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Abstract
Migraine—a painful, throbbing headache disorder—is the most common complex brain disorder, yet its molecular mecha-
nisms remain unclear. Genome-wide association studies (GWAS) have proven successful in identifying migraine risk loci; 
however, much work remains to identify the causal variants and genes. In this paper, we compared three transcriptome-wide 
association study (TWAS) imputation models—MASHR, elastic net, and SMultiXcan—to characterise established genome-
wide significant (GWS) migraine GWAS risk loci, and to identify putative novel migraine risk gene loci. We compared the 
standard TWAS approach of analysing 49 GTEx tissues with Bonferroni correction for testing all genes present across all 
tissues (Bonferroni), to TWAS in five tissues estimated to be relevant to migraine, and TWAS with Bonferroni correction 
that took into account the correlation between eQTLs within each tissue (Bonferroni-matSpD). Elastic net models performed 
in all 49 GTEx tissues using Bonferroni-matSpD characterised the highest number of established migraine GWAS risk 
loci (n = 20) with GWS TWAS genes having colocalisation (PP4 > 0.5) with an eQTL. SMultiXcan in all 49 GTEx tissues 
identified the highest number of putative novel migraine risk genes (n = 28) with GWS differential expression at 20 non-
GWS GWAS loci. Nine of these putative novel migraine risk genes were later found to be at and in linkage disequilibrium 
with true (GWS) migraine risk loci in a recent, more powerful migraine GWAS. Across all TWAS approaches, a total of 62 
putative novel migraine risk genes were identified at 32 independent genomic loci. Of these 32 loci, 21 were true risk loci 
in the recent, more powerful migraine GWAS. Our results provide important guidance on the selection, use, and utility of 
imputation-based TWAS approaches to characterise established GWAS risk loci and identify novel risk gene loci.

Introduction

Migraine is a complex neurological trait affecting 14% of 
the population worldwide (Stovner et al. 2018). According 
to the Global Burden of Disease Study 2016, migraine is the 
second leading cause of disability and accounts for more dis-
ability than all other neurologic disorders combined (Stovner 
et al. 2018; Vos et al. 2017). Migraine is characterised by 
intense, debilitating pain usually on either side of the head. 
In most cases, migraine is accompanied by nausea, vomiting, 
numbness, and sensitivity to noise and light (Arnold 2018).

Migraine is a complex polygenic trait and has a strong 
genetic component with a heritability of 30–60% (Polder-
man et al. 2015; Sutherland et al. 2019) estimated by differ-
ent family and twin studies (Honkasalo et al. 1995; Mulder 
et al. 2003). Genome-wide association studies (GWAS) have 
substantially improved our understanding of the genetic 
architecture of migraine and led to the identification of 
many GWS (P < 5 × 10–8) single nucleotide polymorphisms 
(SNPs) associated with migraine (Van Den Maagdenberg 
et al. 2019). However, as is typical for human complex traits, 
most of the identified migraine risk SNPs are located in non-
coding regions. Therefore, rather than having a direct effect 
on protein structure and function, these SNPs are believed 
to act by regulating gene expression. However, identify-
ing which SNP has an effect (i.e., causal SNP) on which 
gene (causal gene) is not an easy task. In 2016, Gormley 
et al. published a large migraine GWAS of 59,574 cases and 
316,078 controls that identified 44 linkage disequilibrium 
(LD)-independent ‘index’ SNPs associated with migraine at 
38 independent genomic risk loci (Gormley et al. 2016). For 
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convenience, such index SNP loci are typically represented 
by (annotated with) the nearest gene; however, physical 
location is not a good proxy for identifying target genes of 
GWAS SNPs (Visscher et al. 2017) and other factors such as 
gene density and size complicate the functional interpreta-
tion of GWAS risk loci (Van Den Maagdenberg et al. 2019).

Recently, gene-based methods have been developed 
that leverage GWAS and eQTL data to impute differential 
expression and test for gene expression associated with the 
GWAS trait. These methods are termed transcriptome-wide 
association studies (TWAS). Standard TWAS is usually per-
formed in all available Genotype-Tissue Expression project 
(GTEx) (Consortium 2015) tissues using Bonferroni correc-
tion adjusting for testing all genes present across all tissues 
(gene-tissue pairs) (Barbeira et al. 2018; Hirbo et al. 2018; 
Tachmazidou et al. 2019; Torres et al. 2017). Alternatively, 
TWAS is performed in a single most relevant trait-related 
tissue with Bonferroni adjustment for the number of genes 
tested (Feng et al. 2020; Wu et al. 2019). Another group 
of studies have been published that performed TWAS in 
a group of trait-relevant tissues with Bonferroni adjust-
ment for the total number of genes tested across the exam-
ined tissues (Chen et al. 2021; Guo et al. 2020; Peng et al. 
2018). The selection of trait-relevant tissues is based on 

a literature review or current knowledge of the trait. The 
approach of selecting tissues is difficult for complex traits 
such as migraine where the trait-relevant tissues are not 
known and literature supports multiple hypotheses for the 
origin of migraine (Mason and Russo 2018). In this paper, 
we identified tissues related to migraine’s regulatory archi-
tecture using genome-wide imputed differential expression 
enrichment (GIDEE) approach (Ghaffar and Nyholt 2022). 
Furthermore, we compared three different TWAS methods to 
(i) characterise established migraine risk loci from Gormley 
et al. (2016) (Gormley et al. 2016), and (ii) identify GWS 
differentially expressed genes at putative novel loci (i.e., 
loci that are not near GWS SNPs in Gormley et al. (2016) 
migraine GWAS), iii) the putative novel migraine risk genes 
identified in (ii) were then validated using the recent, more 
powerful migraine GWAS by Hautakangas et al. (2022) 
(Hautakangas et al. 2022).

Materials and methods

An overview of the methodology followed in this paper 
is provided in Fig. 1 and described further in subsequent 
sections.

Fig. 1   Pipeline followed for characterisation of 44 independent migraine risk SNPs and identification of putative novel risk genes
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GWAS dataset

The TWAS analyses utilised Gormley et al. (2016) migraine 
GWAS summary statistics from a GWAS of 59,674 cases 
and 316,078 controls with European ancestry (Gormley 
et al. 2016). This study identified 38 independent genomic 
risk loci containing 44 index SNPs associated with migraine 
risk (P < 5 × 10–8). Details of quality control and imputa-
tion are provided in the original publication (Gormley et al. 
2016). The putative novel migraine risk genes identified by 
TWAS were validated in the recent, more powerful migraine 
GWAS by Hautakangas et al. (2022) comprising 102,084 
migraine cases and 771,257 controls. The new GWAS data-
set contained the Gormley et al. (2016) GWAS and addi-
tional GWAS data from 23andMe, Inc. (22,644 cases and 
87,729 controls), UK Biobank (10,881 cases and 330,170 
controls), GeneRISK (1084 cases and 4857 controls), and 
HUNT (7801 cases and 32,423 controls) (Hautakangas et al. 
2021, 2022). A total of 8,117 GWS (P < 5 × 10–8) SNPs were 
identified, of which 170 were LD-independent (r2 < 0.1) 
index SNPs. The 170 index SNPs mapped to 123 independ-
ent genomic risk loci of which 86 were novel. Details of 
quality control and imputation are provided in the original 
publication (Hautakangas et al. 2022).

Gene expression and eQTL dataset

The majority of GWAS risk SNPs are non-coding and are 
thus expected to impact the expression of the gene by alter-
ing its regulation (Ward and Kellis 2012). eQTL analysis is 
the most common approach to evaluating the effect of SNPs 
on gene expression (Grundberg et al. 2012; Morley et al. 
2004; Westra et al. 2013). However, eQTL studies are expen-
sive and often limited by the availability of relevant tissue. 
GTEx provides a resource to address this limitation. The lat-
est version of GTEx hosts data for 54 tissues obtained from 
948 donors summing to a total number of 17,382 samples 
(Consortium 2020). Genotype and eQTL data were available 
for 49 tissues (N ≥ 70 samples) from 838 donors summing 
to a total number of 15,201 samples. We downloaded fully 
processed, filtered, and normalised gene expression matrices 
(in BED format) for each tissue for GTEx version 8 (v8). 
The expression and eQTL data used in this project were 
downloaded from GTEx v8 (https://​gtexp​ortal.​org/​home/).

Gene expression imputation

The MetaXcan software was used to impute trait-associated 
differential gene expression in 49 human tissues from GTEx 
v8. MetaXcan uses a set of reference individuals whose gene 
expression and genotyping have been measured for the same 
individuals. The authors of MetaXcan take this information 
and adjust for sex and experimental/population confounders 

to impute differential expression in a large independent data-
set. GTEx v8 version has two types of prediction models 
available: MASHR and elastic net models. Both models 
were used to impute differential expression.

MASHR stands for Multivariate Adaptive Shrinkage in 
R. In MASHR models, instead of using all SNPs present 
in the 1 Mb window, the list of SNPs is first shortlisted to 
only SNPs having a high chance of influencing the expres-
sion of that particular gene. This is done by an algorithm 
DAP-G (Wen et al. 2016), that calculates a posterior inclu-
sion probability (PIP) for each SNP tested, with SNPs hav-
ing PIP > 0.01 retained for model development(Urbut et al. 
2019). Hence, the MASHR models have predictors informed 
by posterior causal probability that may belong to different 
LD clusters across tissues, and the effect sizes are based on 
marginal regression and smoothing across tissues (Barbeira 
et al. 2020).

Elastic net models use all the SNPs having minor allele 
frequency > 0.01 present in the 1 Mb window of the gene to 
determine its effect on the expression of the gene.

