequences

We called CNVs in 40 genomes from already published 
Roma individuals (Bianco et al. 2020; García-Fernández 
et al. 2020) along with 98 samples from Europe, the Mid-
dle East and South Asia (Mallick et al. 2016; Mondal et al. 
2016). Our calling pipeline comprised six programs (callers) 
for SV detection from WGS using GRCH38.p8 as reference 
genome (see “Methods” and supplementary text).

For our subsequent analyses, we included only deletions 
and duplications as some of the software used are unable to 
call insertions or inversions. We merged our data together 
by, first, creating a per-sample consensus among callers, 
finding 1484 ± 366 CNVs per sample on average (dele-
tions: 1433 ± 352; duplications: 51 ± 23) and eventually by 
iteratively merging sample CNVs, obtaining calls for indi-
viduals sharing the same variant (see “Methods”). This step 
yielded a total number of 11,207 CNVs (9863 deletions and 
1344 duplications) and an average of 1499 ± 352 CNVs per 
genome (deletions: 1449 ± 357; duplications: 50 ± 22).

Dataset characteristics and population structure

We grouped our 138 samples using a geographical rationale 
and divided the samples as follows: Roma (40 samples), 
Europe (22), Middle East (15), and South Asia (61). Ini-
tially, Principal Component Analysis (PCA) revealed that 
samples clustered by dataset of origin (Roma, Mondal et al. 
(2016) and SGDP) rather than by geographic affiliation 
(Supplementary Fig. 1). We addressed this batch effect by 
regenotyping each CNV and subsequently applying different 
filters based on quality (allele depth, read balance in het-
erozygotes), checking for consistency with SNP genotypes, 
and Hardy–Weinberg equilibrium (see Supplementary Meth-
ods). The final filtered dataset comprised 3660 CNVs (3171 

deletions and 489 duplications). We controlled for possible 
structure within Roma using our set of CNVs and noticed no 
specific relationships within regional groups (Suppl. Fig. 2 
shows deletion-based analysis). In an UMAP plot based on 
deletions (Fig. 1), Roma individuals cluster together and 
apart from the Europe–Middle East–South Asia continuum; 
see also similar patterns for PCA (Suppl. Figs. 3, 4) and 
ADMIXTURE (Suppl. Fig. 5). PCA and ADMIXTURE 
analysis on deletion genotypes showed similar patterns to 
those obtained with a random SNP sample of the same size 
(3171, Suppl. Figs. 6 and 7). On the contrary, when applying 
dimensionality reduction methods to duplications (Suppl. 
Figs. 8, 9), this pattern was fuzzier, probably because of the 
higher rate and bidirectionality on mutation in duplicated 
segments. Thus, population history has modeled deletion 
(and to a lesser extent duplication) genotype frequencies in 
the Roma.

Out of 3660 CNVs (supplementary Fig. 10), 1899 (52%), 
329 (9%) and 459 (13%) are shared by four, three and two 
populations respectively. We additionally found 973 (27%) 
variants that were found in only one population (Roma: 257, 
Europe: 157, Middle East: 179 and South Asia: 380), most of 
which were singletons. Overall, our call set is composed of 
2013 common (Allele Frequency, AF) > 0.05), 668 low fre-
quency (0.01 ≤ AF ≤  0.05) and 979 rare variants (AF < 0.01). 
Most common variants are shared preferentially by all four 
populations (four populations: 1792 (89%), three popula-
tions: 120 (6%), two populations 78 (4%), one population 
23 (1%)) as expected in general populations. Low frequency 
variants are more evenly distributed (four populations: 107 
(16%), three populations: 209 (31%), two populations 237 
(36%), one population 115 (17%)) while rare variants, as 
expected, can be found only in one population or two at most 
(two populations: 144 (15%), one population: 835 (85%)) 
(supplementary Fig. 11). Note that these sharing propor-
tions are underestimates, given the relatively low sample 
size, particularly in the Middle East. Within-population 
proportions of common, low frequency and rare variants 
change across populations, with South Asians having more 
variants across the frequency classes compared to the other 
populations and the Roma showing the same trend compared 
to Europe and Middle East (χ2 = 83.6, p-value = 6.25 × 10–16) 
(Table 1). Globally, South Asia and Roma retain a higher 
number of private CNVs and, evaluating the frequency pro-
files among populations, this pattern repeats within com-
mon, low-frequency and rare variant classes, demonstrating 
that the apportionment of private variants is not restricted 
to any specific frequency category.

