Skip to main content
Log in

Sex differences of the shared genetic landscapes between type 2 diabetes and peripheral artery disease in East Asians and Europeans

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) is a critical risk factor for peripheral artery disease (PAD). However, the sex differences in genetic basis, causality, and underlying mechanisms of the two diseases are still unclear. Using sex-stratified and ethnic-based GWAS summary, we explored the genetic correlation and causal relationship between T2D and PAD in both ethnicities and sexes by linkage disequilibrium score regression, LAVA and six Mendelian Randomization approaches. We observed stronger genetic correlations between T2D and PAD in females than males in East Asians and Europeans. East Asian females exhibit higher causal effects of T2D on PAD than males. The gene-level analysis found KCNJ11 and ANK1 genes associated with the cross-trait of T2D and PAD in both sexes. Our study provides genetic evidence for the sex difference of genetic correlations and causal relationships between PAD and T2D, indicating the importance of using sex-specific strategies for monitoring PAD in T2D patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Summary statistics are publicly available at https://blog.nus.edu.sg/agen/summary-statistics/t2d-2020/ and http://jenger.riken.jp/en/. Codes and software used in the study are available in the following links: LDSC: https://github.com/bulik/ldsc; LAVA: https://ctg.cncr.nl/software/Lava; TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/; CAUSE: https://jean997.github.io/cause/index.html; GSMR: http://cnsgenomics.com/software/gsmr/; MR-PRESSO: https://github.com/rondolab/MR-PRESSO; MAGMA: https://ctg.cncr.nl/software/magma; SMR: https://cnsgenomics.com/software/smr/; MTAG: https://github.com/JonJala/mtag

Abbreviations

SNPs:

Single nucleotide polymorphisms

GWAS:

Genome-wide association studies

AGEN:

Asian Genetic Epidemiology Network

BBJ:

BioBank Japan

UKB:

UK Biobank

T2D:

Type 2 diabetes

PAD:

Peripheral artery disease

LDSC:

Linkage disequilibrium score regression

MR:

Mendelian randomization

CAUSE:

Causal analysis using summary effect estimates

GSMR:

Generalized summary-data-based Mendelian randomization

IVW:

Inverse variance weighted

MAGMA:

Multi-marker analysis of genomic annotation

MTAG:

Genome-wide association summary statistics

SMR:

Summary data-based Mendelian randomization analysis

References

  • Nature (2020) Accounting for sex and gender makes for better science. Nature 588(7837):196

    Article  Google Scholar 

  • Allison MA et al (2007) Ethnic-specific prevalence of peripheral arterial disease in the United States. Am J Prev Med 32(4):328–333

    Article  PubMed  Google Scholar 

  • American Diabetes, A (2003) Peripheral arterial disease in people with diabetes. Diabetes Care 26(12):3333–3341

    Article  Google Scholar 

  • Ankle Brachial Index, C et al (2008) Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA 300(2):197–208

    Article  Google Scholar 

  • Arnetz L, Ekberg NR, Alvarsson M (2014) Sex differences in type 2 diabetes: focus on disease course and outcomes. Diabetes Metab Syndr Obes 7:409–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Bale BF, Doneen AL, Vigerust DJ (2018) Precision healthcare of type 2 diabetic patients through implementation of haptoglobin genotyping. Front Cardiovasc Med 5:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernabeu E et al (2021) Sex differences in genetic architecture in the UK Biobank. Nat Genet 53(9):1283–1289

    Article  CAS  PubMed  Google Scholar 

  • Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowden J et al (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulik-Sullivan BK et al (2015a) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47(3):291–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulik-Sullivan B et al (2015b) An atlas of genetic correlations across human diseases and traits. Nat Genet 47(11):1236–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess S et al (2012) Use of Mendelian randomisation to assess potential benefit of clinical intervention. BMJ 345:e7325

    Article  PubMed  Google Scholar 

  • Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37(7):658–665

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgess S, Dudbridge F, Thompson SG (2016) Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med 35(11):1880–1906

    Article  PubMed  Google Scholar 

  • Byrne EM et al (2021) Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. Mol Psychiatry 26(6):2070–2081

    Article  CAS  PubMed  Google Scholar 

  • Chase-Vilchez AZ et al (2020) Diabetes as a risk factor for incident peripheral arterial disease in women compared to men: a systematic review and meta-analysis. Cardiovasc Diabetol 19(1):151

    Article  PubMed  PubMed Central  Google Scholar 

  • Colantonio LD et al (2020) Atherosclerotic risk and statin use among patients with peripheral artery disease. J Am Coll Cardiol 76(3):251–264

    Article  PubMed  Google Scholar 

  • Costacou T, Evans RW, Orchard TJ (2016) Glycaemic control modifies the haptoglobin 2 allele-conferred susceptibility to coronary artery disease in Type 1 diabetes. Diabet Med 33(11):1524–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva JS et al (2013) Absence of strong linkage disequilibrium between odorant receptor alleles and the major histocompatibility complex. Hum Immunol 74(12):1619–1623