The GTEx v8 eQTL data is aligned to the Genome Ref-
erence Consortium Human Build 38 (GRCh38, also known 
as build 38 or hg38) and thus contains variants that were 
not tested in older GWAS that utilised variants compiled 
from earlier genome builds. Therefore, the migraine GWAS 
summary statistics were harmonised and lifted over from 
build 37 to build 38. Then imputation of summary statistics 
for missing variants was performed for the migraine GWAS 
before the differential expression imputation. The gene pre-
diction model SNP weights for each tissue were available in 
the form of SQLite weight files on predictdb.org (Barbeira 
et al. 2016) (downloaded from https://​predi​ctdb.​org/​post/​
2021/​07/​21/​gtex-​v8-​models-​on-​eqtl-​and-​sqtl/).

The elastic net prediction models “elastic_net_eqtl.tar” 
containing weights of the predictor SNPs on each gene 
within each tissue along with a single tissue covariance 
file were retrieved on 11/03/2020. The MASHR models 
“mashr_eqtl.tar” containing the database and covariance 
file was retrieved on 01/09/2021.

Enrichment in migraine‑relevant tissues

We used GIDEE to identify tissues enriched with differen-
tial gene expression associated with migraine’s regulatory 
architecture (Ghaffar and Nyholt 2022). GIDEE imputes 
gene expression and tests for the enrichment of differentially 
expressed genes in each GTEx tissue. Two methods were 
used to capture the enrichment of differentially expressed 
genes; mean squared z-score and empirical Brown’s method 
adjusted for GTEx tissue sample sizes using a linear regres-
sion model lm(enrichment test ~ sample size). Afterwards, 
the tissues were ranked in ascending order and the average 
of tissues across both methods was taken. The higher the 

https://gtexportal.org/home/
https://predictdb.org/post/2021/07/21/gtex-v8-models-on-eqtl-and-sqtl/
https://predictdb.org/post/2021/07/21/gtex-v8-models-on-eqtl-and-sqtl/
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average rank of tissue, the higher the evidence for differ-
ential expression enrichment and the more likely the tissue 
is pathogenically relevant to migraine. We used the top 5 
tissues for the downstream analysis.

Thresholds to keep type‑1 error rate < 0.05 in all 
tissues and top 5 tissues

Two p value thresholds were used to keep the type 1 error 
rate < 0.05. First, a strict Bonferroni-adjusted threshold 
(‘Bonferroni’), which adjusted for the total number of gene-
tissue pairs tested (i.e., p = 0.05/total number of gene-tissue 
pairs). The second threshold (Bonferroni-matSpD) utilised 
a Bonferroni-adjusted threshold, which adjusted for the 
number of gene-tissue pairs tested after taking into account 
the substantial covariance in expression across genes within 
each tissue (i.e., p = 0.05/sum of the effective number of 
independent genes in all tissues). The second threshold was 
developed because multiple-test adjustment using the total 
raw number of genes is expected to be too stringent and not 
reflect true biology (i.e., covariance in gene expression). The 
effective number of independent genes analysed for differ-
ential expression in each tissue was estimated using matrix 
spectral decomposition (matSpD) (Nyholt 2004). The mat-
SpD approach estimates the effective number of independent 
variables in a correlation matrix by examining the eigen-
values from spectral decomposition. The expression values 
for genes whose differential expression was predicted by 
MetaXcan were extracted from normalised gene expression 
matrices obtained from GTEx. Briefly, a Pearson correla-
tion matrix was generated using R version 3.6.1 and used 
as input to the MatSpD.R script downloaded from https://​
drive.​google.​com/​open?​id=1-​r-​HWsKO​D8Nfb​OG4C4​
SFIwj​j8yYz​e2Zu. The output was an estimate of the effec-
tive number of independent genes along with a p value to 
efficiently control for type 1 error at 5%.

The above-mentioned multiple testing adjustments were 
used on two sets of results. One set analysed all 49 GTEx v8 
tissues, and another set analysed only the top 5 most likely 
pathogenically-relevant tissues for migraine.

Gene expression imputation across tissues

Following the single-tissue MetaXcan analyses, summary-
based MultiXcan (SMultiXcan) was used to impute differ-
ential gene expression associated with migraine risk using 
cross-tissue models. SMultiXcan tests the joint effects of 
gene expression variation across tissue in four steps: (1) gene 
expression is imputed within single tissues using single tis-
sue elastic net prediction models using models trained on 49 
GTEx tissues, (2) a correlation matrix is generated for 
imputed gene expression and principal components of the 
predicted expression data matrix are used as explanatory 

variables, (3) components of smallest variation are discarded 
from the correlation matrix generated from step 2 to avoid 
numerical issues caused by collinearity. To select the num-
ber of components, the threshold of  𝜆max

𝜆
i

< 30 was used, 
where λi is an eigenvalue of the correlation matrix, and (4) 
joint effects for each gene are estimated using single tissue 
results from step 1 and the correlation matrix from step 3 to 
give a joint imputed differential expression for each gene. 
SMultiXcan provides results for a combined differential 
expression p value for a single gene, best tissue (i.e., tissue 
having the lowest differential expression p value), worst tis-
sue (i.e., tissue having the highest differential expression p 
value), and the mean and standard deviation of z-scores for 
all tissues in which the specific gene is differentially 
expressed (Barbeira et al. 2019).

SMultiXcan was applied to all 49 GTEx tissues and on 
the top 5 most likely pathogenically-relevant tissues for 
migraine.

TWAS using 13 GTEx brain tissues

Results from previous analyses by ourselves (Ghaffar and 
Nyholt 2022; Gormley et al. 2016; Hautakangas et al. 2022) 
and others (Finucane et al. 2018) did not indicate the 13 
GTEx brain tissues were enriched for regulatory signals at 
migraine GWAS loci and/or GWAS loci were enriched for 
genes specifically expressed in GTEx brain tissues. How-
ever, given migraine is a neurological disorder that affects 
the brain, for completeness and the interests of readers, we 
also performed analogous TWAS analyses restricted to the 
13 GTEx brain tissues.

Co‑localisation analysis

COLOC (Giambartolomei et al. 2014) was used to assess 
the probability that the same SNP (effect) associated with 
migraine risk also influences gene expression. COLOC 
utilises Bayesian statistics to test for all possible combina-
tions of association with both datasets (migraine GWAS and 
eQTL) at the SNP level. This requires setting prior probabili-
ties for three combinations: P1, P2 and P12. P1 and P2 are set 
to 1 × 10–4 and refer to the association of the SNP in dataset 
1 and dataset 2, respectively. P12 is set to 1 × 10–5 and refers 
to the prior probability of association of the SNP in both 
datasets. In other words, P12 defines the prior probability 
that given the SNP is associated in dataset 1, what is the 
probability that the SNP is associated in dataset 2. Setting 
P12 as 1 × 10–5 means that 1 out of 10 SNPs associated with 
dataset 1 is also associated with dataset 2. Co-localisation 
analysis enables the separation of the LD contaminated 
(i.e., correlated neighbouring) genes by calculating pos-
terior probabilities (PP) to distinguish between pleiotropy 

https://drive.google.com/open?id=1-r-HWsKOD8NfbOG4C4SFIwjj8yYze2Zu
https://drive.google.com/open?id=1-r-HWsKOD8NfbOG4C4SFIwjj8yYze2Zu
https://drive.google.com/open?id=1-r-HWsKOD8NfbOG4C4SFIwjj8yYze2Zu
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(i.e., the same SNP influencing both datasets) and LD. For 
each gene that was differentially expressed and that passed 
multiple testing for each threshold, eQTL summary statistics 
were extracted for cis-SNPs from GTEx v8 and tested for 
co-localisation with migraine-risk SNPs. Given the default 
prior probabilities of a SNP’s association with expression 
(P1 = 10−4), trait (P2 = 10−4) and both (P12 = 10−5), COLOC 
produces posterior probabilities for five hypotheses—H0: 

no association with either trait; H1: association with trait 1, 
not with trait 2; H2: association with trait 2, not with trait 
1; H3: association with trait 1 and trait 2, two independent 
SNPs; and H4: association with trait 1 and trait 2, one shared 
SNP. A large posterior probability for H3 (PP3) means that 
there are two independent SNPs associated with each trait 
at the same locus. A large posterior probability for H4 (PP4) 
means there is a single SNP associated with both traits at a 

Fig. 2   Enrichment methods result for the migraine GWAS. A Shows the mean squared z-score enrichment test results; B shows the Brown’s p 
value enrichment test results
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given locus. Therefore, the higher the PP4 (PP4 > 0.5), the 
higher the confidence for co-localisation (pleiotropy), where 
the same SNP that affects migraine, affects the expression 
of the gene. Co-localisation may also be inferred via a low 
PP3 (PP3 < 0.5).

Loci characterisation

Significant differentially expressed genes with high PP4 or 
low PP3 were assigned to a migraine risk locus if they were 
within ± 500 kb of a GWS index SNP from Gormley et al. 
(2016). For significant differentially expressed genes that 
were >500 kb away from the migraine index SNPs located 
on chromosomes 1–22 from Gormley et  al. (2016), we 
hypothesised that these genes were putative novel migraine 
risk genes (i.e., because they were not at GWS GWAS risk 
loci). Loci having LD-independent secondary GWAS sig-
nals and more than two differentially expressed genes were 
subjected to conditional analysis for both signals (SNPs) at 
the given locus.