Overall, the average FST (Fig. 2) among all pairs of popu-
lations was higher for deletions (0.0375) than for duplica-
tions (0.0272), which is consistent with repeat mutation at 
duplications counterbalancing population differentiation 
by drift. Thus, we will base our population inferences on 



1332	 Human Genetics (2023) 142:1327–1343

1 3

deletions. The average FST between the Roma and each of 
the other populations was 0.0478, which is higher than for 
any other population. In particular, the Roma were slightly 
more distant from South Asia (0.0497) than from the Mid-
dle East (0.0473) or Europe (0.0465). South Asia is also 

equally distant from the Middle East (0.0363) and Europe 
(0.0383), while these two populations are close to each 
other (0.0067). This is the expected pattern as derived from 
nucleotide variation in arrays (Granot et al. 2016) or whole 
genomes (Mallick et al. 2016). Particularly for the Roma, 
these differentiation patterns are in line with previous studies 
based on genome-wide SNP data (Melegh et al. 2017) and 
could reflect the global landscape of CNVs in Roma, who 
had their own mutational history diverging from Northern 
India, ultimately admixing with Europeans and, in the pro-
cess, accumulating genetic drift.

CNV annotation

Using the software AnnotSV (Geoffroy et al. 2018, 2021) we 
annotated variants leveraging different databases (Refseq, 

Fig. 1   UMAP plots for dele-
tions copy numbers. UMAP 
plots representing samples 
dataset labeled with regional 
assignation (A) and dataset of 
origin (B)

Table 1   Distribution of CNVs for frequency class among populations

Population N common N low frequency N rare

Roma 1967 479 288
Europe 1899 345 223
Middle East 1835 289 230
South Asia 2006 531 382
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OMIM, ClinGen, gnomAD, among others) and gathered 
information about CNV localization within genes, their 
possible functional role and the pathogenic consequences 
of their presence in transcribed genome sequences. While 
more than half of the CNVs in our dataset, 2115 (58%), did 
not overlap any currently known gene, 1532 (42%) variants 
intersected transcribed sequences, of which 263 (7.2%) and 
1268 (35%) resided within exons and introns respectively, in 
agreement with previous studies (Conrad et al. 2010; Mills 
et al. 2011; Valls-Margarit et al. 2022) (Supplementary 
Fig. 12). The remaining 13 CNVs intersected more than one 
gene, hitting multiple intronic and/or exonic locations. Over-
all, we found that genomic location and the type of CNV are 

dependent from each other (χ2 = 77.3, p-value < 2.2 × 10–16), 
with deletions representing the majority of variants within 
each genomic location (Table 2). It is interesting to notice 
that exons seem to tolerate duplications better than deletions: 
while 6.7% of deletions affect exons, this figure is 18.2% for 
duplications, likely due to the stronger selective constraints 
over deletions within genes (Sudmant et al. 2015a). Our 
dataset confirms what previous studies reported about the 
average frequencies apportionment of intergenic and genic 
variants and the easier-to-resolve deletion signal used by 
short reads structural variants software.

Geographic and genomic distribution of CNVs

We next tested for the number and length of CNVs car-
ried by individuals. For duplications, we could not find 
any significant difference among the populations. As for 
deletions, Roma carry more events per individual (mean: 
880 ± 24) with respect to all other populations, (Europe: 
834 ± 16; Middle East: 828 ± 29; South Asia: 810 ± 26), 
(Anova p-value < 2.2 × 10–16). Testing for deletion loca-
tion, we found out that the same pattern held true for 

Fig. 2   FST values for pairs of populations. For each pair of population, genome-wide Fst values are shown for deletions (A), duplications (B), 
and SNPs (C). Top quintile VST values distribution for deletions and duplications, by pairs of populations and genomic location (D)

Table 2   Number of identified deletions and duplications per genomic 
location. Percentages are over type of CNV

