ORIGINAL INVESTIGATION

Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci

Ammarah Ghaffar¹ · The International Headache Genetics Consortium · Dale R. Nyholt¹

Received: 2 March 2023 / Accepted: 2 May 2023 / Published online: 28 May 2023 © Crown 2023

Abstract

Migraine—a painful, throbbing headache disorder—is the most common complex brain disorder, yet its molecular mechanisms remain unclear. Genome-wide association studies (GWAS) have proven successful in identifying migraine risk loci; however, much work remains to identify the causal variants and genes. In this paper, we compared three transcriptome-wide association study (TWAS) imputation models-MASHR, elastic net, and SMultiXcan-to characterise established genomewide significant (GWS) migraine GWAS risk loci, and to identify putative novel migraine risk gene loci. We compared the standard TWAS approach of analysing 49 GTEx tissues with Bonferroni correction for testing all genes present across all tissues (Bonferroni), to TWAS in five tissues estimated to be relevant to migraine, and TWAS with Bonferroni correction that took into account the correlation between eQTLs within each tissue (Bonferroni-matSpD). Elastic net models performed in all 49 GTEx tissues using Bonferroni-matSpD characterised the highest number of established migraine GWAS risk loci (n=20) with GWS TWAS genes having colocalisation (PP4>0.5) with an eOTL. SMultiXcan in all 49 GTEx tissues identified the highest number of putative novel migraine risk genes (n=28) with GWS differential expression at 20 non-GWS GWAS loci. Nine of these putative novel migraine risk genes were later found to be at and in linkage disequilibrium with true (GWS) migraine risk loci in a recent, more powerful migraine GWAS. Across all TWAS approaches, a total of 62 putative novel migraine risk genes were identified at 32 independent genomic loci. Of these 32 loci, 21 were true risk loci in the recent, more powerful migraine GWAS. Our results provide important guidance on the selection, use, and utility of imputation-based TWAS approaches to characterise established GWAS risk loci and identify novel risk gene loci.

Introduction

Migraine is a complex neurological trait affecting 14% of the population worldwide (Stovner et al. 2018). According to the Global Burden of Disease Study 2016, migraine is the second leading cause of disability and accounts for more disability than all other neurologic disorders combined (Stovner et al. 2018; Vos et al. 2017). Migraine is characterised by intense, debilitating pain usually on either side of the head. In most cases, migraine is accompanied by nausea, vomiting, numbness, and sensitivity to noise and light (Arnold 2018).

Ammarah Ghaffar a.ghaffar@qut.edu.au

Dale R. Nyholt d.nyholt@qut.edu.au

Migraine is a complex polygenic trait and has a strong genetic component with a heritability of 30-60% (Polderman et al. 2015; Sutherland et al. 2019) estimated by different family and twin studies (Honkasalo et al. 1995; Mulder et al. 2003). Genome-wide association studies (GWAS) have substantially improved our understanding of the genetic architecture of migraine and led to the identification of many GWS ($P < 5 \times 10^{-8}$) single nucleotide polymorphisms (SNPs) associated with migraine (Van Den Maagdenberg et al. 2019). However, as is typical for human complex traits, most of the identified migraine risk SNPs are located in noncoding regions. Therefore, rather than having a direct effect on protein structure and function, these SNPs are believed to act by regulating gene expression. However, identifying which SNP has an effect (i.e., causal SNP) on which gene (causal gene) is not an easy task. In 2016, Gormley et al. published a large migraine GWAS of 59,574 cases and 316,078 controls that identified 44 linkage disequilibrium (LD)-independent 'index' SNPs associated with migraine at 38 independent genomic risk loci (Gormley et al. 2016). For

¹ Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia

convenience, such index SNP loci are typically represented by (annotated with) the nearest gene; however, physical location is not a good proxy for identifying target genes of GWAS SNPs (Visscher et al. 2017) and other factors such as gene density and size complicate the functional interpretation of GWAS risk loci (Van Den Maagdenberg et al. 2019).

Recently, gene-based methods have been developed that leverage GWAS and eQTL data to impute differential expression and test for gene expression associated with the GWAS trait. These methods are termed transcriptome-wide association studies (TWAS). Standard TWAS is usually performed in all available Genotype-Tissue Expression project (GTEx) (Consortium 2015) tissues using Bonferroni correction adjusting for testing all genes present across all tissues (gene-tissue pairs) (Barbeira et al. 2018; Hirbo et al. 2018; Tachmazidou et al. 2019; Torres et al. 2017). Alternatively, TWAS is performed in a single most relevant trait-related tissue with Bonferroni adjustment for the number of genes tested (Feng et al. 2020; Wu et al. 2019). Another group of studies have been published that performed TWAS in a group of trait-relevant tissues with Bonferroni adjustment for the total number of genes tested across the examined tissues (Chen et al. 2021; Guo et al. 2020; Peng et al. 2018). The selection of trait-relevant tissues is based on a literature review or current knowledge of the trait. The approach of selecting tissues is difficult for complex traits such as migraine where the trait-relevant tissues are not known and literature supports multiple hypotheses for the origin of migraine (Mason and Russo 2018). In this paper, we identified tissues related to migraine's regulatory architecture using genome-wide imputed differential expression enrichment (GIDEE) approach (Ghaffar and Nyholt 2022). Furthermore, we compared three different TWAS methods to (i) characterise established migraine risk loci from Gormley et al. (2016) (Gormley et al. 2016), and (ii) identify GWS differentially expressed genes at putative novel loci (i.e., loci that are not near GWS SNPs in Gormley et al. (2016) migraine GWAS), iii) the putative novel migraine risk genes identified in (ii) were then validated using the recent, more powerful migraine GWAS by Hautakangas et al. (2022) (Hautakangas et al. 2022).

Materials and methods

An overview of the methodology followed in this paper is provided in Fig. 1 and described further in subsequent sections.

Fig. 1 Pipeline followed for characterisation of 44 independent migraine risk SNPs and identification of putative novel risk genes

GWAS dataset

The TWAS analyses utilised Gormley et al. (2016) migraine GWAS summary statistics from a GWAS of 59,674 cases and 316,078 controls with European ancestry (Gormley et al. 2016). This study identified 38 independent genomic risk loci containing 44 index SNPs associated with migraine risk ($P < 5 \times 10^{-8}$). Details of quality control and imputation are provided in the original publication (Gormley et al. 2016). The putative novel migraine risk genes identified by TWAS were validated in the recent, more powerful migraine GWAS by Hautakangas et al. (2022) comprising 102,084 migraine cases and 771,257 controls. The new GWAS dataset contained the Gormley et al. (2016) GWAS and additional GWAS data from 23andMe, Inc. (22,644 cases and 87,729 controls), UK Biobank (10,881 cases and 330,170 controls), GeneRISK (1084 cases and 4857 controls), and HUNT (7801 cases and 32,423 controls) (Hautakangas et al. 2021, 2022). A total of 8,117 GWS ($P < 5 \times 10^{-8}$) SNPs were identified, of which 170 were LD-independent ($r^2 < 0.1$) index SNPs. The 170 index SNPs mapped to 123 independent genomic risk loci of which 86 were novel. Details of quality control and imputation are provided in the original publication (Hautakangas et al. 2022).

Gene expression and eQTL dataset

The majority of GWAS risk SNPs are non-coding and are thus expected to impact the expression of the gene by altering its regulation (Ward and Kellis 2012). eQTL analysis is the most common approach to evaluating the effect of SNPs on gene expression (Grundberg et al. 2012; Morley et al. 2004; Westra et al. 2013). However, eQTL studies are expensive and often limited by the availability of relevant tissue. GTEx provides a resource to address this limitation. The latest version of GTEx hosts data for 54 tissues obtained from 948 donors summing to a total number of 17,382 samples (Consortium 2020). Genotype and eQTL data were available for 49 tissues (N \geq 70 samples) from 838 donors summing to a total number of 15,201 samples. We downloaded fully processed, filtered, and normalised gene expression matrices (in BED format) for each tissue for GTEx version 8 (v8). The expression and eQTL data used in this project were downloaded from GTEx v8 (https://gtexportal.org/home/).

Gene expression imputation

The MetaXcan software was used to impute trait-associated differential gene expression in 49 human tissues from GTEx v8. MetaXcan uses a set of reference individuals whose gene expression and genotyping have been measured for the same individuals. The authors of MetaXcan take this information and adjust for sex and experimental/population confounders

to impute differential expression in a large independent dataset. GTEx v8 version has two types of prediction models available: MASHR and elastic net models. Both models were used to impute differential expression.

MASHR stands for Multivariate Adaptive Shrinkage in R. In MASHR models, instead of using all SNPs present in the 1 Mb window, the list of SNPs is first shortlisted to only SNPs having a high chance of influencing the expression of that particular gene. This is done by an algorithm DAP-G (Wen et al. 2016), that calculates a posterior inclusion probability (PIP) for each SNP tested, with SNPs having PIP>0.01 retained for model development(Urbut et al. 2019). Hence, the MASHR models have predictors informed by posterior causal probability that may belong to different LD clusters across tissues, and the effect sizes are based on marginal regression and smoothing across tissues (Barbeira et al. 2020).

Elastic net models use all the SNPs having minor allele frequency > 0.01 present in the 1 Mb window of the gene to determine its effect on the expression of the gene.

The GTEx v8 eQTL data is aligned to the Genome Reference Consortium Human Build 38 (GRCh38, also known as build 38 or hg38) and thus contains variants that were not tested in older GWAS that utilised variants compiled from earlier genome builds. Therefore, the migraine GWAS summary statistics were harmonised and lifted over from build 37 to build 38. Then imputation of summary statistics for missing variants was performed for the migraine GWAS before the differential expression imputation. The gene prediction model SNP weights for each tissue were available in the form of SQLite weight files on predictdb.org (Barbeira et al. 2016) (downloaded from https://predictdb.org/post/ 2021/07/21/gtex-v8-models-on-eqtl-and-sqtl/).

The elastic net prediction models "elastic_net_eqtl.tar" containing weights of the predictor SNPs on each gene within each tissue along with a single tissue covariance file were retrieved on 11/03/2020. The MASHR models "mashr_eqtl.tar" containing the database and covariance file was retrieved on 01/09/2021.

Enrichment in migraine-relevant tissues

We used GIDEE to identify tissues enriched with differential gene expression associated with migraine's regulatory architecture (Ghaffar and Nyholt 2022). GIDEE imputes gene expression and tests for the enrichment of differentially expressed genes in each GTEx tissue. Two methods were used to capture the enrichment of differentially expressed genes; mean squared z-score and empirical Brown's method adjusted for GTEx tissue sample sizes using a linear regression model lm(enrichment test ~ sample size). Afterwards, the tissues were ranked in ascending order and the average of tissues across both methods was taken. The higher the average rank of tissue, the higher the evidence for differential expression enrichment and the more likely the tissue is pathogenically relevant to migraine. We used the top 5 tissues for the downstream analysis.

Thresholds to keep type-1 error rate < 0.05 in all tissues and top 5 tissues

Two p value thresholds were used to keep the type 1 error rate < 0.05. First, a strict Bonferroni-adjusted threshold ('Bonferroni'), which adjusted for the total number of genetissue pairs tested (i.e., p = 0.05/total number of gene-tissue pairs). The second threshold (Bonferroni-matSpD) utilised a Bonferroni-adjusted threshold, which adjusted for the number of gene-tissue pairs tested after taking into account the substantial covariance in expression across genes within each tissue (i.e., p = 0.05/sum of the effective number of independent genes in all tissues). The second threshold was developed because multiple-test adjustment using the total raw number of genes is expected to be too stringent and not reflect true biology (i.e., covariance in gene expression). The effective number of independent genes analysed for differential expression in each tissue was estimated using matrix spectral decomposition (matSpD) (Nyholt 2004). The mat-SpD approach estimates the effective number of independent variables in a correlation matrix by examining the eigenvalues from spectral decomposition. The expression values for genes whose differential expression was predicted by MetaXcan were extracted from normalised gene expression matrices obtained from GTEx. Briefly, a Pearson correlation matrix was generated using R version 3.6.1 and used as input to the MatSpD.R script downloaded from https:// drive.google.com/open?id=1-r-HWsKOD8NfbOG4C4 SFIwjj8yYze2Zu. The output was an estimate of the effective number of independent genes along with a p value to efficiently control for type 1 error at 5%.

The above-mentioned multiple testing adjustments were used on two sets of results. One set analysed all 49 GTEx v8 tissues, and another set analysed only the top 5 most likely pathogenically-relevant tissues for migraine.