Conditional association analysis

Genomic loci with secondary GWAS signals (secondary 
index SNPs) and more than one differentially expressed 
gene were subjected to conditional analyses to determine the 
marginal effect of each GWAS index SNP on gene expres-
sion. At these genomic loci, conditional association analysis 
was performed separately for each index SNP using GCTA-
COJO (Yang et al. 2012). GCTA-COJO performs approxi-
mate conditional association analysis using GWA summary 
statistics and LD estimated from a reference population. 
Each index SNP was given as an input to GCTA-COJO 
with a window size of 2 MB. The association p values of 
all SNPs within 2 MB of index SNPs were re-calculated/
conditioned. The TWAS pipeline (pre-processing, harmo-
nisation and imputation) was then re-run on each set of 
conditioned GWAS summary statistics. The 1000 Genomes 
Project Phase 3 European population reference panel, down-
loaded from https://​ctg.​cncr.​nl/​softw​are/​magma (de Leeuw 
et al. 2015), was provided as a reference panel to estimate 
LD. The results of the conditional analysis were visualised 
via LocusZoom plots (Pruim et al. 2010).

Validation of putative novel risk genes and loci 
in a new GWAS

The putative novel migraine risk genes identified by TWAS 
were checked to see if they were within ± 500 kb of the 170 
index SNPs and implicated by TWAS in the recent more 
powerful migraine GWAS by Hautakangas et al. (2022) 
(Hautakangas et al. 2021). Predictor SNPs from the puta-
tive novel migraine risk genes [from TWAS analysis of the 

Gormley et al. (2016) data] were also tested for LD with the 
170 migraine index SNPs.

Independent gene‑based test

To test whether the putative novel migraine risk genes iden-
tified by TWAS were more likely to be located at GWS risk 
loci in a recent, more powerful migraine GWAS we per-
formed a novel gene-based analysis. First, we performed 
gene-based GATES (Li et al. 2011) test implemented in the 
Fast Association Tests (FAST) (Chanda et al. 2013) using 
the Gormley et al., (2016) migraine GWAS summary statis-
tics. GATES integrates association evidence (p values) of 
SNPs assigned to a gene to obtain an overall p value for the 
association of the entire gene. The flanking region for each 
gene was increased to 500 kb to match the flanking region 
used in our analysis to define a putative novel locus. The out-
put includes the most significant SNP (‘topSNP’) assigned 
to a gene, which we used to represent the gene. We note that 
neighbouring genes may have correlated results due to LD 
between the topSNP assigned to each gene. To estimate the 
effective number of independent genes, we estimated the 
effective number of independent topSNPs using the genetic 
type 1 error calculator (GEC) (Li et al. 2012). The top-
SNPs identified by GATES genes were given as input. GEC 
divides the input SNPs into LD blocks, assuming that these 
blocks are independent by ensuring that the SNPs between 
the blocks are not in LD (r2 < 0.1) utilising 1000 Genome 
Project European reference genotype data. Given the list of 
SNPs, GEC calculates the effective number of independent 
SNPs that were later used in binomial tests.

Results

Top 5 migraine‑relevant tissues

Figure 2 shows the mean squared z-score and empirical 
Brown’s method p value for the migraine GWAS adjusted 
for GTEx tissues sample size. Figure 2A shows the linear 
regression plot of the mean squared z-score against the 
GTEx sample size for all tissues. The blue line shows the 
best fit through the data. Artery Aorta is the furthest tis-
sue from the fitted line, thus implying that it had the high-
est enrichment of differentially expressed genes (as repre-
sented by z-score). Figure 2B shows that Artery Aorta had 
the highest enrichment of genes differentially expressed (as 
represented by Brown’s p value). GTEx tissue sample sizes 
and ranking based on the enrichment tests are provided in 
Supplementary Table 1. Afterwards, we used the average 
of the tissue ranks from the two enrichment tests to select 
the top 5 tissues for downstream analysis. The top 5 tissues 
enriched with differentially expressed genes were the artery 

https://ctg.cncr.nl/software/magma
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Table 1   Summary of the total 
number of genes and effective 
number of independent genes 
present in each tissue using 
the elastic net and SMultiXcan 
prediction models for all 49 
GTEx tissues and the top 5 
tissues

Tissues Elastic net

All 49 Top 5

MTBr MTBe MTBr MTBe

Adipose subcutaneous 8645 5037
Adipose visceral omentum 7338 3985
Adrenal gland 4841 2584
Artery aorta 7598 4321 7598 4321
Artery coronary 4042 2198 4042 2198
Artery tibial 8611 5016 8611 5016
Brain amygdala 2786 1458
Brain anterior cingulate cortex BA24 3543 1724
Brain caudate basal ganglia 5001 2500
Brain cerebellar hemisphere 5752 3114
Brain cerebellum 6793 3807
Brain cortex 5499 2758
Brain frontal cortex BA9 4560 2188
Brain hippocampus 3687 1864
Brain hypothalamus 3650 1946
Brain nucleus accumbens basal ganglia 4850 2490
Brain putamen basal ganglia 4433 2171
Brain spinal cord cervical c-1 3249 1713
Brain substantia nigra 2557 1338
Breast mammary tissue 6460 3368
Cells cultured fibroblasts 8931 4245
Cells EBV-transformed lymphocytes 2903 1562
Colon sigmoid 6165 3425
Colon transverse 6303 2603
Esophagus gastroesophageal junction 6288 3410
Esophagus mucosa 8517 4689
Esophagus muscularis 8225 4375
Heart atrial appendage 6638 3591
Heart left ventricle 6011 2769
Kidney cortex 1641 852
Liver 3768 1924
Lung 7965 4380
Minor salivary gland 2914 1529
Muscle skeletal 7581 4250
Nerve tibial 10,007 5840
Ovary 3587 1950
Pancreas 5895 3383 5895 3383
Pituitary 5685 3131
Prostate 4300 2282
Skin not sun exposed suprapubic 8648 4974
Skin sun exposed lower leg 9297 5202
Small intestine terminal ileum 3668 1667
Spleen 5770 3231 5770 3231
Stomach 5150 2375
Testis 9973 3444
Thyroid 9649 5715
Uterus 2537 1331
Vagina 2559 1159
Whole blood 7252 3426
Total number of genes 281,722 148,316 31,916 18,151
p value threshold 1.77 × 10–7 3.37 × 10–7 1.56 × 10–6 2.75 × 10–6

MTBr multiple test burden for the raw number of genes, MTBe multiple test burden for the effective number 
of genes, All 49 all 49 tissues present in GTEx version 8, Top 5 top 5 GTEx tissues associated with migraine
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aorta, artery tibial, spleen, artery coronary, and pancreas 
(Ghaffar and Nyholt 2022). The GIDEE prioritisation of 
artery aorta, artery tibial and artery coronary tissues, firmly 
corresponds with published data that show migraine GWAS 
loci are strongly associated with vascular tissues (Finucane 
et al. 2018; Gormley et al. 2016; Hautakangas et al. 2022); 
while the prioritisation of spleen and pancreas tissues is sup-
ported by a 2017 study that suggested migraine is associated 
with general, not nervous-system-specific, inflammatory 
processes (Wang et al. 2017)—i.e., spleen and pancreas are 
involved in inflammation via their respective roles in the 
immune and endocrine system (Hiller-Sturmhöfel & Bartke 
1998; Mota & Madden 2022).

Significance thresholds across approaches

We compared 10 approaches that used different prediction 
models (elastic net, SMultiXcan, or MASHR), different sig-
nificance thresholds (Bonferroni or Bonferroni-matSpD), 
and different sets of tissues (all 49 GTEx tissues or top 5 
tissues). Table 1 lists the total number of genes present in 
all tissues whose differential expression is imputed (using 
elastic net models). The effective number of independent 
genes within each tissue was estimated using the matSpD 
approach. A considerable difference was observed in mul-
tiple test burdens for the raw number of genes (MTBr) and 
the effective number of independent genes (MTBe). As 
described in the methods section, SMultiXcan imputes gene 
expression considering the correlation of eQTLs across mul-
tiple tissues and generates a single p value. Given differences 
in gene–gene co-expression correlation across tissues, it is 
not feasible to estimate the effective number of independent 
genes via the matSpD approach, therefore multiple test cor-
rection for the SMultiXcan results used a Bonferroni adjust-
ment for the total raw number of genes tested.

The total number of genes tested across all 49 GTEx 
tissues by SMultiXcan was 21,646, therefore the Bon-
ferroni-adjusted significance threshold was 2.30 × 10–6 
(0.05/21,646). Similarly, the total number of genes tested 
across the top 5 GIDEE tissues was 12,988, resulting in a 
Bonferroni-adjusted significance threshold was 3.84 × 10–6. 
As shown in Table 1, the multiple test burden considerably 
differs across the six approaches, with a trend of decreasing 
burden from left to right. Table 2 shows the number of genes 
present in each tissue using MASHR prediction models and 
multiple test burden across the different approaches.

Although not part of our primary analyses, we also per-
formed TWAS analyses restricted to the 13 GTEx brain 
tissues. The MTBr and MTBe for elastic net models were 
8.87 × 10–7 (0.05/56360) and 1.72 × 10–6 (0.05/29071), 
respectively. Similarly, the MTBr and MTBe for MASHR 
models were 2.95 × 10–7 (0.05/169302) and 5.63 × 10–7 
(0.05/88842), respectively. The total number of genes tested 

across the 13 GTEx brain tissues by SMultiXcan was 14,218, 
therefore the Bonferroni-adjusted significance threshold was 
3.52 × 10–6 (0.05/14,218).

MetaXcan outputs a z-score that quantifies the asso-
ciation of predicted differential gene expression with the 
trait. The positive or negative sign of the z-score indicates 
overexpression or underexpression of the gene’s associa-
tion with migraine, respectively. A two-sided p value is cal-
culated from the z-score. For each approach mentioned in 
Tables 1 and 2, genes having a p value less than the respec-
tive approach’s p value threshold are considered significant.

Comparison across approaches

For each TWAS approach, the genes crossing the respec-
tive multiple test burden that were present within ± 500 kb 
of a GWS independent index SNP in the Gormley et al. 
2016 migraine GWAS were identified. Table 3 shows the 
total number of genes and the number of genes present 
within ± 500 kb of an established migraine index SNP.