Exonic Intronic Intergenic Total

Deletions 211 (6.7%) 1111 (35.0%) 1849 (58.3%) 3171
Duplications 89 (18.2%) 134 (27.4%) 266 (54.4%) 489
Total 300 1245 2115 3660
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intergenic (Kruskal–Wallis p-value < 2.2 × 10–16) and 
intronic (Kruskal–Wallis p-value = 10–14) events (Fig. 3). 
Regarding exonic deletions, Europeans carry significantly 
fewer variants compared to Roma, Middle East and South 
Asia populations (Anova, p-value = 0.007). In addition, 
variant length also differed among populations as, overall, 
deletions in the Roma are larger than those in Europeans, 
while deletions in South Asians are shorter compared to 
all other populations (Kruskal–Wallis p-value = 1.3 × 10–8) 
(Supplementary Fig. 13A) and, within South Asia, Indian 
group shows shorter variants than Pakistani (Kruskal–Wallis 
p-value = 0.023). In particular, Roma have larger variants 
only when considering intergenic deletions, while South 
Asian population shows shorter intergenic, intronic and 
exonic (Kruskal–Wallis p-values, intergenic = 8.2 × 10–10; 
exonic = 0.0016 and ANOVA p-value intronic = 0.0001), 
(Supplementary Fig. 13). Overall, the results of these first 
comparisons show that Roma carry more and longer inter-
genic/intronic deletions than other populations, but their 
intolerance to exonic deletions is similar.

Features of the highly differentiated CNVs

Next, we characterized the CNVs that were highly differ-
entiated among populations by computing the VST statistic 
(Redon et al. 2006) for each CNV and pair of populations. 
For each variant, VST considers the variance of copy num-
ber in pairwise group comparisons; actually, for biallelic 
deletions (0 or 1 copies) or duplications (1 or 2 copies), VST 
is numerically identical to FST. The mean VST values are 
reported in Supplementary Table 1. We focused on highly 
differentiated CNVs by taking the top 20% VST values, for 
each pair of populations (Fig. 2D); the average VST values 
by genomic location in this highly differentiated set can be 
found in Supplementary Table 2. Intergenic deletions and 

duplications are at the top of the value distribution; indeed, 
as expected, these variants display fewer constraints in the 
mutation rates between populations and, thus, are freer to 
vary. Intronic and exonic variants follow in the distribution, 
showing lower values for the latter calls and pointing once 
again to a higher constraint on those deletions and duplica-
tions putatively having a higher disruptive power over genic 
sequences. Since pairs containing Roma exhibited higher 
values at the top of the distribution, we tested if any differ-
ence existed in VST values among pairs for variants intersect-
ing genes. We found significant differences (Kruskal–Wal-
lis, p-value < 2.2 × 10–16) for deletions in such pairs with 
respect to the others. In particular, pairs considering Roma 
had significantly higher values than pairs without and, divid-
ing the analysis by variant location, we could find signifi-
cant differences only for intronic events (Kruskal–Wallis, 
p-value < 2.2 × 10–16; mean values: Roma–Europe = 0.1316; 
Roma–Middle East = 0.1452; Roma–South Asia = 0.131; 
Europe–Middle East = 0.0952; Europe–South Asia = 0.0894; 
Middle East–South Asia = 0.0923). Estimating variant dif-
ferentiation among pairs of populations highlighted how 
the major source of variability can be traced back to Roma 
individuals; nevertheless, when stratifying the analysis by 
genomic location of the variants, significant differences 
in differentiation scores can solely be found for intronic 
deletions.

Predicting the pathogenicity of CNVs

For each CNV we retrieved, whenever available, the 
OMIM (Online Mendelian Inheritance in Man) annotations 
(Hamosh et al. 2005) and the LOEUF (Loss-of-function 
Observed/Expected Upper Fraction) bin values (ranging in 
bins from 0 to 9) from gnomAD (Karczewski et al. 2020) 
when the variant overlapped a gene sequence. We compared 
the distribution of variants hitting genes having a linked 