Gene expression imputation across tissues

Following the single-tissue MetaXcan analyses, summarybased MultiXcan (SMultiXcan) was used to impute differential gene expression associated with migraine risk using cross-tissue models. SMultiXcan tests the joint effects of gene expression variation across tissue in four steps: (1) gene expression is imputed within single tissues using single tissue elastic net prediction models using models trained on 49 GTEx tissues, (2) a correlation matrix is generated for imputed gene expression and principal components of the predicted expression data matrix are used as explanatory variables, (3) components of smallest variation are discarded from the correlation matrix generated from step 2 to avoid numerical issues caused by collinearity. To select the number of components, the threshold of $\frac{\lambda_{max}}{\lambda_i} < 30$ was used, where λ_i is an eigenvalue of the correlation matrix, and (4) joint effects for each gene are estimated using single tissue results from step 1 and the correlation matrix from step 3 to give a joint imputed differential expression for each gene. SMultiXcan provides results for a combined differential expression p value for a single gene, best tissue (i.e., tissue having the lowest differential expression p value), worst tissue (i.e., tissue having the highest differential expression p value), and the mean and standard deviation of z-scores for all tissues in which the specific gene is differentially expressed (Barbeira et al. 2019).

SMultiXcan was applied to all 49 GTEx tissues and on the top 5 most likely pathogenically-relevant tissues for migraine.

TWAS using 13 GTEx brain tissues

Results from previous analyses by ourselves (Ghaffar and Nyholt 2022; Gormley et al. 2016; Hautakangas et al. 2022) and others (Finucane et al. 2018) did not indicate the 13 GTEx brain tissues were enriched for regulatory signals at migraine GWAS loci and/or GWAS loci were enriched for genes specifically expressed in GTEx brain tissues. However, given migraine is a neurological disorder that affects the brain, for completeness and the interests of readers, we also performed analogous TWAS analyses restricted to the 13 GTEx brain tissues.

Co-localisation analysis

COLOC (Giambartolomei et al. 2014) was used to assess the probability that the same SNP (effect) associated with migraine risk also influences gene expression. COLOC utilises Bayesian statistics to test for all possible combinations of association with both datasets (migraine GWAS and eQTL) at the SNP level. This requires setting prior probabilities for three combinations: P₁, P₂ and P₁₂. P₁ and P₂ are set to 1×10^{-4} and refer to the association of the SNP in dataset 1 and dataset 2, respectively. P_{12} is set to 1×10^{-5} and refers to the prior probability of association of the SNP in both datasets. In other words, P₁₂ defines the prior probability that given the SNP is associated in dataset 1, what is the probability that the SNP is associated in dataset 2. Setting P_{12} as 1×10^{-5} means that 1 out of 10 SNPs associated with dataset 1 is also associated with dataset 2. Co-localisation analysis enables the separation of the LD contaminated (i.e., correlated neighbouring) genes by calculating posterior probabilities (PP) to distinguish between pleiotropy

(i.e., the same SNP influencing both datasets) and LD. For each gene that was differentially expressed and that passed multiple testing for each threshold, eQTL summary statistics were extracted for cis-SNPs from GTEx v8 and tested for co-localisation with migraine-risk SNPs. Given the default prior probabilities of a SNP's association with expression $(P_1=10^{-4})$, trait $(P_2=10^{-4})$ and both $(P_{12}=10^{-5})$, COLOC produces posterior probabilities for five hypotheses—H0: no association with either trait; H1: association with trait 1, not with trait 2; H2: association with trait 2, not with trait 1; H3: association with trait 1 and trait 2, two independent SNPs; and H4: association with trait 1 and trait 2, one shared SNP. A large posterior probability for H3 (PP3) means that there are two independent SNPs associated with each trait at the same locus. A large posterior probability for H4 (PP4) means there is a single SNP associated with both traits at a

Fig. 2 Enrichment methods result for the migraine GWAS. A Shows the mean squared z-score enrichment test results; B shows the Brown's p value enrichment test results

given locus. Therefore, the higher the PP4 (PP4 > 0.5), the higher the confidence for co-localisation (pleiotropy), where the same SNP that affects migraine, affects the expression of the gene. Co-localisation may also be inferred via a low PP3 (PP3 < 0.5).

Loci characterisation

Significant differentially expressed genes with high PP4 or low PP3 were assigned to a migraine risk locus if they were within \pm 500 kb of a GWS index SNP from Gormley et al. (2016). For significant differentially expressed genes that were >500 kb away from the migraine index SNPs located on chromosomes 1–22 from Gormley et al. (2016), we hypothesised that these genes were putative novel migraine risk genes (i.e., because they were not at GWS GWAS risk loci). Loci having LD-independent secondary GWAS signals and more than two differentially expressed genes were subjected to conditional analysis for both signals (SNPs) at the given locus.

Conditional association analysis

Genomic loci with secondary GWAS signals (secondary index SNPs) and more than one differentially expressed gene were subjected to conditional analyses to determine the marginal effect of each GWAS index SNP on gene expression. At these genomic loci, conditional association analysis was performed separately for each index SNP using GCTA-COJO (Yang et al. 2012). GCTA-COJO performs approximate conditional association analysis using GWA summary statistics and LD estimated from a reference population. Each index SNP was given as an input to GCTA-COJO with a window size of 2 MB. The association p values of all SNPs within 2 MB of index SNPs were re-calculated/ conditioned. The TWAS pipeline (pre-processing, harmonisation and imputation) was then re-run on each set of conditioned GWAS summary statistics. The 1000 Genomes Project Phase 3 European population reference panel, downloaded from https://ctg.cncr.nl/software/magma (de Leeuw et al. 2015), was provided as a reference panel to estimate LD. The results of the conditional analysis were visualised via LocusZoom plots (Pruim et al. 2010).

Validation of putative novel risk genes and loci in a new GWAS

The putative novel migraine risk genes identified by TWAS were checked to see if they were within \pm 500 kb of the 170 index SNPs and implicated by TWAS in the recent more powerful migraine GWAS by Hautakangas et al. (2022) (Hautakangas et al. 2021). Predictor SNPs from the putative novel migraine risk genes [from TWAS analysis of the

Gormley et al. (2016) data] were also tested for LD with the 170 migraine index SNPs.

Independent gene-based test

To test whether the putative novel migraine risk genes identified by TWAS were more likely to be located at GWS risk loci in a recent, more powerful migraine GWAS we performed a novel gene-based analysis. First, we performed gene-based GATES (Li et al. 2011) test implemented in the Fast Association Tests (FAST) (Chanda et al. 2013) using the Gormley et al., (2016) migraine GWAS summary statistics. GATES integrates association evidence (p values) of SNPs assigned to a gene to obtain an overall p value for the association of the entire gene. The flanking region for each gene was increased to 500 kb to match the flanking region used in our analysis to define a putative novel locus. The output includes the most significant SNP ('topSNP') assigned to a gene, which we used to represent the gene. We note that neighbouring genes may have correlated results due to LD between the topSNP assigned to each gene. To estimate the effective number of independent genes, we estimated the effective number of independent topSNPs using the genetic type 1 error calculator (GEC) (Li et al. 2012). The top-SNPs identified by GATES genes were given as input. GEC divides the input SNPs into LD blocks, assuming that these blocks are independent by ensuring that the SNPs between the blocks are not in LD ($r^2 < 0.1$) utilising 1000 Genome Project European reference genotype data. Given the list of SNPs, GEC calculates the effective number of independent SNPs that were later used in binomial tests.

Results

Top 5 migraine-relevant tissues

Figure 2 shows the mean squared z-score and empirical Brown's method p value for the migraine GWAS adjusted for GTEx tissues sample size. Figure 2A shows the linear regression plot of the mean squared z-score against the GTEx sample size for all tissues. The blue line shows the best fit through the data. Artery Aorta is the furthest tissue from the fitted line, thus implying that it had the highest enrichment of differentially expressed genes (as represented by z-score). Figure 2B shows that Artery Aorta had the highest enrichment of genes differentially expressed (as represented by Brown's p value). GTEx tissue sample sizes and ranking based on the enrichment tests are provided in Supplementary Table 1. Afterwards, we used the average of the tissue ranks from the two enrichment tests to select the top 5 tissues for downstream analysis. The top 5 tissues enriched with differentially expressed genes were the artery Table 1Summary of the totalnumber of genes and effectivenumber of independent genespresent in each tissue usingthe elastic net and SMultiXcanprediction models for all 49GTEx tissues and the top 5tissues

Tissues	Elastic net			
	All 49		Top 5	
	MTB _r	MTB _e	MTB _r	MTB _e
Adipose subcutaneous	8645	5037		
Adipose visceral omentum	7338	3985		
Adrenal gland	4841	2584		
Artery aorta	7598	4321	7598	4321
Artery coronary	4042	2198	4042	2198
Artery tibial	8611	5016	8611	5016
Brain amygdala	2786	1458		
Brain anterior cingulate cortex BA24	3543	1724		
Brain caudate basal ganglia	5001	2500		
Brain cerebellar hemisphere	5752	3114		
Brain cerebellum	6793	3807		
Brain cortex	5499	2758		
Brain frontal cortex BA9	4560	2188		
Brain hippocampus	3687	1864		
Brain hypothalamus	3650	1946		
Brain nucleus accumbens basal ganglia	4850	2490		
Brain putamen basal ganglia	4433	2171		
Brain spinal cord cervical c-1	3249	1713		
Brain substantia nigra	2557	1338		
Breast mammary tissue	6460	3368		
Cells cultured fibroblasts	8931	4245		
Cells EBV-transformed lymphocytes	2903	1562		
Colon sigmoid	6165	3425		
Colon transverse	6303	2603		
Esophagus gastroesophageal junction	6288	3410		
Esophagus mucosa	8517	4689		
Esophagus muscularis	8225	4375		
Heart atrial appendage	6638	3591		
Heart left ventricle	6011	2769		
Kidney cortex	1641	852		
Liver	3768	1924		
Lung	7965	4380		
Minor salivary gland	2914	1529		
Muscle skeletal	7581	4250		
Nerve tibial	10,007	5840		
Ovary	3587	1950		
Pancreas	5895	3383	5895	3383
Pituitary	5685	3131		
Prostate	4300	2282		
Skin not sun exposed suprapubic	8648	4974		
Skin sun exposed lower leg	9297	5202		
Small intestine terminal ileum	3668	1667		
Spleen	5770	3231	5770	3231
Stomach	5150	2375		
Testis	9973	3444		
Thyroid	9649	5715		
Uterus	2537	1331		
Vagina	2559	1159		
Whole blood	7252	3426		
Total number of genes	281,722	148,316	31,916	18,151
p value threshold	1.77×10^{-7}	3.37×10^{-7}	1.56×10^{-6}	2.75×10^{-6}

 MTB_r multiple test burden for the raw number of genes, MTB_e multiple test burden for the effective number of genes, All 49 all 49 tissues present in GTEx version 8, Top 5 top 5 GTEx tissues associated with migraine

aorta, artery tibial, spleen, artery coronary, and pancreas (Ghaffar and Nyholt 2022). The GIDEE prioritisation of artery aorta, artery tibial and artery coronary tissues, firmly corresponds with published data that show migraine GWAS loci are strongly associated with vascular tissues (Finucane et al. 2018; Gormley et al. 2016; Hautakangas et al. 2022); while the prioritisation of spleen and pancreas tissues is supported by a 2017 study that suggested migraine is associated with general, not nervous-system-specific, inflammatory processes (Wang et al. 2017)—i.e., spleen and pancreas are involved in inflammation via their respective roles in the immune and endocrine system (Hiller-Sturmhöfel & Bartke 1998; Mota & Madden 2022).

Significance thresholds across approaches

We compared 10 approaches that used different prediction models (elastic net, SMultiXcan, or MASHR), different significance thresholds (Bonferroni or Bonferroni-matSpD), and different sets of tissues (all 49 GTEx tissues or top 5 tissues). Table 1 lists the total number of genes present in all tissues whose differential expression is imputed (using elastic net models). The effective number of independent genes within each tissue was estimated using the matSpD approach. A considerable difference was observed in multiple test burdens for the raw number of genes (MTB_r) and the effective number of independent genes (MTB_e). As described in the methods section, SMultiXcan imputes gene expression considering the correlation of eQTLs across multiple tissues and generates a single p value. Given differences in gene-gene co-expression correlation across tissues, it is not feasible to estimate the effective number of independent genes via the matSpD approach, therefore multiple test correction for the SMultiXcan results used a Bonferroni adjustment for the total raw number of genes tested.