Table 3 shows that elastic net with Bonferroni-matSpD 
threshold for all 49 tissues identified the highest number of 
differentially expressed genes within ± 500 kb of a migraine 
index SNP, i.e., 40 genes present at 22 independent loci. 
SMultiXcan identified 31 and 39 genes for the top 5 and all 
49 tissues, at 18 independent loci, respectively. Whereas, 
MASHR identified 27 and 30 genes, at 15 and 16 independ-
ent loci, for the top 5 tissues using Bonferroni and Bon-
ferroni-matSpD, respectively. Using all 49 tissues MASHR 
identified 30 and 34 genes, at 17 and 19 independent loci, 
respectively. Overall, across the three TWAS models, our 
primary analyses of all 49 tissues and the top 5 tissues, iden-
tified a total of 128 genes at 58 independent loci, of which 
66 genes at 26 loci were within ± 500 kb of a migraine index 
SNP.

Compared to using the top 5 tissues and all 49 GTEx 
tissues, TWAS using the 13 GTEx brain tissues identified 
considerably fewer differentially expressed genes across 
the genome and in the vicinity of migraine index SNPs 
(Table 3 and Supplementary Table 2a and 2b). Across the 
three TWAS models, analysis of the 13 brain tissue sub-
group identified a total of 55 genes at 31 independent loci, 
of which 45 genes at 23 loci overlapped with the 128 genes 
identified in the primary analyses. In contrast, only 10 
genes (RP11-326G21.1, NEURL3, GOT1, RBM20, GPR26, 
CDIP1, FGF11, ATP5SL, TMEM91, TGFB1) at 8 independ-
ent loci identified in the brain subgroup analyses were not 
identified in the primary analyses (Supplementary Table 2c). 
Given these 10 genes were not as significant as the genes 
implicated by the all 49 tissue analyses, and the 13 GTEx 
brain tissues were not previously found to be enriched for 
regulatory signals at migraine GWAS loci, we consider these 
ten genes to be less robust than the genes associated in our 
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Table 2   Summary of the total 
number of genes and effective 
number of independent genes 
present in each tissue using 
MASHR prediction models for 
all 49 GTEx tissues and top 5 
tissues

Tissues MASHR

All 49 Top 5

MTBr MTBe MTBr MTBe

Adipose subcutaneous 14,233 8388
Adipose visceral omentum 14,096 7780
Adrenal gland 13,025 7154
Artery aorta 13,855 7949 13,855 7949
Artery coronary 13,289 7438 13,289 7438
Artery tibial 14,006 8215 14,006 8215
Brain amygdala 12,186 6617
Brain anterior cingulate cortex BA24 12,875 6245
Brain caudate basal ganglia 13,533 6858
Brain cerebellar hemisphere 13,160 7276
Brain cerebellum 13,406 7605
Brain cortex 13,647 6937
Brain frontal cortex BA9 13,477 6527
Brain hippocampus 12,929 6691
Brain hypothalamus 13,107 7125
Brain nucleus accumbens basal ganglia 13,443 7053
Brain putamen basal ganglia 13,110 6614
Brain spinal cord cervical c-1 12,451 6837
Brain substantia nigra 11,978 6457
Breast mammary tissue 14,067 7387
Cells cultured fibroblasts 13,536 6399
Cells EBV-transformed lymphocytes 11,818 6508
Colon sigmoid 13,779 7799
Colon transverse 14,016 5557
Esophagus gastroesophageal junction 13,730 7571
Esophagus mucosa 14,073 7794
Esophagus muscularis 14,095 7595
Heart atrial appendage 13,493 7482
Heart left ventricle 12,681 5874
Kidney cortex 10,530 5836
Liver 12,142 6399
Lung 14,473 8077
Minor salivary gland 13,271 7247
Muscle skeletal 12,924 7342
Nerve tibial 14,912 8785
Ovary 13,102 7440
Pancreas 13,149 7632 13,149 7632
Pituitary 14,047 7868
Prostate 13,779 7561
Skin not sun exposed suprapubic 14,412 8379
Skin sun exposed lower leg 14,697 8329
Small intestine terminal ileum 13,422 6109
Spleen 13,517 7693 13,517 7693
Stomach 13,499 6076
Testis 17,119 6150
Thyroid 14,832 8871
Uterus 12,535 6853
Vagina 12,271 5585
Whole blood 12,160 5768
Total number of genes 657,887 349,757 54,299 38,929
p value threshold 7.60 × 10–8 1.42 × 10–7 9.21 × 10–7 1.28 × 10–6

MTBr multiple test burden for the raw number of genes, MTBe multiple test burden for the effective number 
of genes, All 49 all 49 tissues present in GTEx version 8, Top 5 top 5 GTEx tissues associated with migraine 
as identified
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primary TWAS analyses. Therefore, we only present results 
in the main text from subsequent analyses for the top 5 and 
all 49 GTEx tissues.

Gormley et al. (2016) identified 44 GWS index SNPs; 
however, because the TWAS approaches only impute gene 
expression for genes on chromosomes 1 to 22 and one of the 
44 index SNPs (rs12845494) was on chromosome X, only 
43 index SNP loci could be characterised by TWAS. Out 
of these 43 index SNP loci, 30 (25 independent) loci had 
evidence of differentially expressed genes from at least one 
of the 10 approaches mentioned in Tables 1 and 2. Table 4 
presents a list of 30 index SNPs and genes characterised by 
each approach along with the genes that are nearest to the 
index SNP. Given LD between the migraine index SNPs and 
eQTL SNPs used to impute differential expression could 
produce false-positive results in the form of coincidental 
differential expression, significant differentially expressed 
genes were further examined using co-localisation analy-
sis by COLOC (Giambartolomei et al. 2014). Genes hav-
ing PP3 < 0.5 against a migraine index SNP are shown in 
Table 4. Genes in bold show more robust co-localised sig-
nals (PP4 > 0.5) for at least one of the tissues in which the 
gene is expressed.

A total of 12 loci (migraine index SNP rs2078371, 
rs7544256, rs6693567, rs1925950, rs9349379, rs4839827, 
rs67338227, rs1268083, rs1024905, rs11172055, 
rs11172113, and rs77505915) had a common set of genes 
implicated by all approaches. Among these 12 loci, three 
loci have secondary association signals (rs7544256 near 
rs2078371, rs67338227 near rs4839827, and rs11172113 
near rs11172055). It is important to note that NA in Table 4 
refers to the fact that there might be a gene at that locus 

differentially expressed but a co-localisation signal was not 
present (i.e., PP3 < 0.5 or PP4 > 0.5).

Supplementary Table 3 contains genes differentially 
expressed at each index SNP along with the TWAS p value 
and COLOC PP3 and PP4 values for all elastic net, SMulti-
Xcan, and MASHR models (as in Table 4).

There were five loci (rs28455731, rs186166891, 
rs11624776, rs4081947, and rs4814864), that had differen-
tially expressed and co-localised genes (having a co-local-
ised signal for eQTL and migraine risk) identified by elastic 
net models but not by MASHR models. Table 5 shows genes 
prioritised at these migraine risk loci using elastic net mod-
els and respective TWAS p values using MASHR models 
in the same tissues.

Table 5 shows that all genes except SUGCT​ implicated 
via elastic net were also implicated via MASHR models. 
GJA1 and ZCCHC14 did not reach the relevant significance 
level threshold of 1.28 × 10–6 for MASHR models using mat-
SpD in the top 5 tissues (Table 2). Two genes implicated at 
rs11624776 (BTBD7 and ITPK1) were not significant for 
the MASHR models. This probably reflects differences in 
the predictor SNPs used in MASHR models compared to 
the elastic net models (e.g., the MASHR predictor SNPs for 
these genes capture less of the variation in genetically regu-
lated gene expression). Similarly, SLC24A3 at rs4814864 
was not significant using the MASHR model.

Five loci were implicated with MASHR prediction mod-
els but not with elastic net models (Table 6). Most of the 
genes implicated with MASHR did not have predicted gene 
expression with elastic net models in tissues where a sig-
nificant association was found. However, it is important to 
note that out of five loci, three loci were characterised based 

Table 3   Number of genes 
passing multiple test burden and 
number of genes present in the 
vicinity of migraine index SNPs 
and number of independent 
genomic loci

TWAS model Tissues Threshold Genes Genes within ± 500 kb of a 
migraine index SNP (genomic 
loci)

Elastic Net Top 5 Bonferroni 43 (31) 28 (18)
Bonferroni matSpD 47 (33) 29 (18)

All 49 Bonferroni 52 (29) 35 (20)
Bonferroni matSpD 61 (34) 40 (22)

13 Brain Bonferroni 21 (15) 12 (7)
Bonferroni matSpD 25 (18) 14 (8)

SMultiXcan Top 5 Bonferroni 47 (32) 31 (18)
All 49 Bonferroni 67 (38) 39 (18)
13 Brain Bonferroni 28 (20) 15 (9)

MASHR Top 5 Bonferroni 36 (21) 27 (15)
Bonferroni matSpD 49 (27) 30 (16)

All 49 Bonferroni 36 (22) 30 (17)
Bonferroni matSpD 42 (25) 34 (19)

13 Brain Bonferroni 23 (15) 18 (11)
Bonferroni matSpD 32 (20) 24 (13)
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solely on low co-localisation PP3 values (as opposed to low 
PP3 and high PP4 values). Two genes KCNK5 and LVYE1 
had PP4 > 0.5.