    Article  PubMed  Google Scholar 

  • Davies NM, Holmes MV, Davey Smith G (2018) Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362:601

    Article  Google Scholar 

  • de Leeuw CA et al (2015) MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 11(4):e1004219

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher RA (1915) Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10(4):507–521

    Google Scholar 

  • Ge T et al (2017) Phenome-wide heritability analysis of the UK Biobank. PLoS Genet 13(4):e1006711

    Article  PubMed  PubMed Central  Google Scholar 

  • Gloyn AL et al (2003) Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52(2):568–572

    Article  CAS  PubMed  Google Scholar 

  • Harder MN et al (2013) Type 2 diabetes risk alleles near BCAR1 and in ANK1 associate with decreased beta-cell function whereas risk alleles near ANKRD55 and GRB14 associate with decreased insulin sensitivity in the Danish Inter99 cohort. J Clin Endocrinol Metab 98(4):E801–E806

    Article  CAS  PubMed  Google Scholar 

  • Hartwig FP, Davey Smith G, Bowden J (2017) Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol 46(6):1985–1998

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayfron-Benjamin C et al (2019) Microvascular and macrovascular complications in type 2 diabetes Ghanaian residents in Ghana and Europe: The RODAM study. J Diabetes Complications 33(8):572–578

    Article  PubMed  Google Scholar 

  • Huxley R, Barzi F, Woodward M (2006) Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 332(7533):73–78

    Article  PubMed  PubMed Central  Google Scholar 

  • International Diabetes Federation (IDF) (2019) IDF Diabetes Atlas 8th Edition. http://www.diabetesatlas.org/. Accessed 7 Feb 2019

  • Ishigaki K et al (2020) Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet 52(7):669–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia W et al (2007) Epidemiological characteristics of diabetes mellitus and impaired glucose regulation in a Chinese adult population: the Shanghai Diabetes Studies, a cross-sectional 3-year follow-up study in Shanghai urban communities. Diabetologia 50(2):286–292

    Article  CAS  PubMed  Google Scholar 

  • Jude EB et al (2001) Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care 24(8):1433–1437

    Article  CAS  PubMed  Google Scholar 

  • Kroger K et al (2006) Prevalence of peripheral arterial disease—results of the Heinz Nixdorf recall study. Eur J Epidemiol 21(4):279–285

    Article  PubMed  Google Scholar 

  • Kurilshikov A et al (2021) Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet 53(2):156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WL et al (2000) Impact of diabetes on coronary artery disease in women and men: a meta-analysis of prospective studies. Diabetes Care 23(7):962–968

    Article  CAS  PubMed  Google Scholar 

  • Lee JY et al (2013) A genome-wide association study of a coronary artery disease risk variant. J Hum Genet 58(3):120–126

    Article  CAS  PubMed  Google Scholar 

  • Ma RC, Chan JC (2013) Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann NY Acad Sci 1281:64–91

    Article  PubMed  Google Scholar 

  • Martens EP et al (2006) Instrumental variables: application and limitations. Epidemiology 17(3):260–267

    Article  PubMed  Google Scholar 

  • Matsushita K et al (2019) Lifetime risk of lower-extremity peripheral artery disease defined by Ankle-Brachial Index in the United States. J Am Heart Assoc 8(18):e012177

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison J et al (2020) Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat Genet 52(7):740–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai A et al (2017) Overview of the BioBank Japan Project: study design and profile. J Epidemiol 27(3S):S2–S8

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman AB, Sutton-Tyrrell K, Kuller LH (1993) Lower-extremity arterial disease in older hypertensive adults. Arterioscler Thromb 13(4):555–562

    Article  CAS  PubMed  Google Scholar 

  • Nordström A et al (2016) Higher prevalence of type 2 diabetes in men than in women is associated with differences in visceral fat mass. J Clin Endocrinol Metab 101(10):3740–3746

    Article  PubMed  Google Scholar 

  • Phani NM et al (2014) Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case-control and meta-analysis study. PLoS ONE 9(9):e107021

    Article  PubMed  PubMed Central  Google Scholar 

  • P-R, L. BOLT-LMM v2.3.6 User Manual (2021) https://alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html

  • Qin J et al (2018) Association between 1p13 polymorphisms and peripheral arterial disease in a Chinese population with diabetes. J Diabetes Investig 9(5):1189–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randall JC et al (2013) Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet 9(6):e1003500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlik K, Canela-Xandri O, Tenesa A (2016) Evidence for sex-specific genetic architectures across a spectrum of human complex traits. Genome Biol 17(1):1–8

    Article  Google Scholar 

  • Roth GA et al (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the gbd 2019 study. J Am Coll Cardiol 76(25):2982–3021

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruscitti P et al (2019) Subclinical and clinical atherosclerosis in rheumatoid arthritis: results from the 3-year, multicentre, prospective, observational GIRRCS (Gruppo Italiano di Ricerca in Reumatologia Clinica e Sperimentale) study. Arthritis Res Ther 21(1):204

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvin E, Erlinger TP (2004) Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000. Circulation 110(6):738–743