The total number of genes tested across all 49 GTEx tissues by SMultiXcan was 21,646, therefore the Bonferroni-adjusted significance threshold was 2.30×10^{-6} (0.05/21,646). Similarly, the total number of genes tested across the top 5 GIDEE tissues was 12,988, resulting in a Bonferroni-adjusted significance threshold was 3.84×10^{-6} . As shown in Table 1, the multiple test burden considerably differs across the six approaches, with a trend of decreasing burden from left to right. Table 2 shows the number of genes present in each tissue using MASHR prediction models and multiple test burden across the different approaches.

Although not part of our primary analyses, we also performed TWAS analyses restricted to the 13 GTEx brain tissues. The MTB_r and MTB_e for elastic net models were 8.87×10^{-7} (0.05/56360) and 1.72×10^{-6} (0.05/29071), respectively. Similarly, the MTB_r and MTB_e for MASHR models were 2.95×10^{-7} (0.05/169302) and 5.63×10^{-7} (0.05/88842), respectively. The total number of genes tested

across the 13 GTEx brain tissues by SMultiXcan was 14,218, therefore the Bonferroni-adjusted significance threshold was 3.52×10^{-6} (0.05/14,218).

MetaXcan outputs a z-score that quantifies the association of predicted differential gene expression with the trait. The positive or negative sign of the z-score indicates overexpression or underexpression of the gene's association with migraine, respectively. A two-sided p value is calculated from the z-score. For each approach mentioned in Tables 1 and 2, genes having a p value less than the respective approach's p value threshold are considered significant.

Comparison across approaches

For each TWAS approach, the genes crossing the respective multiple test burden that were present within \pm 500 kb of a GWS independent index SNP in the Gormley et al. 2016 migraine GWAS were identified. Table 3 shows the total number of genes and the number of genes present within \pm 500 kb of an established migraine index SNP.

Table 3 shows that elastic net with Bonferroni-matSpD threshold for all 49 tissues identified the highest number of differentially expressed genes within \pm 500 kb of a migraine index SNP, i.e., 40 genes present at 22 independent loci. SMultiXcan identified 31 and 39 genes for the top 5 and all 49 tissues, at 18 independent loci, respectively. Whereas, MASHR identified 27 and 30 genes, at 15 and 16 independent loci, for the top 5 tissues using Bonferroni and Bonferroni-matSpD, respectively. Using all 49 tissues MASHR identified 30 and 34 genes, at 17 and 19 independent loci, respectively. Overall, across the three TWAS models, our primary analyses of all 49 tissues and the top 5 tissues, identified a total of 128 genes at 58 independent loci, of which 66 genes at 26 loci were within \pm 500 kb of a migraine index SNP.

Compared to using the top 5 tissues and all 49 GTEx tissues, TWAS using the 13 GTEx brain tissues identified considerably fewer differentially expressed genes across the genome and in the vicinity of migraine index SNPs (Table 3 and Supplementary Table 2a and 2b). Across the three TWAS models, analysis of the 13 brain tissue subgroup identified a total of 55 genes at 31 independent loci, of which 45 genes at 23 loci overlapped with the 128 genes identified in the primary analyses. In contrast, only 10 genes (RP11-326G21.1, NEURL3, GOT1, RBM20, GPR26, CDIP1, FGF11, ATP5SL, TMEM91, TGFB1) at 8 independent loci identified in the brain subgroup analyses were not identified in the primary analyses (Supplementary Table 2c). Given these 10 genes were not as significant as the genes implicated by the all 49 tissue analyses, and the 13 GTEx brain tissues were not previously found to be enriched for regulatory signals at migraine GWAS loci, we consider these ten genes to be less robust than the genes associated in our Table 2Summary of the totalnumber of genes and effectivenumber of independent genespresent in each tissue usingMASHR prediction models forall 49 GTEx tissues and top 5tissues

Tissues	MASHR			
	All 49		Top 5	
	MTB _r	MTB _e	MTB _r	MTB _e
Adipose subcutaneous	14,233	8388		
Adipose visceral omentum	14,096	7780		
Adrenal gland	13,025	7154		
Artery aorta	13,855	7949	13,855	7949
Artery coronary	13,289	7438	13,289	7438
Artery tibial	14,006	8215	14,006	8215
Brain amygdala	12,186	6617		
Brain anterior cingulate cortex BA24	12,875	6245		
Brain caudate basal ganglia	13,533	6858		
Brain cerebellar hemisphere	13,160	7276		
Brain cerebellum	13,406	7605		
Brain cortex	13,647	6937		
Brain frontal cortex BA9	13,477	6527		
Brain hippocampus	12,929	6691		
Brain hypothalamus	13,107	7125		
Brain nucleus accumbens basal ganglia	13,443	7053		
Brain putamen basal ganglia	13,110	6614		
Brain spinal cord cervical c-1	12,451	6837		
Brain substantia nigra	11,978	6457		
Breast mammary tissue	14,067	7387		
Cells cultured fibroblasts	13,536	6399		
Cells EBV-transformed lymphocytes	11,818	6508		
Colon sigmoid	13.779	7799		
Colon transverse	14.016	5557		
Esophagus gastroesophageal junction	13.730	7571		
Esophagus mucosa	14.073	7794		
Esophagus muscularis	14.095	7595		
Heart atrial appendage	13.493	7482		
Heart left ventricle	12.681	5874		
Cidney cortex	10.530	5836		
iver	12.142	6399		
	14 473	8077		
Minor saliyary gland	13 271	7247		
Auscle skeletal	12,924	7342		
Nerve tibial	14.912	8785		
lyary	13,102	7440		
Pancreas	13,102	7632	13 149	7632
Pitnitary	14 047	7868	10,117	1002
Prostate	13 779	7561		
Skin not sun exposed suprapubic	14 412	8379		
Skin sun exposed lower leg	14 697	8329		
Small intestine terminal ileum	13 422	6109		
	13,722	7693	13 517	7603
Stomach	13,017	6076	13,317	1095
Festis	17 110	6150		
Fhyroid	1/,117	8871		
Itoma	14,032	6952		
Vagina	12,333	5505		
vagina Whole blood	12,271	JJ8J 5760		
whole blood	12,160	2/08	54 200	20.000
rotal number of genes	05/,88/	349,/57	54,299	38,929
o value threshold	7.60×10^{-6}	1.42×10^{-7}	9.21×10^{-7}	$1.28 \times 10^{\circ}$

 MTB_r multiple test burden for the raw number of genes, MTB_e multiple test burden for the effective number of genes, All 49 all 49 tissues present in GTEx version 8, Top 5 top 5 GTEx tissues associated with migraine as identified

 Table 3
 Number of genes

 passing multiple test burden and
 number of genes present in the

 vicinity of migraine index SNPs
 and number of independent

 genomic loci
 genomic loci

TWAS model	Tissues	Threshold	Genes	Genes within ± 500 kb of a migraine index SNP (genomic loci)
Elastic Net	Top 5	Bonferroni	43 (31)	28 (18)
		Bonferroni matSpD	47 (33)	29 (18)
	All 49	Bonferroni	52 (29)	35 (20)
		Bonferroni matSpD	61 (34)	40 (22)
	13 Brain	Bonferroni	21 (15)	12 (7)
		Bonferroni matSpD	25 (18)	14 (8)
SMultiXcan	Top 5	Bonferroni	47 (32)	31 (18)
	All 49	Bonferroni	67 (38)	39 (18)
	13 Brain	Bonferroni	28 (20)	15 (9)
MASHR	Top 5	Bonferroni	36 (21)	27 (15)
		Bonferroni matSpD	49 (27)	30 (16)
	All 49	Bonferroni	36 (22)	30 (17)
		Bonferroni matSpD	42 (25)	34 (19)
	13 Brain	Bonferroni	23 (15)	18 (11)
		Bonferroni matSpD	32 (20)	24 (13)

primary TWAS analyses. Therefore, we only present results in the main text from subsequent analyses for the top 5 and all 49 GTEx tissues.

Gormley et al. (2016) identified 44 GWS index SNPs; however, because the TWAS approaches only impute gene expression for genes on chromosomes 1 to 22 and one of the 44 index SNPs (rs12845494) was on chromosome X, only 43 index SNP loci could be characterised by TWAS. Out of these 43 index SNP loci, 30 (25 independent) loci had evidence of differentially expressed genes from at least one of the 10 approaches mentioned in Tables 1 and 2. Table 4 presents a list of 30 index SNPs and genes characterised by each approach along with the genes that are nearest to the index SNP. Given LD between the migraine index SNPs and eQTL SNPs used to impute differential expression could produce false-positive results in the form of coincidental differential expression, significant differentially expressed genes were further examined using co-localisation analysis by COLOC (Giambartolomei et al. 2014). Genes having PP3 < 0.5 against a migraine index SNP are shown in Table 4. Genes in bold show more robust co-localised signals (PP4 > 0.5) for at least one of the tissues in which the gene is expressed.

A total of 12 loci (migraine index SNP rs2078371, rs7544256, rs6693567, rs1925950, rs9349379, rs4839827, rs67338227, rs1268083, rs1024905, rs11172055, rs11172113, and rs77505915) had a common set of genes implicated by all approaches. Among these 12 loci, three loci have secondary association signals (rs7544256 near rs2078371, rs67338227 near rs4839827, and rs11172113 near rs11172055). It is important to note that NA in Table 4 refers to the fact that there might be a gene at that locus

differentially expressed but a co-localisation signal was not present (i.e., PP3 < 0.5 or PP4 > 0.5).

Supplementary Table 3 contains genes differentially expressed at each index SNP along with the TWAS p value and COLOC PP3 and PP4 values for all elastic net, SMulti-Xcan, and MASHR models (as in Table 4).

There were five loci (rs28455731, rs186166891, rs11624776, rs4081947, and rs4814864), that had differentially expressed and co-localised genes (having a co-localised signal for eQTL and migraine risk) identified by elastic net models but not by MASHR models. Table 5 shows genes prioritised at these migraine risk loci using elastic net models and respective TWAS p values using MASHR models in the same tissues.

Table 5 shows that all genes except *SUGCT* implicated via elastic net were also implicated via MASHR models. *GJA1* and *ZCCHC14* did not reach the relevant significance level threshold of 1.28×10^{-6} for MASHR models using mat-SpD in the top 5 tissues (Table 2). Two genes implicated at rs11624776 (*BTBD7* and *ITPK1*) were not significant for the MASHR models. This probably reflects differences in the predictor SNPs used in MASHR models compared to the elastic net models (e.g., the MASHR predictor SNPs for these genes capture less of the variation in genetically regulated gene expression). Similarly, *SLC24A3* at rs4814864 was not significant using the MASHR model.

Five loci were implicated with MASHR prediction models but not with elastic net models (Table 6). Most of the genes implicated with MASHR did not have predicted gene expression with elastic net models in tissues where a significant association was found. However, it is important to note that out of five loci, three loci were characterised based