There were eight loci (rs138556413, rs7684253, 
rs10786156, rs75473620, rs12260159, rs10895275, 
rs17857135, and rs2223089) that did not have a uniform 
set of genes across all approaches. For these loci, we sug-
gest that the gene(s) most significantly associated (dif-
ferentially expressed) with migraine is most likely the 
causal gene. For example, of the five genes (CARF, ICAIL, 
NBEAL1, FAM117B, and WDR12) at the rs138556413 locus, 
ICAIL and NBEAL1 have the strongest TWAS p value with 
migraine as compared to other genes. Therefore, ICAIL and 
NBEAL1 are the most probable causal genes at rs138556413. 
REST is prioritised at locus rs7684253. However, REST 
was not identified in the top 5 migraine-relevant tissues. 
HPSE2 is the most likely causal gene at rs12260159. RP11-
732A21.2 is the most likely causal gene at rs10895275. 
RNF213 and HTRA1 are hypothesised as causal genes at 
rs17857135 and rs2223089, respectively. Interestingly, near 
the rs10786156 index SNP (GWAS P = 2.0 × 10–14), there is 
a secondary index SNP rs75473620 (GWAS P = 5.8 × 10–9), 
and the different TWAS models prioritised different genes 
at this locus. Elastic net models prioritised NOC3L, while 
MASHR and SMultiXcan prioritised PLCE1. NOC3L is dif-
ferentially expressed in the brain nucleus accumbens basal 
ganglia with a p value of 4.27 × 10–8. Whereas PLCE1 is 
differentially expressed in the brain cerebellar hemisphere 
with a p value of 5.33 × 10–9. Therefore, PLCE1 is hypoth-
esised to be the most likely causal gene at this locus. A sum-
mary of the number of loci characterised by each of the 10 
approaches (as in Table 4) is shown in Table 7.

Table 7 shows that elastic net prediction models priori-
tised robust genes that have strong evidence of co-locali-
sation of GWAS and eQTL signals (i.e., all loci with a 
PP3 < 0.5 also had a PP4 > 0.5). In terms of prioritising the 
highest number of loci characterised, elastic net single tis-
sue models that take into account correlation among genes 
(EN-All-M) performed best characterising 20 migraine risk 
loci all with robust co-localisation (PP3 < 0.5 and PP4 > 0.5).

Conditional analysis

There were three genomic loci (rs2078371/rs7544256, 
rs11172055/rs11172113, and rs4839827/rs67338227) hav-
ing independent migraine index SNPs and more than one 
gene differentially expressed. TSPAN2 and NGF were in 
1 Mb window of rs2078371/rs7544256, LRP1 and STAT6 
were in the 1 Mb window of rs11172055/rs11172113, and 
FHL5 and UFL1 were in the 1 Mb window of rs67338227/
rs4839827. To examine and identify which index SNP 
affects the differential expression of which gene, condi-
tional analyses were performed for each index SNP at these EN
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loci using GCTA-COJO. We note that, rs67338227 was not 
present in the 1000 Genomes Project LD reference, there-
fore, a proxy SNP rs2971603 located 6,729 bp upstream of 
rs67338227 having a similar effect allele frequency (0.227), 
beta (0.087) and p value (2.83 × 10–27) was used. The con-
ditioning window was set to 2 Mb around the index SNP. 
The TWAS pipeline was re-run including harmonisation, 
summary statistics imputation, and differential expression 
imputation (using MASHR models) using the conditioned 
GWAS summary statistics. Table 8, Figs. 3, 4, and 5 show 
the conditioned results.

Figures 3, 4 and 5 show LocusZoom plots for normal 
and conditioned GWAS on each primary and secondary 
index SNP present at each locus (± 500 kb). The x axis of 
the LocusZoom plot shows the bp position on the chro-
mosome. The y-axis shows the GWAS p value for each 
SNP. The bottom panel of the LocusZoom plot shows 
the name and position of genes derived from the UCSC 
browser (Karolchik et al. 2003). The LD between SNPs 

is displayed as r2 and is colour-coded according to the 
strength of correlation. The European 1000 Genomes 
Project data was used as a reference panel to calculate 
LD. LocusZoom plots also display local recombination 
hotspots as well. The recombination rate is displayed on 
the right side of the y axis.

Conditional analysis results show that rs2078371 is driv-
ing the differential expression results for both TSPAN2 and 
NGF, as when conditioned on rs2078371, the differential 
expression p values for these genes drop from 1.95 × 10–13 
to 0.674 and 9.35 × 10–8 to 0.839, respectively (i.e., they 
were no longer significantly differentially expressed with 
migraine). In contrast, when conditioned on rs7544256, 
the TWAS results for TSPAN2 and NGF remained sig-
nificant. Similarly, the conditional analyses showed that 
rs11172113 is driving differential expression for LRP1 and 
STAT6. Conditioning on rs11172113 resulted in decreased 
TWAS significance in all tissues. Whereas both genes 
LRP1 and STAT6 remained significant after conditioning on 

Table 5   List of genes and loci 
implicated via the elastic net but 
not by MASHR models

Chr chromosome, Pos position of index SNP, Enet-p TWAS p value using elastic net prediction model for 
respective tissue, MASHR-p TWAS p value using MASHR prediction model for respective tissue

rsIDs Chr Pos Gene Tissue enet-p MASHR-p

rs28455731 6 121,846,038 GJA1 Artery tibial 5.67 × 10–9 1.36 × 10–5

rs186166891 7 40,406,876 SUGCT​ Artery aorta
Artery tibial

2.92 × 10–15

4.05 × 10–12
Gene not present
Gene not present

rs11624776 14 93,595,591 BTBD7
ITPK1

Artery aorta
Artery_tibial

2.46 × 10–8

6.23 × 10–7
0.460
0.007

rs4081947 16 87,579,870 ZCCHC14 Artery_tibial 3.12 × 10–7 5.31 × 10–6

rs4814864 20 19,469,817 SLC24A3 Artery aorta
Artery tibial

1.75 × 10–16

1.04 × 10–17
0.401
0.267

Table 6   List of genes and loci implicated via MASHR but not by elastic net models

Chr chromosome, Pos position of index SNP, MASHR-p TWAS p value using MASHR prediction model for respective tissue, Enet-p TWAS p 
value using elastic net prediction model for respective tissue

rsIDs Chr Pos Gene Tissue MASHR-p enet-p

rs566529 2 234,756,811 HJURP Nerve_tibial
Ovary
Skin_not_sun_exposed_suprapubic
Small_intestine_terminal_ileum
testis

1.15 × 10–8

6.93 × 10–8

1.25 × 10–8

1.33 × 10–8

8.75 × 10–8

Gene not present
Gene not present
0.206593362
Gene not present
4.23 × 10–7

rs10166942 2 234,825,093 HJURP Nerve_tibial
Ovary
Skin_not_sun_exposed_suprapubic
Small_intestine_terminal_ileum
testis

1.15 × 10–8

6.93 × 10–8

1.25 × 10–8

1.33 × 10–8

8.75 × 10–8

Gene not present
Gene not present
0.206593362
Gene not present
4.23 × 10–7

rs10456100 6 39,183,470 KCNK5 Artery_tibial
Breast_mammary_tissue

7.97 × 10–8

7.97 × 10–8
Gene not present
9.21 × 10–7

rs6478241 9 119,252,629 TRIM32 Brain_nucleus_accumbens_basal_ganglia
Brain_spinal_cord_cervical_c-1
Brain_substantia_nigra
Minor_salivary_gland

3.18 × 10–8

3.15 × 10–8

5.70 × 10–8

1.11 × 10–7

Gene not present
Gene not present
Gene not present
Gene not present

rs4910165 11 10,674,044 LYVE1 Brain_cerebellum 6.45 × 10–12 Gene not present
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rs11172055. The same pattern of results was observed for 
rs2971603 (rs67338227) and rs4839827. The primary lead 

SNP rs2971603 (rs67338227) was driving the differential 
expression for FHL5 and UFL1.

In an attempt to further characterise these migraine risk 
loci, we attempted to identify genes with imputed differential 
expression driven by the secondary index SNPs (rs7544256, 
rs11172055, and 4,839,827) by comparing the ‘normal’ 
TWAS p value and conditioned TWAS p value for all genes 
present at these loci. Supplementary Table 4 and Supple-
mentary Table 5 show the list of top genes present ± 500 kb 
of each index SNP having the smallest p value when con-
ditioned on the secondary SNP, along with normal TWAS 
p value. However, no genes at these loci were identified to 
have differential expression driven by the secondary SNP. 
Thus, indicating that the primary lead SNPs are driving dif-
ferential expression of both genes at these loci.

Characterisation of putative novel loci

Across all the approaches, a total of 62 putative novel 
migraine risk genes were identified. The total number of 
genes from each threshold (Tables 1, 2) not within ± 500 kb 
of the 43 genome-wide index SNPs and within ± 500 kb of 
170 index SNPs is shown in Table 9.