Fig. 3   Abundance distribution and statistical tests results for deletions among populations. Statistical test and multiple comparisons results for 
intergenic (A) and intronic (B) deletions and their relative number distribution among populations
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OMIM entry among populations and Europeans showed a 
significantly lower number (Anova, p-value = 0.02) of dele-
tions within OMIM genes compared to all other popula-
tions (mean number of deletions per genome: Roma = 87.8, 
Europe = 82.5, Middle East = 86.4, South Asia = 85.5; see 
supplementary Fig. 14). Duplications, instead, are signifi-
cantly (Kruskal–Wallis, p-value = 0.007) more frequent in 
South Asian Indians than in South Asian Pakistani, Roma, 
Middle East and Europe populations (average of 7.5 for 
the former against 5.4, 5.7, 5.4, and 6.05 duplications per 
genome for the latter populations). These results could 
highlight a greater efficacy of natural selection removing 
deleterious mutations in Europeans compared to the other 
populations, probably due to their demographic history. 
Duplications within OMIM genes being more frequent in 
the South Asia compared to Roma and Middle East popula-
tions could reflect, to a certain degree, the increased reces-
sive diseases specific to the group and the different selec-
tive pressures recorded for specific West Eurasian alleles, as 
highlighted in (Ayub and Tyler-Smith 2009; Nakatsuka et al. 
2017). Roma individuals showed increased number of dele-
tions in the 0, 1, 2 and 4 LOEUF bins and, upon stratification 
by location, only intronic events produced significant results 
for the same categories (bin 0: Anova, p-value = 2.8 × 10–7; 
bin 1: Kruskal–Wallis, p-value = 1.4 × 10–8; bin 2: Anova, 
p-value = 3.5 × 10–6; bin 4: Anova, p-value = 1.6 × 10–5). 
We assessed whether this higher number of deletions inter-
secting genes with low LOEUF values caused the overall 
increased number of intronic variants in Roma, as shown 
above. After removing these intolerant-gene deletions, Roma 
keep retaining a significantly higher number of intronic vari-
ants (Kruskal–Wallis, p-value = 5.2 × 10–10), demonstrating 
that the accumulation of these deletions at intolerant genes 
is an independent process that does not drive the general 
increase in intronic deletions.

Due to our findings of an increased number of dele-
tions within introns of LoF-intolerant genes in Roma, we 
explored, separately for each population, the possibility 
that these mutations preferentially hit intronic coordinates 
while taking into account LoF tolerance. Permutation tests 
were performed using all genic deletions against intronic 
coordinates of genes either with a LOEUF ≤ 4 (intolerant) 
or LOEUF > 4—or for which the metrics was not availa-
ble (tolerant). With these sets of regions we noticed that, 
while genic deletions intersect introns of tolerant genes 
more often than expected by chance (Permutation test, 
p-value = 0.0018–0.0004), the opposite is not true for the 
intersection with introns of intolerant genes (Permutation 
test, p-value > 0.05). This result points toward a general 
constraint for the accumulation of deletions, even at the 
intronic level, in intolerant genes within each population. 
In the context of the most differentiated variants described 
above, we looked at the distribution of frequencies and 

LOEUF values in pairwise populations containing Roma; 
we evaluated the frequencies in deletions showing larger 
differentiation, partitioning the variants across the most 
intolerant LOEUF classes (0–4). Despite the fact that the 
only significant result showed higher frequency in Roma 
compared to Middle Eastern population for deletions in the 
LOEUF 2 category (Kruskal–Wallis, p-value = 0.02), we 
noticed a general trend towards slightly higher frequencies 
in the Roma, across all LOEUF bins, compared to all other 
populations (Kruskal–Wallis, p-value = 0.0471). Nonethe-
less, pairwise group comparisons do not show significant 
results after multiple test correction. Following our previous 
results on the differentiation of intronic deletions in Roma, 
here we show an over-representation of such variants in this 
population that, together, highlight a pattern of recurring 
mutations occurring in untranslated genome portions. The 
differences in intolerant-gene deletions could highlight a 
lower constraint for Roma towards the accumulation of genic 
deletions residing outside the coding sequences but within 
genes whose function is more likely hampered by mutations.