Table 4 A co	omprei	hensive gene	list characteris	sed at each loct	us based on MT	B and co-loca	lised signals						
RsIDs	Chr	Pos	Nearest gene	EN-All-B	EN-All-M	EN-Top5-B	EN-Top5-M	SM-All	SM-Top5	MR-All-B	MR-All-M	MR-Top5-B	MR-Top5-M
rs2078371	1	115,677,183	TSPAN2	TSPAN2 ^a	TSPAN2 ^a	TSPAN2 ^a	TSPAN2 ^a	NGF TSPAN2 ^a	TSPAN2 ^a	TSPAN2 ^a	NGF TSPAN2ª	NGF TSPAN2 ^a	NGF TSPAN2 ^a
rs7544256	1	115,824,398	TSPAN2	TSPAN2 ^a	TSPAN2 ^a	TSPAN2 ^a	TSPAN2 ^a	NGF TSPAN2 ^a	TSPAN2 ^a VANGLI	TSPAN2 ^a	NGF TSPAN2 ^a	NGF TSPAN2 ^a	NGF TSPAN2 ^a
rs6693567	-	150,510,660	ADAMTSL4	ADAMTSL4 ^a ECMI ^a MRPS21 NBPF19 TARS2 ANXA9	ADAMT'SL4 ^a ECM1 ^a MRPS21 NBPF19 TARS2 ANXA9 PLEKH01	ADAMTSL4 ^a ECM1 ^a	ADAMTSL4 ^a ECM1 ^a	ADAMTSL4 ⁶ ECM1 ^a MCL1 MRPS21 NBPF19 PLEKHO1 TARS2	ADAMTSL4 ^a ECM1 ^a	ADAMTSL4 ^a ECM1 ^a MRPS21 TARS2	ADAMTSL ^{4°} ECM1 [°] MRPS21 TARS2	ADAMTSL4 ^a ECMI ^a RPRD2	ADAMTSL4° ECM1° MRPS21 RPRD2
rs1925950	-	156,450,740	MEF2D	$MEF2D^{a}$	$MEF2D^{a}$	$MEF2D^{a}$	$MEF2D^{a}$	$MEF2D^{a}$	$MEF2D^{a}$	$MEF2D^{a}$	MEF2D ^a	$MEF2D^{a}$	$MEF2D^{a}$
rs138556413	7	203,832,867	CARF	CARF ICAIL NBEALI	CARF FAMI17B ICAIL NBEALI WDR12	FAMI 17B ICAIL NBEALI	FAMII7B ICAIL NBEALI	NA	FAM117B ICAIL NBEALI	AN	ICAIL WDR12	ICAIL NBEALI	ICAIL NBEALI
rs566529	7	234,756,811	TRPM8	NA	NA	NA	NA	NA	NA	HJURP	HJURP	NA	NA
rs10166942	7	234,825,093	TRPM8	NA	NA	NA	NA	NA	NA	HJURP	HJURP	NA	NA
rs7684253	4	57,727,311	SPINK2	REST	REST	NA	NA	NA	NA	REST	NOAI REST	NA	NA
rs9349379	9	12,903,957	PHACTR1	PHACTR1^a	PHACTR1^a	PHACTRI^a	PHACTRI^a	PHACTRI ^a	PHACTR1^a	PHACTRI^a	PHACTR1^a	PHACTR1^a	PHACTR1^a
rs10456100	9	39,183,470	KCNK5	NA	NA	NA	NA	NA	NA	NA	KCNK5	KCNK5	KCNK5
rs4839827	9	96,853,967	FHL5	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a
rs67338227	9	97,042,147	FHL5	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a	FHL5 ^a UFLI ^a
rs28455731	9	121,846,038	GJA1	GJAI	GJAI	GJAI	GJAI	GJAI	GJAI	NA	NA	NA	NA
rs1268083	9	126,049,040	HEY2	HEY2 ^a	HEY2 ^a	HEY2 ^a	HEY2 ^a	HEY2 ^a	HEY2 ^a	HEY2 ^a NCOA7	HEY2 ^a NCOA7	HEY2 ^a	HEY2ª
rs186166891	7	40,406,876	SUGCT	SUGCT	SUGCT	SUGCT	SUGCT	SUGCT	SUGCT	NA	NA	NA	NA
rs6478241	6	119,252,629	ASTN2	NA	NA	NA	NA	NA	NA	TRIM32	TRIM32	NA	NA
rs10786156	10	96,014,622	PLCEI	NOC3L	NOC3L	NA	NA	PLCEI	NA	PLCEI	PLCEI	NA	NA
rs75473620	10	96,019,029	PLCE1	NOC3L	NOC3L	NA	NA	PLCEI	NA	PLCEI	PLCEI	NA	NA
rs12260159	10	100,702,737	HPSE2	HPSE2	HPSE2	HPSE2	HPSE2	NA	HPSE2	HPSE2	HPSE2	HPSE2	HPSE2
rs2223089	10	124,210,160	ARMS2	NA	NA	NA	NA	ARMS2 HTRAI	NA	HTRAI	HTRAI	HTRAI	HTRAI
rs4910165	Ξ	10,674,044	MRVII	NA	NA	NA	NA	NA	NA	LYVEI	LYVEI	NA	NA
rs10895275	11	102,083,608	YAPI	RP11- 732A21.2	RP11- 732A21.2	RP11- 732A21.2	RP11- 732A21.2	NA	RP11- 732A21.2	NA	NA	RP11- 732A21.3 YAP1	RP11- 732A21.3 YAP1
rs1024905	12	4,518,140	FGF6	C12orf4 ^a	CI 2orf4ª	C12orf4 ^a CCND2	C12orf4 ^a CCND2	C12orf4 ^a CCND2	C12orf4 [®] CCND2	C12orf4 ^a	C12 orf 4ª	C12orf4 ^a CCND2	C12orf4 ^a CCND2
rs11172055	12	57,308,260	LRPI	LRP1 ^a NEMP1 STAT6	LRP1 ^a NEMP1 STAT6	LRP1 ^a NEMPI	LRP1 ª NEMPI	LRP1 ^a STAT6 HSD17B6	LRPI ^a NEMPI	LRP1 ^a STAT6	LRP1 ^a STAT6	LRP1 ^a STAT6	LRP1 ^a STAT6

RsIDs	Chr	Pos	Nearest gene	EN-All-B	EN-All-M	EN-Top5-B	EN-Top5-M	SM-AII	SM-Top5	MR-All-B	MR-All-M	MR-Top5-B	MR-Top5-M
rs11172113	12	57,527,283	LRPI	LRPI ^a NEMP1 STAT6 B4GALNT1	LRP1 ^a NEMP1 STAT6 B4GALNT1	LRP1 ª NEMPI	LRPI ^a NEMPI	LRP1 ^a STAT6 HSD17B6 B4GALNT1	LRPI ^a NEMPI	LRP1ª STAT6	LRP1ª STAT6	LRP1ª STAT6	LRP1ª STAT6
rs11624776	14	93,595,591	ITPKI	BTBD7	BTBD7	BTBD7 ITPKI	BTBD7 ITPKI	BTBD7	BTBD7 ITPKI	NA	NA	NA	NA
rs77505915	16	75,442,143	CFDP1	BCARI ^a CFDP1 TMEM170A	BCARI ^a CFDP1 TMEM170A	BCARI^a	BCARIª	BCARI ^a CFDP1 TMEM170A	BCARI^a	BCARI ^a CFDPI TMEMI70A RP11-77K12.9	BCARI ^a CFDP1 TMEM170A RP11-77K12.9	BCARI ^a RP11-77K12.9	BCARI^a RP11-77K12.9
rs4081947	16	87,579,870	ZCCHC14	NA	ZCCHC14	ZCCHC14	ZCCHC14	NA	ZCCHC14	NA	NA	NA	NA
rs17857135	17	78,262,161	RNF213	RNF213	RNF213	NA	NA	RNF213	NA	RNF213 SLC26A11	RNF213 SLC26A11	NA	NA
rs4814864	20	19,469,817	SLC24A3	SLC24A3	SLC24A3	SLC24A3	SLC24A3	SLC24A3	SLC24A3	NA	NA	NA	NA

voni correction, MR-All-B MASHR all 49 tissues using Bonferroni correction, MR-All-M MASHR all 49 tissues using Bonferroni matSpD correction, MR-top-B MASHR top 5 tissues using Bonferroni correction, MR-top-M MASHR top 5 tissues using Bonferroni matSpD correction

Genes in bold represent the more robust co-localised signals (PP4>0.5) observed in at least one tissue among all approaches. genes a ^aRepresent common solely on low co-localisation PP3 values (as opposed to low PP3 and high PP4 values). Two genes *KCNK5* and *LVYE1* had PP4 > 0.5.

There were eight loci (rs138556413, rs7684253, rs10786156, rs75473620, rs12260159, rs10895275, rs17857135, and rs2223089) that did not have a uniform set of genes across all approaches. For these loci, we suggest that the gene(s) most significantly associated (differentially expressed) with migraine is most likely the causal gene. For example, of the five genes (CARF, ICAIL, NBEAL1, FAM117B, and WDR12) at the rs138556413 locus, ICAIL and NBEAL1 have the strongest TWAS p value with migraine as compared to other genes. Therefore, ICAIL and NBEAL1 are the most probable causal genes at rs138556413. REST is prioritised at locus rs7684253. However, REST was not identified in the top 5 migraine-relevant tissues. HPSE2 is the most likely causal gene at rs12260159. RP11-732A21.2 is the most likely causal gene at rs10895275. RNF213 and HTRA1 are hypothesised as causal genes at rs17857135 and rs2223089, respectively. Interestingly, near the rs10786156 index SNP (GWAS $P = 2.0 \times 10^{-14}$), there is a secondary index SNP rs75473620 (GWAS $P = 5.8 \times 10^{-9}$), and the different TWAS models prioritised different genes at this locus. Elastic net models prioritised NOC3L, while MASHR and SMultiXcan prioritised PLCE1. NOC3L is differentially expressed in the brain nucleus accumbens basal ganglia with a p value of 4.27×10^{-8} . Whereas *PLCE1* is differentially expressed in the brain cerebellar hemisphere with a p value of 5.33×10^{-9} . Therefore, *PLCE1* is hypothesised to be the most likely causal gene at this locus. A summary of the number of loci characterised by each of the 10 approaches (as in Table 4) is shown in Table 7.

Table 7 shows that elastic net prediction models prioritised robust genes that have strong evidence of co-localisation of GWAS and eQTL signals (i.e., all loci with a PP3 < 0.5 also had a PP4 > 0.5). In terms of prioritising the highest number of loci characterised, elastic net single tissue models that take into account correlation among genes (EN-All-M) performed best characterising 20 migraine risk loci all with robust co-localisation (PP3 < 0.5 and PP4 > 0.5).

Conditional analysis

There were three genomic loci (rs2078371/rs7544256, rs11172055/rs11172113, and rs4839827/rs67338227) having independent migraine index SNPs and more than one gene differentially expressed. *TSPAN2* and *NGF* were in 1 Mb window of rs2078371/rs7544256, *LRP1* and *STAT6* were in the 1 Mb window of rs11172055/rs11172113, and *FHL5* and *UFL1* were in the 1 Mb window of rs67338227/ rs4839827. To examine and identify which index SNP affects the differential expression of which gene, conditional analyses were performed for each index SNP at these
 Table 5
 List of genes and loci

 implicated via the elastic net but
 not by MASHR models

rsIDs	Chr	Pos	Gene	Tissue	enet-p	MASHR-p
rs28455731	6	121,846,038	GJA1	Artery tibial	5.67×10^{-9}	1.36×10^{-5}
rs186166891	7	40,406,876	SUGCT	Artery aorta Artery tibial	2.92×10^{-15} 4.05×10^{-12}	Gene not present Gene not present
rs11624776	14	93,595,591	BTBD7 ITPK1	Artery aorta Artery_tibial	2.46×10^{-8} 6.23×10^{-7}	0.460 0.007
rs4081947	16	87,579,870	ZCCHC14	Artery_tibial	3.12×10^{-7}	5.31×10^{-6}
rs4814864	20	19,469,817	SLC24A3	Artery aorta Artery tibial	1.75×10^{-16} 1.04×10^{-17}	0.401 0.267

Chr chromosome, *Pos* position of index SNP, *Enet-p* TWAS p value using elastic net prediction model for respective tissue, *MASHR-p* TWAS p value using MASHR prediction model for respective tissue

Table 6 List of genes and loci implicated via MASHR but not by elastic net models

rsIDs	Chr	Pos	Gene	Tissue	MASHR-p	enet-p
rs566529	2	234,756,811	HJURP	Nerve_tibial Ovary Skin_not_sun_exposed_suprapubic Small_intestine_terminal_ileum testis	$ \begin{array}{r} 1.15 \times 10^{-8} \\ 6.93 \times 10^{-8} \\ 1.25 \times 10^{-8} \\ 1.33 \times 10^{-8} \\ 8.75 \times 10^{-8} \end{array} $	Gene not present Gene not present 0.206593362 Gene not present 4.23×10^{-7}
rs10166942	2	234,825,093	HJURP	Nerve_tibial Ovary Skin_not_sun_exposed_suprapubic Small_intestine_terminal_ileum testis	$1.15 \times 10^{-8} \\ 6.93 \times 10^{-8} \\ 1.25 \times 10^{-8} \\ 1.33 \times 10^{-8} \\ 8.75 \times 10^{-8}$	Gene not present Gene not present 0.206593362 Gene not present 4.23×10^{-7}
rs10456100	6	39,183,470	KCNK5	Artery_tibial Breast_mammary_tissue	7.97×10^{-8} 7.97×10^{-8}	Gene not present 9.21×10^{-7}
rs6478241	9	119,252,629	TRIM32	Brain_nucleus_accumbens_basal_ganglia Brain_spinal_cord_cervical_c-1 Brain_substantia_nigra Minor_salivary_gland	3.18×10^{-8} 3.15×10^{-8} 5.70×10^{-8} 1.11×10^{-7}	Gene not present Gene not present Gene not present Gene not present
rs4910165	11	10,674,044	LYVE1	Brain_cerebellum	6.45×10^{-12}	Gene not present

Chr chromosome, *Pos* position of index SNP, *MASHR-p* TWAS p value using MASHR prediction model for respective tissue, *Enet-p* TWAS p value using elastic net prediction model for respective tissue

loci using GCTA-COJO. We note that, rs67338227 was not present in the 1000 Genomes Project LD reference, therefore, a proxy SNP rs2971603 located 6,729 bp upstream of rs67338227 having a similar effect allele frequency (0.227), beta (0.087) and p value (2.83×10^{-27}) was used. The conditioning window was set to 2 Mb around the index SNP. The TWAS pipeline was re-run including harmonisation, summary statistics imputation, and differential expression imputation (using MASHR models) using the conditioned GWAS summary statistics. Table 8, Figs. 3, 4, and 5 show the conditioned results.