    Article  PubMed  Google Scholar 

  • Shim H et al (2015) A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS ONE 10(4):e0120758

    Article  PubMed  PubMed Central  Google Scholar 

  • Spracklen CN et al (2020) Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 582(7811):240–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strawbridge RJ, van Zuydam NR (2018) Shared genetic contribution of type 2 diabetes and cardiovascular disease: implications for prognosis and treatment. Curr Diab Rep 18(8):59

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki K et al (2019) Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 51(3):379–386

    Article  CAS  PubMed  Google Scholar 

  • The Information Centre (2004) Health Survey for England 2004: health of ethnic minorities

  • Tracey ML et al (2016) The prevalence of Type 2 diabetes and related complications in a nationally representative sample of adults aged 50 and over in the Republic of Ireland. Diabet Med 33(4):441–445

    Article  CAS  PubMed  Google Scholar 

  • Traglia M et al (2017) Genetic mechanisms leading to sex differences across common diseases and anthropometric traits. Genetics 205(2):979–992

    Article  CAS  PubMed  Google Scholar 

  • Turley P et al (2018) Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet 50(2):229–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Zuydam NR et al (2021) Genome-wide association study of peripheral artery disease. Circ Genom Precis Med 14(5):e002862

    Article  PubMed  PubMed Central  Google Scholar 

  • Veturi Y, Ritchie MD (2018) How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? In: PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018: proceedings of the pacific symposium. World Scientific

  • Vink JM et al (2012) Sex differences in genetic architecture of complex phenotypes? PLoS ONE 7(12):e47371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitalis A et al (2017) Ethnic differences in the prevalence of peripheral arterial disease: a systematic review and meta-analysis. Expert Rev Cardiovasc Ther 15(4):327–338

    Article  CAS  PubMed  Google Scholar 

  • Võsa U et al (2018) Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. BioRxiv 447367

  • Vujkovic M et al (2020) Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet 52(7):680–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z et al (2019) A national study of the prevalence and risk factors associated with peripheral arterial disease from China: The China Hypertension Survey, 2012–2015. Int J Cardiol 275:165–170

    Article  PubMed  Google Scholar 

  • Wang Z et al (2021) Trends in prevalence and incidence of type 2 diabetes among adults in Beijing, China, from 2008 to 2017. Diabet Med 38(9):e14487

    Article  PubMed  Google Scholar 

  • Werme J et al (2022) An integrated framework for local genetic correlation analysis. Nat Genet 54(3):274–282

    Article  CAS  PubMed  Google Scholar 

  • Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26(17):2190–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiu X et al (2022) Genetic evidence for a causal relationship between type 2 diabetes and peripheral artery disease in both Europeans and East Asians. BMC Med 20(1):1–16

    Article  Google Scholar 

  • Yan R et al (2016) A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene. Sci Rep 6:25105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W et al (2010) Prevalence of diabetes among men and women in China. N Engl J Med 362(12):1090–1101

    Article  CAS  PubMed  Google Scholar 

  • Yang L et al (2012) Association between KCNJ11 gene polymorphisms and risk of type 2 diabetes mellitus in East Asian populations: a meta-analysis in 42,573 individuals. Mol Biol Rep 39(1):645–659

    Article  CAS  PubMed  Google Scholar 

  • Yeo JL et al (2021) Sex and ethnic differences in the cardiovascular complications of type 2 diabetes. Ther Adv Endocrinol Metab 12:20420188211034296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G et al (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W et al (2018) Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet 50(9):1335–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z et al (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48(5):481–487

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z et al (2018) Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun 9(1):1–12

    Google Scholar 

Download references

Acknowledgements

The authors thank the UKB, BBJ and AGEN project for making data available. H.Zhao designed the study. Z.L and H.Zhang conducted analyses, with assistance from Y.Y, H.Zhao. Z.L, H.Zhang, Y.Y and H.Zhao wrote the manuscript. H.Zhao supervised the study. All authors contributed to the final revision of the paper.

Funding

The work was funded by the Natural Science Foundation of China (81801132, and 81971190; HY.Zhao, Sun Yat-sen Memorial Hospital; 61772566, 62041209, and U1611261).

Author information

Authors and Affiliations

Authors

Contributions

The authors thank the UKB, BBJ and AGEN project for making data available.H.Zhao designed the study. Z.L and H.Zhang conducted analyses, with assistance from Y.Y, H.Zhao. Z.L, H.Zhang, Y.Y and H.Zhao wrote the manuscript. H.Zhao supervised the study. All authors contributed to the final revision of the paper.

Corresponding author

Correspondence to Huiying Zhao.

Ethics declarations

Conflict of interest

All authors state they have no conflict interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 685 KB)

Supplementary file2 (RAR 12325 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Zhang, H., Yang, Y. et al. Sex differences of the shared genetic landscapes between type 2 diabetes and peripheral artery disease in East Asians and Europeans. Hum Genet 142, 965–980 (2023). https://doi.org/10.1007/s00439-023-02573-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-023-02573-x

Navigation