Table 9 shows that SMultiXcan analysis using all 49 tis-
sues identified the highest number of genes (28) that were 
not present within ± 500 kb of the GWS migraine index SNP 
loci from Gormley et al. (2016). Out of these 28 genes, 20 
genes were present at 14 loci from Hautakangas et al. (2022). 
We consider these genes to be putative novel migraine risk 

Table 7   Overall comparison of all 10 approaches based upon 
COLOC

EN-All-B elastic net all 49 tissues using Bonferroni correction, EN-
All-M elastic net all 49 tissues using Bonferroni matSpD correction, 
EN-top-B elastic net top 5 tissues using Bonferroni correction, EN-
Top-M elastic net top 5 tissues using Bonferroni matSpD correc-
tion, SM-All SMultiXcan all 49 tissues using Bonferroni correction, 
SM-top SMultiXcan top 5 tissues using Bonferroni correction, MR-
All-B MASHR all 49 tissues using Bonferroni correction, MR-All-M 
MASHR all 49 tissues using Bonferroni matSpD correction, MR-
top-B MASHR top 5 tissues using Bonferroni correction, MR-top-M 
MASHR top 5 tissues using Bonferroni matSpD correction

Approach No. of genes (PP3 < 0.5) 
(indp. genomic loci)

No. of genes 
(PP4 > 0.5) (indp. 
genomic loci)

EN-All-B 32 (19) 29 (19)
EN-All-M 39 (20) 33 (20)
EN-Top5-B 24 (17) 23 (17)
EN-Top5-M 24 (17) 23 (17)
SM-All 31 (16) 27 (16)
SM-Top5 25 (17) 23 (17)
MR-All-B 27 (17) 12 (14)
MR-All-M 32 (19) 26 (16)
MR-Top5-B 23 (14) 20 (13)
MR-Top5-M 24 (14) 21 (13)

Table 8   TWAS results before 
and after conditioning on index 
SNPs

Gene Chr Tissue TWAS P

Normal Conditioned

rs2078371 rs7544256
TSPAN2 1 Artery aorta 1.95 × 10–13 0.674126887 1.85 × 10–12

NGF 1 Artery aorta 9.35 × 10–8 0.839511484 2.55 × 10–11

rs11172113 rs11172055
LRP1 12 Artery aorta 5.64 × 10–49 0.926949555 3.72 × 10–38

Artery coronary 1.57 × 10–46 0.382734997 6.46 × 10–37

Artery tibial 5.64 × 10–49 0.926949555 3.72 × 10–38

STAT6 12 Artery aorta 8.07 × 10–40 0.613315511 1.60 × 10–29

Artery coronary 3.02 × 10–40 0.585206809 5.04 × 10–30

Spleen 5.69 × 10–43 0.340679136 4.26 × 10–34

rs2971603 rs4839827
FHL5 6 Artery aorta 5.25 × 10–22 0.784582007 1.92 × 10–11

Artery tibial 5.74 × 10–23 0.925143001 4.74 × 10–12

UFL1 6 Artery coronary 2.07 × 10–20 0.585072206 6.60 × 10–13

Artery tibial 9.14 × 10–21 0.534423271 1.28 × 10–12

Pancreas 6.35 × 10–17 0.350427160 3.91 × 10–8
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genes. Among the single tissue models, the elastic net mod-
els identified a higher number of genes compared to the 
MASHR models. Moreover, more loci were identified using 
the elastic net models for the top 5 migraine-related tissues 
(11) as compared to the MASHR models.

Next, we determined how many of the putative novel 
migraine risk genes identified from TWAS analysis of the 
Gormley et al. (2016) GWAS data, were located near a GWS 
locus in the Hautakangas et al. (2022) migraine GWAS. The 
Hautakangas et al. (2022) migraine GWAS also performed 
TWAS using MetaXcan MASHR prediction models fol-
lowed by COLOC and another approach named FOCUS 
(Mancuso et al. 2019). FOCUS is a probabilistic/Bayesian 
approach that models the correlation among genes identi-
fied from TWAS and calculates a posterior probability for 
each gene within a region being a causal gene (Mancuso 
et al. 2019).

In terms of loci, a total of 24 loci having differentially 
expressed genes with at least one of the TWAS approaches, 
were identified using Gormley et al. (2016) migraine GWAS 
data. Table 10 shows the list of all putative novel migraine 
risk genes that were present within ± 500 kb of the Hauta-
kangas et al. (2022) migraine GWAS index SNPs for the 10 
TWAS approaches. This table also indicates whether the 
gene was verified by TWAS (i.e., FOCUS and/or MetaXcan 
and COLOC) in Hautakangas et al. (2022).

Afterwards, we examined the 62 putative novel risk genes 
identified by TWAS and assigned a topSNP (from Gorm-
ley et al. 2016) to each gene as described in the methods 
section. We first identified the largest topSNP p value from 
the 62 putative novel genes (RNF41, Pmax = 0.000923), and 
then identified all the genes across the genome that had 
an equivalent level of significance with a topSNP p value 
(5 × 10–8 < topSNP P < Pmax). We then compared the top-
SNP p values from Gormley et al. (2016) to Hautakangas 

Fig. 3   Conditional analysis for the locus containing index SNPs rs2078371 and rs7544256 and more than two DE genes crossing multiple test-
ing burden. Normal refers to unconditioned/original migraine GWAS summary statistics
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et al. (2022). Given the topSNPs may not be independent, we 
estimated the effective number of independent topSNPs by 
examining their LD relationship using GEC. The proportion 
of the effective number of independent topSNPs of the puta-
tive novel migraine risk genes that had a topSNP with Hau-
takangas P < 5 × 10–8 was 21/32 = 0.656, while the propor-
tion of the effective number of independent topSNPs of all 
the genes that had a topSNP with Hautakangas P < 5 × 10–8 
was 105/2140 = 0.049. Compared to the empirically derived 
expected proportion of 0.049, a significantly higher propor-
tion (0.6563) of the 62 putative novel migraine risk genes 
mapped to GWS migraine risk loci in Hautakangas et al 
(2022) (one-sided binomial test P = 2.38 × 10–20).

The majority of the differentially expressed genes iden-
tified by our TWAS analysis of the Gormley et al. (2016) 
migraine GWAS were verified in Hautakangas et al. (2022) 
migraine GWAS. It is important to note that Hautakangas 
assigned genes to a particular locus using a 1 Mb window 
upstream and a 1 Mb window downstream. However, we 
used a window of 500  kb upstream and 500  kb down-
stream of a gene to assign it to a particular locus. One gene, 

CYP2C9 was identified using our analysis and verified by 
Hautakangas et al. (2022), but it was not within ± 500 kb 
of a GWAS index SNP. In Hautakangas et  al. (2022), 
CYP2C9 was assigned to the rs2274224 SNP locus at 
chr10:96,039,597 (build 37), which is 658,818 bp upstream 
from the CYP2C9 transcription start site (chr10:96,698,415).

Importantly, all the genes verified by Hautakangas 
et al. (2022) were implicated via our TWAS and co-local-
isation. That is, MetaXcan and co-localisation probabil-
ity (PP4 > 0.5) that the same SNP affecting gene expres-
sion is affecting migraine risk. Similarly, genes implicated 
by FOCUS analysis had a posterior inclusion probability 
(PIP) > 0.5 being a causal gene. It is also worth noting that 
the significance threshold used by the Hautakangas et al. 
(2022) migraine TWAS analysis utilised a conservative Bon-
ferroni adjusted threshold, which adjusted for the total num-
ber of gene-tissue pairs tested (i.e., p = 0.05/total number of 
gene-tissue pairs).

Table 11 contains some putative novel migraine risk 
genes that were present within ± 500 kb of Hautakangas 
et  al. (2022) index SNPs but were not verified by their 

Fig. 4   Conditional analysis for the locus containing index SNPs rs11172113 and rs11172055 and more than two DE genes crossing multiple 
testing burden. Normal refers to unconditioned/original migraine GWAS summary statistics
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Fig. 5   Conditional analysis for the locus containing index SNPs rs2971603 (a proxy for rs67338227) and rs4839827 and more than two DE 
genes crossing multiple testing burden. Normal refers to unconditioned/original migraine GWAS summary statistics

Table 9   Total number of significant differentially expressed genes and number of genes not within ± 500 kb of the 43 migraine index SNPs from 
Gormley et al. (2016) and within ± 500 kb of 170 index SNPs from Hautakangas et al. (2022)

Model Tissues Threshold Total genes 
(genomic loci)

Genes not within ± 500 kb of the 43 
index SNPs (genomic loci)

Genes within ± 500 kb of 170 
index SNPs (genomic loci)

Elastic Net Top 5 Bonferroni 43 (31) 15 (13) 12 (11)
Bonferroni matSpD 47 (33) 18 (15) 13 (11)

All 49 Bonferroni 52 (29) 17 (9) 11 (5)
Bonferroni matSpD 61 (34) 21 (12) 14 (7)

SMultiXcan Top 5 Bonferroni 47 (32) 16 (14) 10 (9)
All 49 Bonferroni 67 (38) 28 (20) 20 (14)

MASHR Top 5 Bonferroni 36 (21) 9 (6) 9 (6)
Bonferroni matSpD 49 (27) 19 (11) 18 (10)

All 49 Bonferroni 36 (22) 6 (5) 5 (4)
Bonferroni matSpD 42 (25) 8 (6) 7 (5)
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MetaXcan and FOCUS analyses. For those genes, we 
extracted the TWAS predictor SNP having the smallest 
GWAS p value from the Gormley et al. (2016) migraine 
GWAS dataset and tested it for LD with the lead index SNPs 
from Hautakangas et al. (2022) and also checked the GWAS 
p value for the predictor SNP in Hautakangas et al. (2022). 
Table 11 shows that although these 14 genes were not found 
to be differentially expressed in the Hautakangas et  al. 
(2022) TWAS analyses, nine genes had predictor SNPs that 
were in LD (r2 > 0.1) with Hautakangas et al. (2022) index 
SNPs. The predictor SNPs for TNFRSF14 (r2 = 0.0003), 
HIST2H2BF (r2 = 0.0004), FCGR1A (r2 = 0.0004), and 
YJEFN3 (r2 = 0.0087) were not in LD with Hautakangas 
et al. (2022) index SNPs. This may indicate the presence 
of secondary GWAS association signals at these loci which 
were not detected due to insufficient power, but which con-
tributed to our observed TWAS association. Table 11 also 
shows that as the sample size increased in the Hautakangas 

et al. (2022) GWAS, the majority of the predictor SNPs 
became more significant. Supplementary Tables 6–11 list 
the LD between predictor SNPs for all genes and index SNPs 
from Hautakangas using MASHR, elastic net and SMultiX-
can prediction models.