CNVs and genetic associations

In Genome-Wide Association Studies (GWAS), genetic 
associations are established between specific diseases or 
traits, or sets of them, and genetic variants, usually SNPs. 
We wondered to which extent the CNVs we detected could 
be linked to pathogenic SNPs present in the GWAS catalog 
(Buniello et al. 2019). To do so, we downloaded the GWAS 
catalog dataset version 1.0.3 and identified common SNPs 
between this set and those previously found in our samples 
(Bianco et al. 2020); the intersection consisted of 74,009 
variants. For these common SNPs, we estimated the associ-
ated CNVs by selecting, for each chromosome, only those 
CNVs in strong linkage disequilibrium (LD) (r2 > 0.8) and 
residing in a 1 MB window around the SNP. Following this 
procedure, we identified 78 unique deletions in LD (sup-
plementary Table 4) with 125 disease-associated SNPs as 
reported in the GWAS catalog, while no duplication was in 
linkage disequilibrium with any SNP in the set. The identi-
fied deletions are in LD with one or more (up to eight) SNPs 
and, for each of them, we retrieved the information about 
deleteriousness using LOEUF scores. Among the traits in 
the GWAS catalog, we could identify different functional 
categories. The majority of the traits involves metabolic, 
neurodevelopmental/neurological, development and hema-
tological–cardiovascular disorders. Looking at the genomic 
context of the linked deletions, 41 (53%) reside in intergenic 
loci, 32 (41%) intersect introns and only five (6%) within 
exons. While a direct role of intergenic variants upon the 
pathogenicity of linked SNPs is difficult to establish—but 
not a reason to exclude them a priori—intronic and exonic 
CNVs might act on the same genomic context of the SNP. 
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Among the intronic variants, only eight deletions intersected 
genes having more tolerant LOEUF scores (> 5), six other 
gene-intersecting variants had no score information and the 
remaining 18 resided in genes with higher intolerance to LoF 
(scores 0–4). Among these latter deletions, four are in link-
age with SNPs related to metabolic/inflammatory diseases 
(Type 2 diabetes, alanine transaminase levels, urate levels), 
four others link with GWAS traits related to heart, cardio-
vascular or hematological conditions (myocardial infarction, 
hemorrhoidal disease, red-cell width) and two variants link 
to colorectal cancer traits. For exonic variants, only one dele-
tion intersects an intolerant gene (LOEUF bin 4) and is in 
LD with a SNP associated with metabolic disorders (total 
cholesterol/LDL levels); nevertheless, the deletion resides in 
a gene upstream the SNP and its involvement is unclear. The 
remaining four exonic deletions associate with inflammatory 
diseases, lung function, hematological and developmental 
features and all but one (lung function) affect the same gene 
of the linked SNP. Nonetheless, intolerance scores are either 
not available or point to a relaxation against LoF for exonic 
variants. Finally, when considering only the set of SNPs 
residing ~ 5000 bp around linked deletions, we noticed that 
intergenic events are the most frequent type of variants in 
the set (19 intergenic deletions, against nine intronic and one 
exonic deletions). This evidence, at least in part, might sup-
port the hypothesis of a possible influence, due to physical 
proximity (71 bp for the closest intergenic deletion), upon 
the genomic environment shared with the associated patho-
genic SNP. In general, using data from the GWAS catalog, 
we were able to leverage SNPs information as a proxy for 
putative CNVs involvement in health-related traits, showing 
that either co-occurrence of a deletion and a SNP within the 
same gene or physical proximity may add novel information 
to both the traits and to the function of the structural variant 
under investigation.

Functions of the genes affected by deletions 
in the Roma

As previously shown, our analysis on deletion pathogenic-
ity showed that the Roma retain a higher number of dele-
tions intersecting LoF-intolerant genes, and specifically that 
intronic variants are responsible for this result. With this 
observation at hand, we wondered whether these more abun-
dant intronic deletions in Roma had a specific influence on 
biological processes. We tested this hypothesis by perform-
ing an over-representation analysis separately in each popu-
lation, using the online software GEne SeT AnaLysis Toolkit 
(WebGestalt) (Zhang et al. 2005; Liao et al. 2019), assess-
ing whether LoF-intolerant genes (LOEUF bins: 0–4) inter-
sected by intronic deletions were present more than expected 
in Gene Ontology (GO) terms (Ashburner et  al. 2000). 
Results show significant enrichments in GO terms for the set 