Figures 3, 4 and 5 show LocusZoom plots for normal and conditioned GWAS on each primary and secondary index SNP present at each locus (\pm 500 kb). The x axis of the LocusZoom plot shows the bp position on the chromosome. The y-axis shows the GWAS p value for each SNP. The bottom panel of the LocusZoom plot shows the name and position of genes derived from the UCSC browser (Karolchik et al. 2003). The LD between SNPs is displayed as r^2 and is colour-coded according to the strength of correlation. The European 1000 Genomes Project data was used as a reference panel to calculate LD. LocusZoom plots also display local recombination hotspots as well. The recombination rate is displayed on the right side of the y axis.

Conditional analysis results show that rs2078371 is driving the differential expression results for both *TSPAN2* and *NGF*, as when conditioned on rs2078371, the differential expression p values for these genes drop from 1.95×10^{-13} to 0.674 and 9.35×10^{-8} to 0.839, respectively (i.e., they were no longer significantly differentially expressed with migraine). In contrast, when conditioned on rs7544256, the TWAS results for *TSPAN2* and *NGF* remained significant. Similarly, the conditional analyses showed that rs11172113 is driving differential expression for *LRP1* and *STAT6*. Conditioning on rs11172113 resulted in decreased TWAS significance in all tissues. Whereas both genes *LRP1* and *STAT6* remained significant after conditioning on

 Table 7
 Overall comparison of all 10 approaches based upon COLOC

Approach	No. of genes (PP3 < 0.5) (indp. genomic loci)	No. of genes (PP4 > 0.5) (indp. genomic loci)
EN-All-B	32 (19)	29 (19)
EN-All-M	39 (20)	33 (20)
EN-Top5-B	24 (17)	23 (17)
EN-Top5-M	24 (17)	23 (17)
SM-All	31 (16)	27 (16)
SM-Top5	25 (17)	23 (17)
MR-All-B	27 (17)	12 (14)
MR-All-M	32 (19)	26 (16)
MR-Top5-B	23 (14)	20 (13)
MR-Top5-M	24 (14)	21 (13)

rs11172055. The same pattern of results was observed for rs2971603 (rs67338227) and rs4839827. The primary lead

SNP rs2971603 (rs67338227) was driving the differential expression for *FHL5* and *UFL1*.

In an attempt to further characterise these migraine risk loci, we attempted to identify genes with imputed differential expression driven by the secondary index SNPs (rs7544256, rs11172055, and 4,839,827) by comparing the 'normal' TWAS p value and conditioned TWAS p value for all genes present at these loci. Supplementary Table 4 and Supplementary Table 5 show the list of top genes present \pm 500 kb of each index SNP having the smallest p value when conditioned on the secondary SNP, along with normal TWAS p value. However, no genes at these loci were identified to have differential expression driven by the secondary SNP. Thus, indicating that the primary lead SNPs are driving differential expression of both genes at these loci.

Characterisation of putative novel loci

Across all the approaches, a total of 62 putative novel migraine risk genes were identified. The total number of genes from each threshold (Tables 1, 2) not within \pm 500 kb of the 43 genome-wide index SNPs and within \pm 500 kb of 170 index SNPs is shown in Table 9.

Table 9 shows that SMultiXcan analysis using all 49 tissues identified the highest number of genes (28) that were not present within \pm 500 kb of the GWS migraine index SNP loci from Gormley et al. (2016). Out of these 28 genes, 20 genes were present at 14 loci from Hautakangas et al. (2022). We consider these genes to be putative novel migraine risk

Gene	Chr	Tissue	TWAS P		
			Normal	Conditioned	
				rs2078371	rs7544256
TSPAN2	1	Artery aorta	1.95×10^{-13}	0.674126887	1.85×10^{-12}
NGF	1	Artery aorta	9.35×10^{-8}	0.839511484	2.55×10^{-11}
				rs11172113	rs11172055
LRP1	12	Artery aorta	5.64×10^{-49}	0.926949555	3.72×10^{-38}
		Artery coronary	1.57×10^{-46}	0.382734997	6.46×10^{-37}
		Artery tibial	5.64×10^{-49}	0.926949555	3.72×10^{-38}
STAT6	12	Artery aorta	8.07×10^{-40}	0.613315511	1.60×10^{-29}
		Artery coronary	3.02×10^{-40}	0.585206809	5.04×10^{-30}
		Spleen	5.69×10^{-43}	0.340679136	4.26×10^{-34}
				rs2971603	rs4839827
FHL5	6	Artery aorta	5.25×10^{-22}	0.784582007	1.92×10^{-11}
		Artery tibial	5.74×10^{-23}	0.925143001	4.74×10^{-12}
UFL1	6	Artery coronary	2.07×10^{-20}	0.585072206	6.60×10^{-13}
		Artery tibial	9.14×10^{-21}	0.534423271	1.28×10^{-12}
		Pancreas	6.35×10^{-17}	0.350427160	3.91×10^{-8}

Table 8TWAS results beforeand after conditioning on indexSNPs

Fig. 3 Conditional analysis for the locus containing index SNPs rs2078371 and rs7544256 and more than two DE genes crossing multiple testing burden. Normal refers to unconditioned/original migraine GWAS summary statistics

genes. Among the single tissue models, the elastic net models identified a higher number of genes compared to the MASHR models. Moreover, more loci were identified using the elastic net models for the top 5 migraine-related tissues (11) as compared to the MASHR models.

Next, we determined how many of the putative novel migraine risk genes identified from TWAS analysis of the Gormley et al. (2016) GWAS data, were located near a GWS locus in the Hautakangas et al. (2022) migraine GWAS. The Hautakangas et al. (2022) migraine GWAS also performed TWAS using MetaXcan MASHR prediction models followed by COLOC and another approach named FOCUS (Mancuso et al. 2019). FOCUS is a probabilistic/Bayesian approach that models the correlation among genes identified from TWAS and calculates a posterior probability for each gene within a region being a causal gene (Mancuso et al. 2019).

In terms of loci, a total of 24 loci having differentially expressed genes with at least one of the TWAS approaches, were identified using Gormley et al. (2016) migraine GWAS data. Table 10 shows the list of all putative novel migraine risk genes that were present within \pm 500 kb of the Hautakangas et al. (2022) migraine GWAS index SNPs for the 10 TWAS approaches. This table also indicates whether the gene was verified by TWAS (i.e., FOCUS and/or MetaXcan and COLOC) in Hautakangas et al. (2022).

Afterwards, we examined the 62 putative novel risk genes identified by TWAS and assigned a topSNP (from Gormley et al. 2016) to each gene as described in the methods section. We first identified the largest topSNP p value from the 62 putative novel genes (RNF41, $P_{max} = 0.000923$), and then identified all the genes across the genome that had an equivalent level of significance with a topSNP p value $(5 \times 10^{-8} < \text{topSNP } P < P_{max})$. We then compared the top-SNP p values from Gormley et al. (2016) to Hautakangas

Fig. 4 Conditional analysis for the locus containing index SNPs rs11172113 and rs11172055 and more than two DE genes crossing multiple testing burden. Normal refers to unconditioned/original migraine GWAS summary statistics

et al. (2022). Given the topSNPs may not be independent, we estimated the effective number of independent topSNPs by examining their LD relationship using GEC. The proportion of the effective number of independent topSNPs of the putative novel migraine risk genes that had a topSNP with Hautakangas $P < 5 \times 10^{-8}$ was 21/32 = 0.656, while the proportion of the effective number of independent topSNPs of all the genes that had a topSNP with Hautakangas $P < 5 \times 10^{-8}$ was 21/32 = 0.656, while the proportion of the effective number of independent topSNPs of all the genes that had a topSNP with Hautakangas $P < 5 \times 10^{-8}$ was 105/2140 = 0.049. Compared to the empirically derived expected proportion of 0.049, a significantly higher proportion (0.6563) of the 62 putative novel migraine risk genes mapped to GWS migraine risk loci in Hautakangas et al (2022) (one-sided binomial test $P = 2.38 \times 10^{-20}$).

The majority of the differentially expressed genes identified by our TWAS analysis of the Gormley et al. (2016) migraine GWAS were verified in Hautakangas et al. (2022) migraine GWAS. It is important to note that Hautakangas assigned genes to a particular locus using a 1 Mb window upstream and a 1 Mb window downstream. However, we used a window of 500 kb upstream and 500 kb downstream of a gene to assign it to a particular locus. One gene, *CYP2C9* was identified using our analysis and verified by Hautakangas et al. (2022), but it was not within \pm 500 kb of a GWAS index SNP. In Hautakangas et al. (2022), *CYP2C9* was assigned to the rs2274224 SNP locus at chr10:96,039,597 (build 37), which is 658,818 bp upstream from the *CYP2C9* transcription start site (chr10:96,698,415).

Importantly, all the genes verified by Hautakangas et al. (2022) were implicated via our TWAS and co-localisation. That is, MetaXcan and co-localisation probability (PP4 > 0.5) that the same SNP affecting gene expression is affecting migraine risk. Similarly, genes implicated by FOCUS analysis had a posterior inclusion probability (PIP) > 0.5 being a causal gene. It is also worth noting that the significance threshold used by the Hautakangas et al. (2022) migraine TWAS analysis utilised a conservative Bonferroni adjusted threshold, which adjusted for the total number of gene-tissue pairs tested (i.e., p = 0.05/total number of gene-tissue pairs).

Table 11 contains some putative novel migraine risk genes that were present within \pm 500 kb of Hautakangas et al. (2022) index SNPs but were not verified by their

Fig. 5 Conditional analysis for the locus containing index SNPs rs2971603 (a proxy for rs67338227) and rs4839827 and more than two DE genes crossing multiple testing burden. Normal refers to unconditioned/original migraine GWAS summary statistics

Model	Tissues	Threshold	Total genes (genomic loci)	Genes not within ± 500 kb of the 43 index SNPs (genomic loci)	Genes within ± 500 kb of 170 index SNPs (genomic loci)
Elastic Net	Top 5	Bonferroni	43 (31)	15 (13)	12 (11)
		Bonferroni matSpD	47 (33)	18 (15)	13 (11)
	All 49	Bonferroni	52 (29)	17 (9)	11 (5)
		Bonferroni matSpD	61 (34)	21 (12)	14 (7)
SMultiXcan	Top 5	Bonferroni	47 (32)	16 (14)	10 (9)
	All 49	Bonferroni	67 (38)	28 (20)	20 (14)
MASHR	Top 5	Bonferroni	36 (21)	9 (6)	9 (6)
		Bonferroni matSpD	49 (27)	19 (11)	18 (10)
	All 49	Bonferroni	36 (22)	6 (5)	5 (4)
		Bonferroni matSpD	42 (25)	8 (6)	7 (5)