Co‑localisation of putative novel migraine risk 
genes

Although not near GWS SNP loci in Gormley et al (2016), 
we examined the putative novel migraine risk genes for 
co-localisation (COLOC PP4 > 0.5) with SNP association 
signals (with P < 5 × 10–8) in Gormley et al (2016). For this 
purpose, we ran COLOC on all significant gene-tissue pairs, 
not within ± 500 kb of the 43 autosomal index SNPs from 
Gormley et al. (2016). At these loci, we identified the num-
ber of genes with COLOC PP4 > 0.5 and whether they were 
at new risk loci identified in Hautakangas et al. (2022). The 

Table 11   Association and LD for putative novel migraine risk gene loci predictor SNPs in Hautakangas et al. (2022)

Gene (tissue) Chr Predictor SNP GWAS p value 
for predictor SNP 
in Gormley et al. 
(2016)

GWAS p value for 
predictor SNP in 
Hautakangas et al. 
(2022)

Lead index SNP 
in Hautakangas 
et al. (2022)

LD between 
predictor and lead 
index SNP

GWAS p value 
for lead SNP in 
Hautakangas et al. 
(2022)

HOXD8 (artery 
tibial)

2 rs114763776 1.97 × 10–5 0.062848 rs72923449 0.2979 4.66 × 10–8

TNFRSF14 (small 
intestine termi-
nal)

1 rs868718 3.89 × 10–17 1.57 × 10–36 rs2124663 0.0003 2.44 × 10–9

HIST2H2BF 
(esophagus 
muscularis)

1 rs698915 4.62 × 10–7 3.47 × 10–11 rs68002561 0.0004 3.61 × 10–10

RP11-353N4.6 
(Lung)

1 rs1046332 1.76 × 10–6 1.31 × 10–7 rs68002561 0.7383 3.61 × 10–10

FCGR1A (whole 
blood)

1 rs698915 4.62 × 10–7 3.47 × 10–11 rs68002561 0.0004 3.61 × 10–10

EIF2D (spleen) 1 rs6658181 1.45 × 10–5 7.49 × 10–5 rs56140113 0.0159 7.76 × 10–9

EIF2D (thyroid) rs4072677 1.06 × 10–5 5.83 × 10–6 rs56140113 0.2291 7.76 × 10–9

ABHD16A (pan-
creas)

6 rs1802127 6.25 × 10–6 4.16 × 10–6 rs74434374 0.1828 4.51 × 10–9

HCG20 (lung) 6 rs3131043 0.00021 0.00097 rs9468830 0.6728 2.38 × 10–8

LRP4 (spleen) 11 rs2046768 1.43 × 10–6 9.85 × 10–9 rs7932866 0.9584 2.38 × 10–9

CELF1 (artery 
tibial)

11 rs7120113 2.10 × 10–6 1.63 × 10–8 rs12419507 0.0694 4.53 × 10–9

UBALD1 (whole 
blood)

16 rs3747577 8.63 × 10–6 3.17 × 10–9 rs12598836 0.4194 2.21 × 10–10

SUGP1 (artery 
tibial)

19 rs4539728 1.17 × 10–6 1.96 × 10–8 rs74182632 1 1.43 × 10–8

SUGP1 (pancreas) rs4539728 1.17 × 10–6 1.96 × 10–8 rs74182632 1 1.43 × 10–8

TM6SF2 (breast 
mammary tissue)

19 rs2023883 7.59 × 10–6 6.53 × 10–7 rs74182632 0.2369 1.43 × 10–8

YJEFN3 (small 
intestine termi-
nal)

19 rs8110171 0.000467 0.000412 rs74182632 0.0087 1.43 × 10–8
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main purpose of this analysis was to compare each TWAS 
approach’s ability to identify putative novel risk gene 
loci. Table 12 shows that although the genes identified by 
MASHR models had the highest proportion of co-localised 
genes in new migraine risk loci, the MASHR models identi-
fied the lowest total number of co-localised genes at the few-
est loci. For example, the best performing MASHR Bonf-
Sig-matSpD Top-5 tissue TWAS identified nine genes with 
PP4 > 0.5 located at four (putative novel) loci. In contrast, 
the elastic net models identified more co-localised genes at 
more new migraine loci, with the best performing ENET 
Bonf-Sig-matSpD Top-5 tissue TWAS, which identified 11 
genes with PP4 > 0.5 located at nine (putative novel) loci.

Discussion

In this paper, migraine GWS loci were characterised using 
recently developed transcriptome-wide association study 
(TWAS) approaches. Prior to TWAS approaches, a ‘single 
eQTL’ approach was used, which tested each GWAS SNP 
for association with a SNP associated with an eQTL (eSNP). 
However, this approach has two major drawbacks. Firstly, 
the multiple testing burden is increased due to testing many 
eSNPs and secondly, a single eSNP may not completely 
capture the genetic variation influencing the gene’s expres-
sion. The TWAS approach overcomes this hurdle by addi-
tively modelling multiple SNPs in the cis-region of the gene, 
defined as 500 kb upstream of the gene’s transcription start 
site and 500 kb downstream of the gene’s transcription end 
site, thus reducing the multiple testing burden and captur-
ing more genetic variation by combining information from 
multiple SNPs to impute (predict) gene expression. TWAS 
consists of two steps (i) generation of weights/prediction 
models for cis-SNPs on gene expression using independent 
genotype and expression data from healthy individuals, (ii) 

imputing gene expression values using a reference panel for 
individual genotype data or GWAS summary statistics and 
then testing for the association of imputed gene expression 
values with the trait of interest.

Therefore, the accuracy of gene expression imputation 
depends upon the quality of prediction models. The early 
versions of prediction models were elastic net models based 
upon version 6 and version 7 of GTEx aligned to build 37. 
The latest models are based on version 8 of GTEx aligned 
to build 38 and include two classes of prediction models: 
elastic net and MASHR. The equation used to impute the 
z-score is the same in both model classes; however, there 
are differences. Elastic net uses all the cis-SNPs present in 
the region and generates an additive model to compute SNP 
weights for gene expression prediction. Elastic net models 
have a quality check metric that measures the correlation 
between the predicted transcriptome and assayed expression 
data (in the reference data such as GTEx). The gene predic-
tion models that have a significant correlation (FDR < 0.05) 
are made publicly available. This quality check metric is 
available only for elastic net models. Whereas elastic net 
uses all cis-SNPs, MASHR only uses fine-mapped SNPs 
from the DAP-G algorithm to calculate SNP weights for 
gene expression prediction. MASHR models tend to have 
a low number of SNPs (mostly 1 or 2 SNPs) incorporated 
into the prediction model to impute gene expression. All 
MASHR prediction models are made available for users and 
there are no model quality checks like the elastic net models.

Both elastic net and MASHR models were used for sin-
gle-tissue analyses. These analyses showed that the elastic 
net models were able to identify a greater number of signifi-
cant differentially expressed genes compared to the MASHR 
models on already established migraine GWS loci.

GWS loci were characterised based on genes having dif-
ferential expression and evidence of co-localisation between 
GWAS risk SNPs and eQTL SNPs. The threshold used for 

Table 12   Co-localisation of putative novel migraine risk genes

Prediction model Tissues analysed Multiple test 
adjustment

No. of genes not 
within ± 500 kb of 
the 43 index SNPs 
(genomic loci)

No. of genes with 
PP4 > 0.5 (genomic 
loci)

No. of genes 
present in new 
migraine loci 
(genomic loci)

Proportion of genes 
in new migraine loci 
with PP4 > 0.5

ENET Top 5 tissues Bonf-Sig 15 (13) 12 (10) 10 (9) 0.83
Bonf-Sig-matSpD 18 (15) 15 (12) 11 (9) 0.73

All 49 tissues Bonf-Sig 17 (9) 10 (5) 8 (4) 0.80
Bonf-Sig-matSpD 21 (12) 13 (7) 10 (5) 0.77

SMultiXcan Top 5 tissues Bonf-Sig 16 (14) 13 (11) 8 (7) 0.62
All 49 tissues Bonf-Sig 28 (20) 9 (8) 6 (6) 0.67

MASHR Top 5 tissues Bonf-Sig 9 (6) 5 (2) 5 (2) 1
Bonf-Sig-matSpD 19 (11) 9 (4) 9 (4) 1

All 49 tissues Bonf-Sig 6 (5) 1 (1) 1 (1) 1
Bonf-Sig-matSpD 8 (6) 3 (2) 3 (2) 1
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the co-localised signal was PP4 > 0.5 as recommended by 
the authors. However, an interpretation of these posterior 
probabilities requires a bit of caution. For example, a gene 
having low PP4 does not necessarily mean that there is no 
evidence of co-localisation provided PP3 is low and PP0, 
PP1 and PP2 are high. This can result from low power in the 
datasets (Giambartolomei et al. 2014). Therefore, we used 
two thresholds for the characterisation of a GWAS locus: 
PP3 < 0.5 and PP4 > 0.5 as an indication of a more robustly 
co-localised gene.

The differentially expressed and robustly co-localised 
genes listed in Table 4 have been reviewed elsewhere (Van 
Den Maagdenberg et  al. 2019) and were examined via 
pathway analysis using the g:GOSt tool (Raudvere et al. 
2019). Notably, the genes ECM1, MEF2D, PHACTR1, 
FHL5, UFL1, HEY2, and LRP1 were common among all 
approaches and have all been involved in vascular function. 
Other genes such as REST, GJA1, NCOA7, KCNK5, PLCE1, 
HTRA1, YAP1, and ZCCHC14 were not common among all 
approaches but have also been related to vascular function. 
Apart from YAP1, all of these genes had strong evidence of 
being co-localised (PP4 > 0.5) with a migraine index SNP. 
Some of the genes (not common among all approaches) were 
associated with other plausible pathogenic pathways. For 
example, SLC24A3 and KCNK5 are involved in ion channel 
activity, and RNF213 is involved in metal ion homoeosta-
sis. It is interesting given all three genes implicated in a rare 
monogenic form of migraine—familial hemiplegic migraine 
(FHM)—are involved in ion transport (Nyholt et al. 2017).