of input genes in each population, with a marked prevalence 
of associations in Roma. Indeed, while Europe, Middle East 
and South Asian populations were significantly enriched for 
24, 18 and 37 GO terms respectively, the Roma significant 
GO terms amounted to 187. For each term, using the availa-
ble descriptions of related biological processes, we identified 
three recurrent functional categories, namely Nervous Sys-
tem, Signaling and Development, plus a catch-all Other cat-
egory (Fig. 4). Overall, Roma showed higher number of GO 
terms among these classes compared to reference popula-
tions. The two most abundant categories in Roma were Sign-
aling and Nervous System, which contained 61 and 55 GO 
terms, respectively. As a comparison, these two categories 
included 13/0, 0/2 and 6/11 terms in Europe, Middle East 
and South Asia, respectively. Furthermore, using a function 
within WebGestalt aiming at reducing possible redundancy 
for GO terms having similar gene sets, we obtained clusters 
of terms sharing related biological processes. Following 
this clusterisation, the Roma had 33 GO clusters, includ-
ing 11 Signaling, 9 Nervous System, 5 Development and 8 
comprising other processes such as chemotaxis, cell motility 
and cellular component organization. Europe, Middle East 
and South Asia had five, four and eight clusters with differ-
ent proportions of the three major functional categories. We 
additionally checked for significant GO terms specifically 
found only in one population and noticed that Roma retain 
the highest number of private significant results, with 125 
private terms against three, one and six found in Europeans, 
Middle Eastern and South Asian samples. Considering the 
deletions intersecting genes associated to the 125 private GO 
terms in Roma, we obtained 410 variants and retained only 
those overlapping a known pathogenic gene, either anno-
tated in the OMIM or Deciphering Developmental Disorders 
(Firth and Wright 2011) (DDD) databases. The final filtered 
set included 168 deletions whose frequencies do not vary 
noticeably across populations; nevertheless, it is interesting 
to highlight that out of the 23 rare deletions, considering the 

Fig. 4   Number of categorized GO terms among populations
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global frequency in the whole dataset, 21 are indeed private 
to Roma. Within these Roma private deletions, more than 
half (15 variants) are singletons and reside in genes mainly 
associated with developmental/neurodevelopmental diseases 
and cancer. Of the remainder six deletions, four are double-
tons and reside in genes associated to Cerebellofaciodental, 
Bardet-Biedl, Gillespie’s syndromes, spinocerebellar ataxia 
15 and skeletal dysplasia with severe neurological disease, 
while the two more common variants intersect genes linked 
to Phelan-McDermid syndrome and -2-hydroxyglutaric aci-
duria. Overall, further investigation of intronic deletions in 
LoF-intolerant genes revealed significant enrichment in bio-
logical processes mainly related to signaling, nervous system 
and development, with a sharp accumulation of GO terms in 
Roma compared to the other populations. This supports our 
results of higher differentiation and abundance of intronic 
deletions within Roma, suggesting a possible relevance upon 
the functions of genes sets bearing such variants.

Discussion

In the current study, we analyzed CNVs in the Roma popu-
lation using whole genome sequencing data with the dual 
purpose to provide the first published catalog of genome-
wide unbalanced structural variants and, given previous 
knowledge of Roma demographic and genetic history, assess 
to which extent CNVs can inform us when used in a popu-
lation genetics study of an underrepresented community. 
Comparing deletions and duplications from Roma and other 
reference populations (samples from Europe, Middle East 
and South Asia, covering the dispersal route Roma crossed 
in their diaspora) we estimated the main differences in the 
apportionment of events, the differentiation among popula-
tions and assessed the potential biomedical impact of the 
variants.

Deletions in Roma show a slight relaxation 
of natural selection

In our analysis, we have observed that the Roma carry 
more deletions than other European or Asian populations, 
that this additional load occurs in intergenic and intronic 
locations (but not in exons), that intergenic deletions in the 
Roma are longer, and that intronic deletions in the Roma 
are enriched for genes that are intolerant to loss of function 
(Lof) mutations. These results might be favored by popu-
lation or sample-specific artifacts during deletions calling; 
however, variables that could affect the calling step, such as 
genome coverage, do not discriminate exclusively the Roma, 
as this latter population and the samples from SGDP share 
similar sequencing depth profiles. Differences in coverage 
among different batches, indeed, have been shown to affect 

CNVs calling in specific regions, but not overall (Khayat 
et al. 2021). Additionally, these spurious effects are unlikely 
to result in the apportionment observed in the Roma for dele-
tions in introns and intergenic regions.