Table 9 Total number of significant differentially expressed genes and number of genes not within \pm 500 kb of the 43 migraine index SNPs from Gormley et al. (2016) and within \pm 500 kb of 170 index SNPs from Hautakangas et al. (2022)

rsIDs	Chr	Pos	EN-All-B	EN-All-M	EN-Top5-B	EN-Top5-M	SM-All	SM-Top5	MR-All-B	MR-All-M	MR-Top5-B	MR-Top5-M
rs2124663	1	2,833,427	TNFRSF14	TNFRSF14			TNFRSF14					
rs61561984	1	15,490,865					$TMEM51^{a}$					
rs12057629	1	15,538,493					TMEM51 ^a					
rs1472662	-	39,590,409	MACF1 ^a BMP8A ^a PABPC4 ^a	MACF1 ^a BMP8A ^a PABPC4 ^a	$BMP8A^{a}$	BMP8A ^a PAB- PC4 ^a	MACF1 ^a	BMP8A ^a PAB- PC4 ^a				
rs68002561	1	149,880,863	HIST2H2BF BOLA1 ^a SV2A ^a	HIST2H2BF BOLA1 ^a SV2A ^a	SV2A ^a	SV2A ^a	RP11-353N4.6 FCGR1A HIST2H2BF BOLA1 ^a	SVZAª			$SF3B4^{a}$	SV2A ^a SF3B4 ^a
rs7544531	1	149,897,217	HIST2H2BF BOLA1 ^a SV2A ^a	HIST2H2BF BOLA1 ^a SV2A ^a	$SV2A^{a}$	SV2A ^a	RP11-353N4.6 FCGR1A HIST2H2BF BOLA1 ^a	SVZAª			$SF3B4^{a}$	SV2A ^a SF3B4 ^a
rs56140113	1	206,843,108					EIF2D	EIF2D	$MAPKAPK2^{a}$	$MAPKAPK2^{a}$		
rs4907224	7	96,576,609			TMEM127 ^{ab}	TMEM127 ^{ab}	ITPRIPL1 ^{ab}					
rs72923449	7	176,978,383										HOXD8
rs1499963	ŝ	124,607,055			ITGB5 ^{ab}	$ITGB5^{ab}$		ITGB5 ^{ab}				
rs42854	S	74,963,277					$POC5^{a}$					
rs6556059	5	172,645,766		NKX2-5 ^{ab}			NKX2-5 ^{ab}					
rs9468830	9	30,749,712					HCG20					
rs74434374	9	31,850,308		ABHD16A	ABHD16A	ABHD16A	ABHD16A	ABHD 16A				
rs7932866	11	46,548,094	MDK ^{ab} ATG13 ^{ab} LRP4	MDK ^{ab} ATG13 ^{ab} LRP4	MDK ^{ab} LRP4	MDK ^{ab} LRP4	LRP4	LRP4			CHRM4 ^b	CHRM4 ^b HARBI1 ^a ATG13 ^{ab}
rs12419507	11	47,669,619			CELFI	CELFI					$FNBP4^{a}$	$FNBP4^{a}$
rs28756401	14	58,761,912			$LINC00216^{ab}$	LINC00216 ^{ab}		$LINC00216^{ab}$				$ARID4A^{ab}$
rs12598836	16	4,534,482			HMOX2 ^{ab}	du DX2 ^{ab}	NMRAL J ^{ab} UBALD I	HMOX2 ^{ab}	DNAJA3 ^{ab} HMOX2 ^{ab}	DNAJA3 ^{ab} NMRAL1 ^{ab} HMOX2 ^{ab}	HMOX2 ^{ab}	_{qp} ZXOWH
rs9894634	17	1,967,501										RP11667K14.3 ^a
rs74182632	19	19,406,126					TM6SF2 GAT- AD2A ^a YJEFN3		$MAU2^{a}$	MAU2 ^a	MAU2 ^a	SUGP1 MAU2 ^a
rs1982072	19	41,864,509	EXOSC5 ^a	$B9D2^{ab}$ EXOSC5 ^a					$B9D2^{ab}$	$B9D2^{ab}$		$B9D2^{ab}$
rs3092262	20	45,580,290			$EYA2^{a}$	$EYA2^{a}$						
rs910187	50	45,841,052 25 502 827			EYA2" TIMEOO210b	EYA2" LIMCOO210b	T INTODOS LOD	do LEODON L		de carcade	ape V SU IS ASSUM	
1528401004	17	128,646,66			LINCOUSIU	LINCOUSIO	DI GOD NIT	LANCOUSIO		AUNE2-	MKP30 3LC3A3 AP000318.2 ^b KCNE2 ^{ab}	MKP30° 3LC3A3° LINC00310 ^b AP000318.2 ^b KCNE2 ^{ab}
<i>EN-All-B</i> rection, <i>E</i> roni corre	elastic N-Top-1 ction, A	net all 49 tissu <i>M</i> elastic net to <i>M</i> - <i>All</i> - <i>B</i> MAS	ues using Bonfer op 5 tissues usin SHP all 40 fissu	g Bonferroni	n, EN-All-M ela matSpD correc	astic net all 49 ti tion, SM-All SM	issues using Bon ultiXcan all 49 t	ferroni matSpD issues using Bo	correction, EN-	top-B elastic net on, SM-top SM	top 5 tissues usin iltiXcan top 5 tiss	g Bonferroni cor- les using Bonfer-

^bRepresents genes verified by MetaXcan and COLOC in Hautakangas et al. (2022)

^aRepresents genes verified by FOCUS in Hautakangas et al. (2022)

Table 11	Association and LD for	putative novel migraine risk	gene loci predictor	SNPs in Hautakangas et al.	(2022)
					· · · · · · · · · · · · · · · · · · ·

Gene (tissue)	Chr	Predictor SNP	GWAS p value for predictor SNP in Gormley et al. (2016)	GWAS p value for predictor SNP in Hautakangas et al. (2022)	Lead index SNP in Hautakangas et al. (2022)	LD between predictor and lead index SNP	GWAS p value for lead SNP in Hautakangas et al. (2022)
HOXD8 (artery tibial)	2	rs114763776	1.97×10^{-5}	0.062848	rs72923449	0.2979	4.66×10^{-8}
<i>TNFRSF14</i> (small intestine terminal)	1	rs868718	3.89×10^{-17}	1.57×10^{-36}	rs2124663	0.0003	2.44×10^{-9}
HIST2H2BF (esophagus muscularis)	1	rs698915	4.62×10^{-7}	3.47×10^{-11}	rs68002561	0.0004	3.61×10^{-10}
<i>RP11-353N4.6</i> (Lung)	1	rs1046332	1.76×10^{-6}	1.31×10^{-7}	rs68002561	0.7383	3.61×10^{-10}
FCGR1A (whole blood)	1	rs698915	4.62×10^{-7}	3.47×10^{-11}	rs68002561	0.0004	3.61×10^{-10}
EIF2D (spleen)	1	rs6658181	1.45×10^{-5}	7.49×10^{-5}	rs56140113	0.0159	7.76×10^{-9}
EIF2D (thyroid)		rs4072677	1.06×10^{-5}	5.83×10^{-6}	rs56140113	0.2291	7.76×10^{-9}
ABHD16A (pan- creas)	6	rs1802127	6.25×10^{-6}	4.16×10^{-6}	rs74434374	0.1828	4.51×10^{-9}
HCG20 (lung)	6	rs3131043	0.00021	0.00097	rs9468830	0.6728	2.38×10^{-8}
LRP4 (spleen)	11	rs2046768	1.43×10^{-6}	9.85×10^{-9}	rs7932866	0.9584	2.38×10^{-9}
CELF1 (artery tibial)	11	rs7120113	2.10×10^{-6}	1.63×10^{-8}	rs12419507	0.0694	4.53×10^{-9}
UBALD1 (whole blood)	16	rs3747577	8.63×10^{-6}	3.17×10^{-9}	rs12598836	0.4194	2.21×10^{-10}
SUGP1 (artery tibial)	19	rs4539728	1.17×10^{-6}	1.96×10^{-8}	rs74182632	1	1.43×10^{-8}
SUGP1 (pancreas)		rs4539728	1.17×10^{-6}	1.96×10^{-8}	rs74182632	1	1.43×10^{-8}
TM6SF2 (breast mammary tissue)	19	rs2023883	7.59×10^{-6}	6.53×10^{-7}	rs74182632	0.2369	1.43×10^{-8}
<i>YJEFN3</i> (small intestine terminal)	19	rs8110171	0.000467	0.000412	rs74182632	0.0087	1.43×10 ⁻⁸

MetaXcan and FOCUS analyses. For those genes, we extracted the TWAS predictor SNP having the smallest GWAS p value from the Gormley et al. (2016) migraine GWAS dataset and tested it for LD with the lead index SNPs from Hautakangas et al. (2022) and also checked the GWAS p value for the predictor SNP in Hautakangas et al. (2022). Table 11 shows that although these 14 genes were not found to be differentially expressed in the Hautakangas et al. (2022) TWAS analyses, nine genes had predictor SNPs that were in LD $(r^2 > 0.1)$ with Hautakangas et al. (2022) index SNPs. The predictor SNPs for *TNFRSF14* ($r^2 = 0.0003$), *HIST2H2BF* ($r^2 = 0.0004$), *FCGR1A* ($r^2 = 0.0004$), and *YJEFN3* ($r^2 = 0.0087$) were not in LD with Hautakangas et al. (2022) index SNPs. This may indicate the presence of secondary GWAS association signals at these loci which were not detected due to insufficient power, but which contributed to our observed TWAS association. Table 11 also shows that as the sample size increased in the Hautakangas et al. (2022) GWAS, the majority of the predictor SNPs became more significant. Supplementary Tables 6–11 list the LD between predictor SNPs for all genes and index SNPs from Hautakangas using MASHR, elastic net and SMultiX-can prediction models.

Co-localisation of putative novel migraine risk genes

Although not near GWS SNP loci in Gormley et al (2016), we examined the putative novel migraine risk genes for co-localisation (COLOC PP4>0.5) with SNP association signals (with $P < 5 \times 10^{-8}$) in Gormley et al (2016). For this purpose, we ran COLOC on all significant gene-tissue pairs, not within ± 500 kb of the 43 autosomal index SNPs from Gormley et al. (2016). At these loci, we identified the number of genes with COLOC PP4>0.5 and whether they were at new risk loci identified in Hautakangas et al. (2022). The

Prediction model	Tissues analysed	Multiple test adjustment	No. of genes not within \pm 500 kb of the 43 index SNPs (genomic loci)	No. of genes with PP4>0.5 (genomic loci)	No. of genes present in new migraine loci (genomic loci)	Proportion of genes in new migraine loc with $PP4 > 0.5$
ENET	Top 5 tissues	Bonf-Sig	15 (13)	12 (10)	10 (9)	0.83
		Bonf-Sig-matSpD	18 (15)	15 (12)	11 (9)	0.73
	All 49 tissues	Bonf-Sig	17 (9)	10 (5)	8 (4)	0.80
		Bonf-Sig-matSpD	21 (12)	13 (7)	10 (5)	0.77
SMultiXcan	Top 5 tissues	Bonf-Sig	16 (14)	13 (11)	8 (7)	0.62
	All 49 tissues	Bonf-Sig	28 (20)	9 (8)	6 (6)	0.67
MASHR	Top 5 tissues	Bonf-Sig	9 (6)	5 (2)	5 (2)	1
		Bonf-Sig-matSpD	19 (11)	9 (4)	9 (4)	1
	All 49 tissues	Bonf-Sig	6 (5)	1(1)	1(1)	1
		Bonf-Sig-matSpD	8 (6)	3 (2)	3 (2)	1

Table 12 Co-localisation of putative novel migraine risk genes

main purpose of this analysis was to compare each TWAS approach's ability to identify putative novel risk gene loci. Table 12 shows that although the genes identified by MASHR models had the highest proportion of co-localised genes in new migraine risk loci, the MASHR models identified the lowest total number of co-localised genes at the fewest loci. For example, the best performing MASHR Bonf-Sig-matSpD Top-5 tissue TWAS identified nine genes with PP4 > 0.5 located at four (putative novel) loci. In contrast, the elastic net models identified more co-localised genes at more new migraine loci, with the best performing ENET Bonf-Sig-matSpD Top-5 tissue TWAS, which identified 11 genes with PP4 > 0.5 located at nine (putative novel) loci.

Discussion

In this paper, migraine GWS loci were characterised using recently developed transcriptome-wide association study (TWAS) approaches. Prior to TWAS approaches, a 'single eQTL' approach was used, which tested each GWAS SNP for association with a SNP associated with an eQTL (eSNP). However, this approach has two major drawbacks. Firstly, the multiple testing burden is increased due to testing many eSNPs and secondly, a single eSNP may not completely capture the genetic variation influencing the gene's expression. The TWAS approach overcomes this hurdle by additively modelling multiple SNPs in the cis-region of the gene, defined as 500 kb upstream of the gene's transcription start site and 500 kb downstream of the gene's transcription end site, thus reducing the multiple testing burden and capturing more genetic variation by combining information from multiple SNPs to impute (predict) gene expression. TWAS consists of two steps (i) generation of weights/prediction models for cis-SNPs on gene expression using independent genotype and expression data from healthy individuals, (ii) imputing gene expression values using a reference panel for individual genotype data or GWAS summary statistics and then testing for the association of imputed gene expression values with the trait of interest.