TWAS analyses of the Gormley et al (2016) data also 
successfully identified significantly differentially expressed 
genes at putative novel (non-GWS GWAS) loci, that were 
found to be at new GWS loci in the Hautakangas et al. 
(2022) GWAS. We also demonstrated that the probability 
of identifying putative novel risk loci by incorporating eQTL 
data (as in TWAS) is significantly more than expected by 
chance. Given the topSNPs of putative novel genes identified 
in Gormley et al. (2016) had strong evidence for associa-
tion, they had an increased prior probability of being at a 
true risk locus and thus have a GWS p value (P < 5 × 10–8) 
in Hautakangas et al. (2022). Therefore, we performed a 
binomial test comparing the proportions of the putative 
novel migraine risk genes (topSNPs) and topSNPs for all 
genes. The results show that the TWAS-implicated genes are 

enriched, whereas genes with similar GWAS significance are 
not enriched with genome-wide significance in Hautakangas 
et al. (2022) (binomial test p = 2.38 × 10–20).

We also compared the different TWAS approaches and 
multiple testing adjustments in terms of the total number of 
independent genomic risk loci containing one or more puta-
tive migraine risk genes (i.e., index SNPs within 500 kb of 
each other in Table 10 were merged into the same genomic 
risk locus). Table 13 shows that compared to the standard 
Bonferroni adjusted threshold, using the Bonferroni matSpD 
adjusted threshold (which accounts for the correlation in 
gene expression within each tissue) identified more putative 
novel loci for both the top 5 tissue and all 49 tissue analy-
ses. An exception to this was the elastic net model for the 
top 5 tissues, where the Bonferroni and Bonferroni matSpD 
threshold identified the same number of putative novel loci.

MASHR models were able to identify 10 and five puta-
tive novel genomic risk loci in total for the top 5 tissue and 
all 49 tissue analyses, respectively. More putative novel 
genomic risk loci were identified by analysing the top 5 
tissues only. The MASHR all 49 tissue analysis identified 
one locus (near SNP rs56140113) that was not found by 
the top 5 tissue analysis. The MASHR top 5 tissue analysis 
identified six loci (near rs68002561/rs7544531, rs72923449, 
rs7932866, rs12419507, rs28756401, and rs9894634) that 
were not identified via the all 49 tissue analysis. Four loci 
(rs12598836, rs74182632, rs1982072, rs28451064) were 
common between the MASHR all 49 tissue and top 5 tissue 
analyses.

The elastic net model produced a similar pattern of 
results. Analysis of the top 5 tissues identified a greater 
number of putative novel genomic risk loci compared to the 
analysis of all 49 tissues—identifying 11 and seven loci, 
respectively. The elastic net top 5 tissue analysis identified 
seven loci (rs4907224, rs1499963, rs12419507, rs28756401, 
rs12598836, rs910187/rs3092262, rs28451064) that were 
not identified via the all 49 tissue analysis. All 49 tissue 
analysis identified three loci (rs2124663, rs6556059, and 
rs1982072) that were not found by the top 5 tissue analysis. 
Four loci (rs1472662, rs68002561/rs7544531, rs74434374, 
and rs7932866) were common between the elastic net top 5 
and all 49 tissue analyses.

The SMultiXcan analysis of all 49 tissues identi-
fied a greater number of putative novel genomic risk loci 

Table 13   Total putative novel 
genomic risk loci identified by 
the different prediction models 
and multiple testing adjustments

Prediction model Multiple testing adjustment Top 5 tissues All 49 tissues

MASHR Bonferroni 6 4
Bonferroni matSpD 10 5

ENET Bonferroni 11 5
Bonferroni matSpD 11 7

SMultiXcan Bonferroni 9 14
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compared to the analysis of the top 5 tissues—identifying 
14 and nine loci, respectively. Two loci (rs1499963 and 
rs28756401) were specific to the top 5 tissues analysis. 
Seven loci (rs2124663, rs12057629/rs61561984, rs4907224, 
rs6556059, rs4285, rs9468830, and rs74182632) were 
exclusive to all 49 tissues analysis. Seven loci (rs1472662, 
rs68002561/rs7544531, rs56140113, rs74434374, 
rs7932866, rs12598836, and rs28451064) were identified 
via both the SMultiXcan top 5 and all 49 tissue analyses.

Table 11 shows that our pipeline was able to identify 
nine putative novel migraine risk genes significantly dif-
ferentially expressed in TWAS analysis of Gormley et al. 
(2016) data. It is interesting to note that some of these 
genes were expressed in the tissues that were not directly 
related to migraine, for example, breast mammary tissue. 
Genes significantly differentially expressed in such tissues 
could result from individual or combinations of factors 
such as GTEx tissue sample sizes, gene co-regulation/co-
expression and/or isoform abundance of pathogenic genes 
in a particular tissue (Ghaffar and Nyholt 2022). However, 
these genes were later found to be at (and in LD with) true 
(GWS) migraine risk index SNP loci in Hautakangas et al 
(2022). Six of these genes (RP11-353N4.6, EIF2D, LRP4, 
UBALDI, SUGP1, and TM6SF2) are at loci with multiple 
differentially expressed genes, some of which were impli-
cated by MetaXcan and/or FOCUS analysis by Hautakangas 
et al. (2022). However, there were three genes ABHD16A 
(near rs74434374), HCG20 (near rs9468830), and HOXD8 
(near rs72923449) identified by our TWAS pipeline analysis 
that were not implicated by MetaXcan or FOCUS analysis 
by Hautakangas et al. (2022). ABHD16A is a member of the 
alpha/beta hydrolase domain-containing protein family that 
is involved in Kawasaki disease (Xu et al. 2018). Kawasaki 
disease is a disease caused by inflammation of blood vessels, 
thus having a vascular component. HCG20 is a non-coding 
RNA gene associated with brain malformations and major 
depressive disorder (Li et al. 2019). HOXD8 belongs to a 
homeobox family of genes and has a tumour suppressing 
role in different cancers by inducing apoptosis and inhibit-
ing proliferation (Zhang et al. 2021). Hypermethylation of 
HOXD8 is used as a biomarker to detect biliary tract cancers 
(Loi et al. 2022). ABHD16A can directly be associated with 
migraine because of its potential vascular role. HCG20 is 
associated with major depressive disorder, that in turn is cor-
related with migraine (Yang et al. 2018). HOXD8 is a gene 
playing important role in different cancers but its involve-
ment in migraine aetiology is unclear.

TWAS approaches can be viewed as methods directed 
to improve the discovery power of the GWAS without 
increasing sample size by incorporating functional infor-
mation. Some authors suggest that the secondary usage of 
these methods is to increase the statistical power of GWAS 
to identify novel loci (Moore et al. 2022). We have shown in 

our analysis that the number of putative novel loci identified 
using Gormley et al. (2016) migraine GWAS that were GWS 
in the latest Hautakangas et al. (2022) migraine GWAS is 
significantly more than expected by chance (one-sided bino-
mial test p = 2.38 × 10–20). Thus, performing TWAS analy-
ses on the latest more powerful migraine GWAS would be 
expected to identify additional novel migraine risk loci.

The migraine GWAS performed by Gormley et al. (2016) 
and Hautakangas et al. (2022) were in populations of Euro-
pean ancestry and the TWAS prediction models from GTEx 
were derived from samples of predominantly (84.6%) white 
populations. Most migraine GWAS have been performed in 
individuals of European descent, hence the results may not 
be directly transferable to other ancestral populations. There 
have been studies that tried to replicate the European risk 
loci in relatively small non-European populations. One of the 
studies in a Chinese population replicated one of the migraine 
risk loci from the three risk variants known at that time (An 
et al. 2013; Fan et al. 2014). A subsequent Chinese replica-
tion study of 581 migraine cases and 533 ethnically matched 
controls identified three risk loci rs2274316 (MEF2D), 
rs6478241 (ASTN2) and rs2651899 (PRDM16) previously 
identified in European samples (An et al. 2017). A later study 
in a North Indian population replicated three loci; rs1835740 
(near MTDH), rs11172113 (LRP1), rs2651899 (PRDM16) 
(Ghosh et al. 2013). In addition to replicating European risk 
loci, a few migraine GWAS have been performed in Asian 
populations but all had small sample sizes (Jiang et al. 2021; 
Tsai et al. 2021; Tsao et al. 2022). Thus, it is reasonable to 
conclude that migraine GWAS in European populations have 
produced many migraine risk variants, and despite a lack of 
replication power, some of these loci have been replicated 
in non-European populations (Harder et al. 2023). Regard-
less, as for the vast majority of GWAS traits performed to 
date, additional and larger migraine GWAS in non-European 
populations is required to identify additional and perhaps 
ancestry-specific risk loci. Similarly, although studies com-
paring TWAS using European and non-European transcrip-
tome prediction models found that z-scores for differential 
expression are highly correlated (e.g., Pearson correlation 
of 0.63 between an African American and Hispanic/Latino 
model and a European model) (Geoffroy et al. 2020), given 
allele frequencies and effect sizes can differ across ancestral 
populations (Mogil et al. 2018), TWAS with population-
matched transcriptome models should have more power to 
identify trait-associated and colocalised genes and thus more 
transcriptome studies in diverse populations are needed.

Overall, our TWAS analyses of the Gormley et al (2016) 
migraine GWAS identified 21 independent putative novel 
risk loci harbouring putative migraine risk genes. Univer-
sally, compared to the MASHR models, the elastic net mod-
els identified more putative novel risk genes and loci, and 
SMultiXcan analysis of all 49 tissues identified the most 
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putative novel risk loci shown to be true risk loci in the 
recent more powerful migraine GWAS by Hautakangas et al. 
(2022).
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