Although coding variation is the most obvious source of 
phenotypic differences, the evidence for introns and inter-
genic regions harboring functional variation has been accu-
mulating (Vaz-Drago et al. 2017; Rigau et al. 2019; Telo-
nis and Rigoutsos 2021; Keegan et al. 2022; Petersen et al. 
2022). Thus, the additional intronic and intergenic deletions 
in the Roma point to a slight relaxation of natural selection; 
the effect of deletions in these regions is likely to be milder 
than in exons, which, in Roma, do not tolerate deletions at 
a higher rate than in other populations. The Roma present a 
unique combination of fragmentation, partial reproductive 
isolation, but also of admixture with their host populations. 
Founder events would have accumulated deletions at more 
tolerated locations with fewer constraints. Admixture, on 
the other hand, might have introduced new sources of vari-
ation in the population, while selection against deleterious 
mutations still acted to reduce the accumulation of harmful 
exonic deletions. As shown by reports on worldwide popu-
lations, usually selection acts against larger deletions in the 
genome (Sudmant et al. 2015a); however, in our case, this 
result could indicate that less efficient purifying forces may 
have taken place either because of the population history 
or because of the intergenic/intronic nature of the variants, 
bearing a presumably lower disrupting potential. In sum-
mary, the putative relaxed purifying selection in closed com-
munities, which has been object of debate and addressed 
in finer detail by some reports (Fu et al. 2014; Balick et al. 
2015; Gravel 2016; Henn et al. 2016), could be detectable 
only for low-impact mutations, such as intronic deletions in 
the Roma.

Highly differentiated CNVs in Roma intersect some 
genes of biomedical interest

Estimating the differentiation for shared CNVs in pairwise 
population comparisons by means of VST statistics, we found 
that intronic variants are significantly more differentiated in 
pairs with Roma, driving the overall trend. We could iden-
tify only one significant frequency difference, between the 
Roma and Middle East populations, for intronic variants 
when dividing for intolerant genes categories (LOEUF bin 
2), showing Roma as the population with higher frequen-
cies. Nonetheless, we also identified a significant difference 
in frequencies considering all intolerant categories together 
(LOEUF 0–4), with Roma exhibiting higher frequencies, 
even though pairwise populations comparisons did not pass 
multiple test correction.

Exploring further the possible deleterious nature of 
our variants, we assessed the levels of LD with known 
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pathogenic SNPs from the GWAS catalog and identified 78 
deletions in linkage with 125 trait-associated SNPs. Out of 
the whole set of these associated diseases, we could high-
light four categories including most conditions: metabolic, 
neurodevelopmental/neurological, developmental and hema-
tological–cardiovascular disorders. Although we acknowl-
edge that only 33 tagged deletions reside on the same gene 
of the associated SNP (or SNPs), most deletions (41/45) 
with no common gene are intergenic variants which, among 
all linked deletions, are those residing in closer proximity 
to the linked SNP(s) and, thus, might exert a specific influ-
ence on the trait-related variant. As an example, the thirty 
closest deletions sharing no gene with the tagged SNP are 
all intergenic variants and range in distance from 71 bp to 
18.8 kb. This evidence points at the importance of including 
intergenic variants in analyses assessing CNV function, as 
such mutations could be either actors or co-players, modify-
ing their genomic neighborhood, participating to different 
scenarios, as already reported for specific diseases (Stae-
hling-Hampton et al. 2002; Loots et al. 2005; Farrell et al. 
2011; Uyan et al. 2013). Overall, SNPs in LD with inter-
genic deletions show associations with traits related to devel-
opment, neurodevelopmental, metabolic and hematological 
conditions, as well as other traits such as height, smoking 
behavior and heart/cardiovascular ones. For genic deletions, 
it is expected, and probably more likely, that their influence 
over gene products or regulatory functions would be stronger 
than intergenic ones. Together, this set of deletions primarily 
associate to metabolic/inflammatory, cancer and neurode-
velopmental/neurological traits. The collection of condi-
tions related to metabolism mainly pertains to cholesterol 
levels, type 2 diabetes, alanine transaminase levels and obe-
sity traits. Genes containing SNPs in LD with deletions had 
low reported LOEUF values, indicating their intolerance to 
loss of function (CCDC50, JAZF1, MYO9A, CNOT1 genes 
having, respectively, three, one, one and zero LOEUF bin 
scores). Intriguingly, a previous study showed how European 
Roma carried higher frequencies of SNPs involved in hyper-
lipidemia (Mendizabal et al. 2013); we found one deletion 
in RHCE gene in linkage with one cholesterol-associated 
SNP within the neighboring MACO1 gene (however, a direct 
functional effect upon the RHCE gene, which codes for a 
Rh-like red blood cell antigen, should not be dismissed), 
and indeed the deletion is higher in frequency within Roma.