Therefore, the accuracy of gene expression imputation depends upon the quality of prediction models. The early versions of prediction models were elastic net models based upon version 6 and version 7 of GTEx aligned to build 37. The latest models are based on version 8 of GTEx aligned to build 38 and include two classes of prediction models: elastic net and MASHR. The equation used to impute the z-score is the same in both model classes; however, there are differences. Elastic net uses all the cis-SNPs present in the region and generates an additive model to compute SNP weights for gene expression prediction. Elastic net models have a quality check metric that measures the correlation between the predicted transcriptome and assayed expression data (in the reference data such as GTEx). The gene prediction models that have a significant correlation (FDR < 0.05) are made publicly available. This quality check metric is available only for elastic net models. Whereas elastic net uses all cis-SNPs, MASHR only uses fine-mapped SNPs from the DAP-G algorithm to calculate SNP weights for gene expression prediction. MASHR models tend to have a low number of SNPs (mostly 1 or 2 SNPs) incorporated into the prediction model to impute gene expression. All MASHR prediction models are made available for users and there are no model quality checks like the elastic net models.

Both elastic net and MASHR models were used for single-tissue analyses. These analyses showed that the elastic net models were able to identify a greater number of significant differentially expressed genes compared to the MASHR models on already established migraine GWS loci.

GWS loci were characterised based on genes having differential expression and evidence of co-localisation between GWAS risk SNPs and eQTL SNPs. The threshold used for
 Table 13
 Total putative novel

 genomic risk loci identified by
 the different prediction models

 and multiple testing adjustments
 testing adjustments

Prediction model	Multiple testing adjustment	Top 5 tissues	All 49 tissues
MASHR	Bonferroni	6	4
	Bonferroni matSpD	10	5
ENET	Bonferroni	11	5
	Bonferroni matSpD	11	7
SMultiXcan	Bonferroni	9	14

the co-localised signal was PP4 > 0.5 as recommended by the authors. However, an interpretation of these posterior probabilities requires a bit of caution. For example, a gene having low PP4 does not necessarily mean that there is no evidence of co-localisation provided PP3 is low and PP0, PP1 and PP2 are high. This can result from low power in the datasets (Giambartolomei et al. 2014). Therefore, we used two thresholds for the characterisation of a GWAS locus: PP3 < 0.5 and PP4 > 0.5 as an indication of a more robustly co-localised gene.

The differentially expressed and robustly co-localised genes listed in Table 4 have been reviewed elsewhere (Van Den Maagdenberg et al. 2019) and were examined via pathway analysis using the g:GOSt tool (Raudvere et al. 2019). Notably, the genes ECM1, MEF2D, PHACTR1, FHL5, UFL1, HEY2, and LRP1 were common among all approaches and have all been involved in vascular function. Other genes such as REST, GJA1, NCOA7, KCNK5, PLCE1, HTRA1, YAP1, and ZCCHC14 were not common among all approaches but have also been related to vascular function. Apart from YAP1, all of these genes had strong evidence of being co-localised (PP4 > 0.5) with a migraine index SNP. Some of the genes (not common among all approaches) were associated with other plausible pathogenic pathways. For example, SLC24A3 and KCNK5 are involved in ion channel activity, and RNF213 is involved in metal ion homoeostasis. It is interesting given all three genes implicated in a rare monogenic form of migraine-familial hemiplegic migraine (FHM)—are involved in ion transport (Nyholt et al. 2017).

TWAS analyses of the Gormley et al (2016) data also successfully identified significantly differentially expressed genes at putative novel (non-GWS GWAS) loci, that were found to be at new GWS loci in the Hautakangas et al. (2022) GWAS. We also demonstrated that the probability of identifying putative novel risk loci by incorporating eQTL data (as in TWAS) is significantly more than expected by chance. Given the topSNPs of putative novel genes identified in Gormley et al. (2016) had strong evidence for association, they had an increased prior probability of being at a true risk locus and thus have a GWS p value ($P < 5 \times 10^{-8}$) in Hautakangas et al. (2022). Therefore, we performed a binomial test comparing the proportions of the putative novel migraine risk genes (topSNPs) and topSNPs for all genes. The results show that the TWAS-implicated genes are enriched, whereas genes with similar GWAS significance are not enriched with genome-wide significance in Hautakangas et al. (2022) (binomial test $p = 2.38 \times 10^{-20}$).

We also compared the different TWAS approaches and multiple testing adjustments in terms of the total number of independent genomic risk loci containing one or more putative migraine risk genes (i.e., index SNPs within 500 kb of each other in Table 10 were merged into the same genomic risk locus). Table 13 shows that compared to the standard Bonferroni adjusted threshold, using the Bonferroni matSpD adjusted threshold (which accounts for the correlation in gene expression within each tissue) identified more putative novel loci for both the top 5 tissue and all 49 tissue analyses. An exception to this was the elastic net model for the top 5 tissues, where the Bonferroni and Bonferroni matSpD threshold identified the same number of putative novel loci.

MASHR models were able to identify 10 and five putative novel genomic risk loci in total for the top 5 tissue and all 49 tissue analyses, respectively. More putative novel genomic risk loci were identified by analysing the top 5 tissues only. The MASHR all 49 tissue analysis identified one locus (near SNP rs56140113) that was not found by the top 5 tissue analysis. The MASHR top 5 tissue analysis identified six loci (near rs68002561/rs7544531, rs72923449, rs7932866, rs12419507, rs28756401, and rs9894634) that were not identified via the all 49 tissue analysis. Four loci (rs12598836, rs74182632, rs1982072, rs28451064) were common between the MASHR all 49 tissue and top 5 tissue analyses.

The elastic net model produced a similar pattern of results. Analysis of the top 5 tissues identified a greater number of putative novel genomic risk loci compared to the analysis of all 49 tissues—identifying 11 and seven loci, respectively. The elastic net top 5 tissue analysis identified seven loci (rs4907224, rs1499963, rs12419507, rs28756401, rs12598836, rs910187/rs3092262, rs28451064) that were not identified via the all 49 tissue analysis. All 49 tissue analysis identified three loci (rs2124663, rs6556059, and rs1982072) that were not found by the top 5 tissue analysis. Four loci (rs1472662, rs68002561/rs7544531, rs74434374, and rs7932866) were common between the elastic net top 5 and all 49 tissue analyses.

The SMultiXcan analysis of all 49 tissues identified a greater number of putative novel genomic risk loci compared to the analysis of the top 5 tissues—identifying 14 and nine loci, respectively. Two loci (rs1499963 and rs28756401) were specific to the top 5 tissues analysis. Seven loci (rs2124663, rs12057629/rs61561984, rs4907224, rs6556059, rs4285, rs9468830, and rs74182632) were exclusive to all 49 tissues analysis. Seven loci (rs1472662, rs68002561/rs7544531, rs56140113, rs74434374, rs7932866, rs12598836, and rs28451064) were identified via both the SMultiXcan top 5 and all 49 tissue analyses.

Table 11 shows that our pipeline was able to identify nine putative novel migraine risk genes significantly differentially expressed in TWAS analysis of Gormley et al. (2016) data. It is interesting to note that some of these genes were expressed in the tissues that were not directly related to migraine, for example, breast mammary tissue. Genes significantly differentially expressed in such tissues could result from individual or combinations of factors such as GTEx tissue sample sizes, gene co-regulation/coexpression and/or isoform abundance of pathogenic genes in a particular tissue (Ghaffar and Nyholt 2022). However, these genes were later found to be at (and in LD with) true (GWS) migraine risk index SNP loci in Hautakangas et al (2022). Six of these genes (RP11-353N4.6, EIF2D, LRP4, UBALDI, SUGP1, and TM6SF2) are at loci with multiple differentially expressed genes, some of which were implicated by MetaXcan and/or FOCUS analysis by Hautakangas et al. (2022). However, there were three genes ABHD16A (near rs74434374), HCG20 (near rs9468830), and HOXD8 (near rs72923449) identified by our TWAS pipeline analysis that were not implicated by MetaXcan or FOCUS analysis by Hautakangas et al. (2022). ABHD16A is a member of the alpha/beta hydrolase domain-containing protein family that is involved in Kawasaki disease (Xu et al. 2018). Kawasaki disease is a disease caused by inflammation of blood vessels, thus having a vascular component. HCG20 is a non-coding RNA gene associated with brain malformations and major depressive disorder (Li et al. 2019). HOXD8 belongs to a homeobox family of genes and has a tumour suppressing role in different cancers by inducing apoptosis and inhibiting proliferation (Zhang et al. 2021). Hypermethylation of HOXD8 is used as a biomarker to detect biliary tract cancers (Loi et al. 2022). ABHD16A can directly be associated with migraine because of its potential vascular role. HCG20 is associated with major depressive disorder, that in turn is correlated with migraine (Yang et al. 2018). HOXD8 is a gene playing important role in different cancers but its involvement in migraine aetiology is unclear.

TWAS approaches can be viewed as methods directed to improve the discovery power of the GWAS without increasing sample size by incorporating functional information. Some authors suggest that the secondary usage of these methods is to increase the statistical power of GWAS to identify novel loci (Moore et al. 2022). We have shown in our analysis that the number of putative novel loci identified using Gormley et al. (2016) migraine GWAS that were GWS in the latest Hautakangas et al. (2022) migraine GWAS is significantly more than expected by chance (one-sided binomial test $p = 2.38 \times 10^{-20}$). Thus, performing TWAS analyses on the latest more powerful migraine GWAS would be expected to identify additional novel migraine risk loci.

The migraine GWAS performed by Gormley et al. (2016) and Hautakangas et al. (2022) were in populations of European ancestry and the TWAS prediction models from GTEx were derived from samples of predominantly (84.6%) white populations. Most migraine GWAS have been performed in individuals of European descent, hence the results may not be directly transferable to other ancestral populations. There have been studies that tried to replicate the European risk loci in relatively small non-European populations. One of the studies in a Chinese population replicated one of the migraine risk loci from the three risk variants known at that time (An et al. 2013; Fan et al. 2014). A subsequent Chinese replication study of 581 migraine cases and 533 ethnically matched controls identified three risk loci rs2274316 (MEF2D), rs6478241 (ASTN2) and rs2651899 (PRDM16) previously identified in European samples (An et al. 2017). A later study in a North Indian population replicated three loci; rs1835740 (near MTDH), rs11172113 (LRP1), rs2651899 (PRDM16) (Ghosh et al. 2013). In addition to replicating European risk loci, a few migraine GWAS have been performed in Asian populations but all had small sample sizes (Jiang et al. 2021; Tsai et al. 2021; Tsao et al. 2022). Thus, it is reasonable to conclude that migraine GWAS in European populations have produced many migraine risk variants, and despite a lack of replication power, some of these loci have been replicated in non-European populations (Harder et al. 2023). Regardless, as for the vast majority of GWAS traits performed to date, additional and larger migraine GWAS in non-European populations is required to identify additional and perhaps ancestry-specific risk loci. Similarly, although studies comparing TWAS using European and non-European transcriptome prediction models found that z-scores for differential expression are highly correlated (e.g., Pearson correlation of 0.63 between an African American and Hispanic/Latino model and a European model) (Geoffroy et al. 2020), given allele frequencies and effect sizes can differ across ancestral populations (Mogil et al. 2018), TWAS with populationmatched transcriptome models should have more power to identify trait-associated and colocalised genes and thus more transcriptome studies in diverse populations are needed.

Overall, our TWAS analyses of the Gormley et al (2016) migraine GWAS identified 21 independent putative novel risk loci harbouring putative migraine risk genes. Universally, compared to the MASHR models, the elastic net models identified more putative novel risk genes and loci, and SMultiXcan analysis of all 49 tissues identified the most

putative novel risk loci shown to be true risk loci in the recent more powerful migraine GWAS by Hautakangas et al. (2022).

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00439-023-02568-8.

Acknowledgements This research has been conducted using the 23andMe migraine GWAS summary statistics resource under an agreement with 23andMe. We would like to thank the research participants and employees of 23andMe, for making this work possible. In addition, we acknowledge the contributions of the International Headache Genetics Consortium (IHGC) for sharing their GWAS summary statistics. The first author would like to thank the Queensland University of Technology (QUT) and the Australian Government's Research Training Program (RTP) for providing a scholarship.

Author contributions Conceptualisation: AG and DRN; analysis and writing—original draft preparation: AG; writing—critical review and editing: DRN; supervision: DRN. All authors have read and agreed to the published version of the manuscript.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions. The authors received no financial support for the research, authorship, and/or publication of this article.

Availability of data and material The migraine GWAS summary statistics are obtained from the 23andMe and IHGC. The full GWAS summary statistics for the 23andMe discovery data set will be made available through 23andMe to qualified researchers under an agreement with 23andMe that protects the privacy of the 23andMe participants. For further details and to access the data, please visit https://research. 23andme.com/collaborate/#dataset-access/. Gene expression and eQTL data are freely available at https://gtexportal.org/home/.