Genes intersected by CNVs in Roma are enriched 
for central nervous system functions

We discovered that Roma carry a marked prevalence of GO 
terms associated to common functions subsets of inputted 
genes lists. Intriguingly, we could highlight marked differ-
ences only when using this type of gene sets, i.e., intoler-
ant genes that contained intronic deletions, and not while 

using other sets, such as private deletions within popula-
tions or general classification based on genomic location. 
This is unlikely the result of a general higher number of 
deletions in Roma but rather the specific function of the 
affected genes. Roma show more biological process GO 
terms in each defined category (Nervous system, Signaling 
and Development categories plus “Other” containing gen-
eral unrelated terms) compared to the other populations, and 
a strong difference can be noticed for the Nervous system 
and Signaling categories. We find these results of particular 
interest in light of the known private diseases specifically 
affecting Roma people in Europe. Indeed, among the dif-
ferent types of private disease-causing mutations described 
in the Roma, some involve neuropathies and neurological 
diseases such as hereditary motor and sensory neuropathy-
Lom/Russe types, congenital cataracts facial dysmorphism 
neuropathy and limb-girdle muscular dystrophy type 2C 
(Kalaydjieva et al. 1996, 2001, 2005; Angelicheva et al. 
1999; Morar et al. 2004). Nervous system-related GO terms 
often involved neurons connections organization, synap-
tic communication or brain development, highlighting the 
presence of putatively deleterious variants affecting physi-
ological neuronal functions particularly in Roma, in line 
with previous reports of a higher rate of slightly deleterious 
variants, for other disorders, in Roma individuals (Mendiza-
bal et al. 2013). Two examples of private intronic deletions 
in Roma (Supplementary Fig. 15), intersecting LoF genes 
implicated in central nervous system functions are in gene 
WDPCP (LOEUF score: 4), with GO terms related to CNS, 
such as “neuron differentiation”, “cell projection organiza-
tion”, “cell morphogenesis involved in neuron differentia-
tion”, “neuron development” and gene SHANK3 (LOEUF 
score: 0) with GO terms description include, among others, 
“regulation of nervous system development”, “telencephalon 
development”, “synaptic signaling”, “axongenesis”. Moreo-
ver, the disease-associated SNPs assessed in (Mendizabal 
et al. 2013) reside in genes belonging to biological processes 
associated to the significant GO terms we identified in our 
analysis, highlighting a possible action of different mark-
ers (deletions and SNPs) within same sets of genes, specifi-
cally affecting their functions. Lastly, as a general point, it 
is important to bear in mind that frequency spectra for clini-
cally relevant variants differ among populations, with Roma 
showing their relatively low isolation by exhibiting highly 
represented deleterious alleles as well as near absence of 
others, whose ancestries are mainly related to South Asian 
and European haplotypes (Font-Porterias et al. 2021).

Isolated populations are an under‑analyzed 
genomic resource, also for CNVs

Populations of non-European descent have traditionally been 
understudied in the context of genetic variation, particularly 
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favoring GWAS research on more accessible cohorts of gen-
eral European ancestry (Bustamante et al. 2011; Popejoy and 
Fullerton 2016). Ironically, what should be one important 
goal of human genetics research: uncovering an increasingly 
clearer and more complete picture of human genetic varia-
tion worldwide, portray a fairer representation of different 
human populations and advancing current knowledge on 
genetic diseases using diverse sets of populations (Zeggini 
2014), has often been disregarded in favor of a Eurocentric 
perspective (Need and Goldstein 2009; Sirugo et al. 2019). 
Numerous studies addressing population isolates, indeed, 
contributed significantly to identify the loci underlying com-
plex diseases: bipolar disorder and schizophrenia in Finland 
and Basque populations (Palo et al. 2007; Parsons et al. 
2007), studies on Iceland individuals highlighting variants 
associated to atrial fibrillation, myocardial infarction, type 
2 diabetes and glaucoma (Manolescu et al. 2004; Gudbjarts-
son et al. 2007; Helgadottir et al. 2007; Steinthorsdottir et al. 
2007; Thorleifsson et al. 2007) and also traits as height and 
pigmentation in Finland, Iceland, Sardinia and Amish popu-
lations (Sulem et al. 2007, 2008; Gudbjartsson et al. 2008; 
Sanna et al. 2008). It has been suggested that addressing 
isolated populations for studying diseases can help in reduc-
ing the variance of environmental variables on pathogenic 
conditions, as homogeneity in phenotype and environment 
within isolates would facilitate the disease–gene recogni-
tion (Kristiansson et al. 2008), thus favoring the inclusion 
of underrepresented populations to advance our understating 
of health-related traits.
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