Declarations

Conflict of interest The authors have no conflicts of interest to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- An XK, Ma QL, Lin Q, Zhang XR, Lu CX, Qu HL (2013) PRDM 16 rs2651899 variant is a risk factor for Chinese common migraine patients. Headache J Head Face Pain 53(10):1595–1601
- An XK, Fang J, Yu ZZ, Lin Q, Lu CX, Qu HL, Ma QL (2017) Multilocus analysis reveals three candidate genes for Chinese migraine susceptibility. Clin Genet 92(2):143–149
- Arnold M (2018) Headache classification committee of the international headache society (IHS) the international classification of headache disorders. Cephalalgia 38(1):1–211

- Barbeira A, Shah KP, Torres JM, Wheeler HE, Torstenson ES, Edwards T, Garcia T, Bell GI, Nicolae D, Cox NJ (2016) MetaXcan: summary statistics based gene-level association method infers accurate PrediXcan results. BioRxiv, 045260
- Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, Torstenson ES, Shah KP, Garcia T, Edwards TL (2018) Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun 9(1):1–20
- Barbeira AN, Pividori M, Zheng J, Wheeler HE, Nicolae DL, Im HK (2019) Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet 15(1):e1007889
- Barbeira AN, Melia OJ, Liang Y, Bonazzola R, Wang G, Wheeler HE, Aguet F, Ardlie KG, Wen X, Im HK (2020) Fine-mapping and QTL tissue-sharing information improves the reliability of causal gene identification. Genet Epidemiol 44(8):854–867
- Chanda P, Huang H, Arking DE, Bader JS (2013) Fast association tests for genes with FAST. PLoS ONE 8(7):e68585
- Chen H, Zhang J, Wang T, Zhang S, Lai Q, Huang S, Zeng P (2021) Type 2 diabetes mellitus and amyotrophic lateral sclerosis: genetic overlap, causality, and mediation. J Clin Endocrinol Metab 106(11):e4497–e4508
- Consortium G (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348(6235):648–660
- Consortium G (2020) The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369(6509):1318–1330
- de Leeuw CA, Mooij JM, Heskes T, Posthuma D (2015) MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 11(4):e1004219
- Fan X, Wang J, Fan W, Chen L, Gui B, Tan G, Zhou J (2014) Replication of migraine GWAS susceptibility loci in Chinese Han population. Headache J Head Face Pain 54(4):709–715
- Feng H, Gusev A, Pasaniuc B, Wu L, Long J, Abu-full Z, Aittomäki K, Andrulis IL, Anton-Culver H, Antoniou AC (2020) Transcriptome-wide association study of breast cancer risk by estrogenreceptor status. Genet Epidemiol 44(5):442–468
- Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, Gazal S, Loh P-R, Lareau C, Shoresh N (2018) Heritability enrichment of specifically expressed genes identifies diseaserelevant tissues and cell types. Nat Genet 50(4):621
- Geoffroy E, Gregga I, Wheeler HE (2020) Population-Matched transcriptome prediction increases TWAS discovery and replication rate. Iscience 23(12):101850
- Ghaffar A, Nyholt DR (2022) Genome-wide imputed differential expression analysis identifies trait-relevant tissues. Front Genet 13:1008511. https://doi.org/10.3389/fgene.2022.1008511
- Ghosh J, Pradhan S, Mittal B (2013) Genome-wide-associated variants in migraine susceptibility: a replication study from North India. Headache J Head Face Pain 53(10):1583–1594
- Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, Plagnol V (2014) Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 10(5):e1004383
- Gormley P, Anttila V, Winsvold BS, Palta P, Esko T, Pers TH, Farh K-H, Cuenca-Leon E, Muona M, Furlotte NA (2016) Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet 48(8):856
- Grundberg E, Small KS, Hedman ÅK, Nica AC, Buil A, Keildson S, Bell JT, Yang T-P, Meduri E, Barrett A (2012) Mapping cis-and trans-regulatory effects across multiple tissues in twins. Nat Genet 44(10):1084
- Guo H, An J, Yu Z (2020) Identifying shared risk genes for asthma, hay fever, and eczema by multi-trait and multiomic association analyses. Front Genet 11:270

- Harder AV, Terwindt GM, Nyholt DR, van den Maagdenberg AM (2023) Migraine genetics: Status and road forward. Cephalalgia 43(2):03331024221145962
- Hautakangas H, Winsvold BS, Ruotsalainen SE, Bjornsdottir G, Harder AV, Kogelman LJ, Thomas LF, Noordam R, Benner C, Gormley P (2021) Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. medRxiv
- Hautakangas H, Winsvold BS, Ruotsalainen SE, Bjornsdottir G, Harder AV, Kogelman LJ, Thomas LF, Noordam R, Benner C, Gormley P (2022) Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat Genet 54(2):152–160
- Hiller-Sturmhöfel S, Bartke A (1998) The endocrine system: an overview. Alcohol Health Res World 22(3):153
- Hirbo J, Bailey JC, Evans P, Gamazon ER, Tao R, Joos KM, Brantley MA, Wiggs JL, Cox NJ (2018) Identifying genes that underlie primary open-angle glaucoma using genetically determined gene expression. Invest Ophthalmol vis Sci 59(9):1180–1180
- Honkasalo ML, Kaprio J, Winter T, Heikkilä K, Sillanpää M, Koskenvuo M (1995) Migraine and concomitant symptoms among 8167 adult twin pairs. Headache J Head Face Pain 35(2):70–78
- Jiang Z, Zhao L, Zhang X, Zhang W, Feng Y, Li T (2021) Common variants in KCNK5 and FHL5 genes contributed to the susceptibility of migraine without aura in Han Chinese population. Sci Rep 11(1):1–8
- Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu Y, Roskin KM, Schwartz M, Sugnet CW, Thomas DJ (2003) The UCSC genome browser database. Nucleic Acids Res 31(1):51–54
- Li M-X, Gui H-S, Kwan JS, Sham PC (2011) GATES: a rapid and powerful gene-based association test using extended Simes procedure. Am J Hum Genet 88(3):283–293
- Li M-X, Yeung JM, Cherny SS, Sham PC (2012) Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet 131:747–756
- Li H, Chang H, Song X, Liu W, Li L, Wang L, Yang Y, Zhang L, Li W, Zhang Y (2019) Integrative analyses of major histocompatibility complex loci in the genome-wide association studies of major depressive disorder. Neuropsychopharmacology 44(9):1552–1561
- Loi E, Zavattari C, Tommasi A, Moi L, Canale M, Po A, Sabato C, Vega-Benedetti AF, Ziranu P, Puzzoni M (2022) HOXD8 hypermethylation as a fully sensitive and specific biomarker for biliary tract cancer detectable in tissue and bile samples. Br J Cancer 126(12):1783–1794
- Mancuso N, Freund MK, Johnson R, Shi H, Kichaev G, Gusev A, Pasaniuc B (2019) Probabilistic fine-mapping of transcriptomewide association studies. Nat Genet 51(4):675–682
- Mason BN, Russo AF (2018) Vascular contributions to migraine: time to revisit? Front Cell Neurosci 12:233
- Mogil LS, Andaleon A, Badalamenti A, Dickinson SP, Guo X, Rotter JI, Johnson WC, Im HK, Liu Y, Wheeler HE (2018) Genetic architecture of gene expression traits across diverse populations. PLoS Genet 14(8):e1007586
- Moore A, Marks J, Quach BC, Guo Y, Bierut LJ, Gaddis NC, Hancock DB, Page GP, Johnson EO (2022) Evaluation of methods incorporating biological function and GWAS summary statistics to accelerate discovery. bioRxiv, 2022.2001. 2010.475153
- Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430(7001):743
- Mota CM, Madden CJ (2022) Neural control of the spleen as an effector of immune responses to inflammation: mechanisms and treatments. Am J Physiol Regul Integr Comp Physiol 323(4):R375–R384
- Mulder EJ, Van Baal C, Gaist D, Kallela M, Kaprio J, Svensson DA, Nyholt DR, Martin NG, MacGregor AJ, Cherkas LF (2003)

🙆 Springer

Genetic and environmental influences on migraine: a twin study across six countries. Twin Res Hum Genet 6(5):422–431

- Nyholt DR (2004) A simple correction for multiple testing for singlenucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74(4):765–769
- Nyholt DR, Borsook D, Griffiths LR (2017) Migrainomics—identifying brain and genetic markers of migraine. Nat Rev Neurol 13(12):725–741
- Peng S, Deyssenroth MA, Di Narzo AF, Cheng H, Zhang Z, Lambertini L, Ruusalepp A, Kovacic JC, Bjorkegren JL, Marsit CJ (2018) Genetic regulation of the placental transcriptome underlies birth weight and risk of childhood obesity. PLoS Genet 14(12):e1007799
- Polderman TJ, Benyamin B, De Leeuw CA, Sullivan PF, Van Bochoven A, Visscher PM, Posthuma D (2015) Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet 47(7):702–709
- Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26(18):2336–2337
- Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J (2019) g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47(W1):W191–W198
- Stovner LJ, Nichols E, Steiner TJ, Abd-Allah F, Abdelalim A, Al-Raddadi RM, Ansha MG, Barac A, Bensenor IM, Doan LP (2018) Global, regional, and national burden of migraine and tensiontype headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17(11):954–976
- Sutherland HG, Albury CL, Griffiths LR (2019) Advances in genetics of migraine. J Headache Pain 20(1):1–20
- Tachmazidou I, Hatzikotoulas K, Southam L, Esparza-Gordillo J, Haberland V, Zheng J, Johnson T, Koprulu M, Zengini E, Steinberg J (2019) Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat Genet 51(2):230–236
- Torres JM, Barbeira AN, Bonazzola R, Morris AP, Shah KP, Wheeler HE, Bell GI, Cox NJ, Im HK (2017) Integrative cross tissue analysis of gene expression identifies novel type 2 diabetes genes. bioRxiv 045260
- Tsai C-K, Liang C-S, Lin G-Y, Tsai C-L, Lee J-T, Sung Y-F, Lin Y-K, Hung K-S, Chen W-L, Yang F-C (2021) Identifying genetic variants for age of migraine onset in a Han Chinese population in Taiwan. J Headache Pain 22(1):89
- Tsao Y-C, Wang S-J, Hsu C-L, Wang Y-F, Fuh J-L, Chen S-P, Fann CS-J (2022) Genome-wide association study reveals susceptibility loci for self-reported headache in a large community-based Asian population. Cephalalgia 42(3):229–238
- Urbut SM, Wang G, Carbonetto P, Stephens M (2019) Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nat Genet 51(1):187–195
- Van Den Maagdenberg AM, Nyholt DR, Anttila V (2019) Novel hypotheses emerging from GWAS in migraine? J Headache Pain 20(1):1–7
- Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101(1):5–22
- Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulkader RS, Abdulle AM, Abebo TA, Abera SF (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390(10100):1211–1259

- Wang K, Gaitsch H, Poon H, Cox NJ, Rzhetsky A (2017) Classification of common human diseases derived from shared genetic and environmental determinants. Nat Genet 49(9):1319–1325
- Ward LD, Kellis M (2012) Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol 30(11):1095
- Wen X, Lee Y, Luca F, Pique-Regi R (2016) Efficient integrative multi-SNP association analysis via deterministic approximation of posteriors. Am J Hum Genet 98(6):1114–1129
- Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, Christiansen MW, Fairfax BP, Schramm K, Powell JE (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45(10):1238
- Wu L, Wang J, Cai Q, Cavazos TB, Emami NC, Long J, Shu X-O, Lu Y, Guo X, Bauer JA (2019) Identification of novel susceptibility loci and genes for prostate cancer risk: a transcriptome-wide association study in over 140,000 European descendants. Cancer Res 79(13):3192–3204
- Xu J, Gu W, Ji K, Xu Z, Zhu H, Zheng W (2018) Sequence analysis and structure prediction of ABHD16A and the roles of the ABHD family members in human disease. Open Biol 8(5):180017

- Yang J, Ferreira T, Morris AP, Medland SE, Madden PA, Heath AC, Martin NG, Montgomery GW, Weedon MN, Loos RJ (2012) Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet 44(4):369–375
- Yang Y, Zhao H, Boomsma DI, Ligthart L, Belin AC, Smith GD, Esko T, Freilinger TM, Hansen TF, Ikram MA (2018) Molecular genetic overlap between migraine and major depressive disorder. Eur J Hum Genet 26(8):1202–1216
- Zhang Y, Yu Y, Su X, Lu Y (2021) HOXD8 inhibits the proliferation and migration of triple-negative breast cancer cells and induces apoptosis in them through regulation of AKT/mTOR pathway. Reprod Biol 21(4):100544

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.