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Abstract
The co-occurrence of migraine and glycemic traits has long been reported in observational epidemiological studies, but 
it has remained unknown how they are linked genetically. We used large-scale GWAS summary statistics on migraine, 
headache, and nine glycemic traits in European populations to perform cross-trait analyses to estimate genetic correlation, 
identify shared genomic regions, loci, genes, and pathways, and test for causal relationships. Out of the nine glycemic traits, 
significant genetic correlation was observed for fasting insulin (FI) and glycated haemoglobin (HbA1c) with both migraine 
and headache, while 2-h glucose was genetically correlated only with migraine. Among 1703 linkage disequilibrium (LD) 
independent regions of the genome, we found pleiotropic regions between migraine and FI, fasting glucose (FG), and HbA1c, 
and pleiotropic regions between headache and glucose, FI, HbA1c, and fasting proinsulin. Cross-trait GWAS meta-analysis 
with glycemic traits, identified six novel genome-wide significant lead SNPs with migraine, and six novel lead SNPs with 
headache (Pmeta < 5.0 ×  10–8 and Psingle-trait < 1 ×  10–4), all of which were LD-independent. Genes with a nominal gene-based 
association (Pgene ≤ 0.05) were significantly enriched (overlapping) across the migraine, headache, and glycemic traits. Men-
delian randomisation analyses produced intriguing, but inconsistent, evidence for a causal relationship between migraine and 
headache with multiple glycemic traits; and consistent evidence suggesting increased fasting proinsulin levels may causally 
decrease the risk of headache. Our findings indicate that migraine, headache, and glycemic traits share a common genetic 
etiology and provide genetic insights into the molecular mechanisms contributing to their comorbid relationship.

Introduction

Migraine is a debilitating neurological disorder that affects 
about 15% of the global population and was first described 
as a ‘hypoglycemic headache’ in 1935 (Gray and Burt-
ness 1935). A high prevalence of glycemic traits such as 
insulin resistance (IR), hyperinsulinemia, hypoglycaemia, 
hyperglycaemia, and type 2 diabetes (T2D) is associated 
with migraine and headache (Cavestro et al. 2007; Fagh-
erazzi et al. 2019; Gross et al. 2019; Rainero et al. 2005; 
Sacco et al. 2014; Zhang et al. 2020), which, along with 

the increased risk of cardiovascular diseases (Daghals et al. 
2022; Guo et al. 2020; Malik et al. 2015), contributes sig-
nificantly to shorter life expectancy. Previous epidemiologic 
studies investigating the relationship between fasting glu-
cose (FG), fasting insulin (FI), and glucose tolerance with 
migraine risk have produced conflicting findings (Islam and 
Nyholt 2022; Shaw et al. 1977; Siva et al. 2018). In addition, 
several studies have investigated the increased comorbid-
ity of migraine and glycemic traits, focusing on the dys-
regulation of glucose (Hufnagl and Peroutka 2002; Zhang 
et al. 2020) or dysglycaemia in migraine patients as possible 
outcome of disturbed metabolism mainly due to impaired 
glucose-insulin metabolism (Gross et al. 2019).

Dysglycaemia is a well-established migraine risk factor 
that may have a role in the etiology of migraine and head-
ache disorders, given the significance of glycemic regula-
tion in the brain and the fact that it has well-known sys-
temic effects (Mergenthaler et al. 2013); nevertheless, the 
role of dysglycaemia in the brain is sometimes overlooked. 
Additionally, insulin signalling alterations may be related to 
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migraine disorders since insulin plays a vital role in synaptic 
plasticity, neurotransmission, and neuroinflammation in the 
central nervous system (Del Moro et al. 2022; Duarte et al. 
2012). These findings imply that metabolic and glycemic 
dysregulations may be integral to the pathophysiology of 
migraine. The phenotypic and pathophysiological similari-
ties observed between migraine and glycemic traits have led 
us to hypothesise that a shared genetic basis may contribute 
to both conditions (Islam and Nyholt 2022). In addition, 
we recently reported that shared genetic factors between 
migraine and headache with T2D strongly reflect their epi-
demiological observational relationships (Md Rafiqul Islam 
et al. 2022). Although lower FG, increased FI, decreased 
glucose tolerance, and increased IR have all been associ-
ated with migraine in observational studies (Shaw et al. 
1977; Siva et al. 2018; Zhang et al. 2020), it is still unknown 
whether these associations are genetically correlated.

An observational relation between two traits may denote 
hereditary or environmental influences or a combination of 
the two. There may be an overlap in the causative genes and 
pathways underlying the multiple risk factors shared by two 
complex traits. Hence, clustering genetic variants and genes 
shared by multiple traits may shed light on the underlying 

biology of their comorbidity. Such common genetic elements 
can be examined using a cross-trait genome-wide analysis 
approach. Based on these observations, an in-depth study 
of shared genetics by exploring the relationship between 
migraine and glycemic traits is warranted. Therefore, in the 
present study, we conducted genetic analyses leveraging 
GWAS summary statistics to investigate the shared genetic 
contributions between migraine and headache with glycemic 
traits.

Materials and methods

Study design

Figure 1 summarises the overall study design and work-
flow. This study has three analytical stages. The first stage 
is collecting and preparing GWAS summary statistics of 
migraine, headache, and glycemic traits of European descent 
to perform different analytical methods. The second stage is 
SNP-level analyses to identify genetic overlap, novel loci, 
and causal associations between migraine and headache 
with glycemic traits. The third stage is gene-level analyses 

Fig. 1  Overall research plan and brief overview of the analysis. 
[IHGC International headache genetic consortium, MAGIC Meta-
Analyses of Glucose and Insulin-related traits Consortium, Pan-UK 
Biobank Pan-ancestry genetic analysis of the UK Biobank, PPA 
Posterior probabilities of association, LD Linkage disequilibrium, 
GATES Gene-Based Association Test Using Extended Simes Pro-
cedure, GEC Genetic type 1 error calculator, GWAS Genome-wide 
association studies, KEGG Kyoto Encyclopedia of Genes and 

Genomes, LCV Latent causal variable, MR Mendelian randomiza-
tion, MR-PRESSO Mendelian randomisation pleiotropy residual sum 
and outlier, GSMR Generalised summary data-based Mendelian Ran-
domisation, SNP Single-nucleotide polymorphism, T1D Type 1 dia-
betes, HbA1c Glycated haemoglobin, HOMA-B homeostatic model 
assessment of β-cell function, HOMA-IR homeostatic model assess-
ment of insulin resistance]
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to investigate the gene-based association and shared genes, 
and finally, pathway analyses using shared genes between 
migraine and headache with glycemic traits.

GWAS summary statistics for migraine

We obtained GWAS summary statistics for migraine, com-
prising 102,084 migraine patients and 771,257 controls of 
European ancestry (Hautakangas et al. 2022). Full genotyp-
ing and phenotyping procedures are detailed in the original 
publication (Hautakangas et al. 2022).

GWAS summary statistics for headache

In our analysis, we obtained the publicly available Pan-
UKBB (Pan-ancestry genetic analysis of the UK Biobank) 
(Pan-UKB team 2020) GWAS summary statistics of Euro-
pean ancestry for headache experienced last month. In our 
research, headache patients were those who had a headache 
within the last month that interfered with their usual activi-
ties (Pan-UKB team 2020). We used phenocode 6159 for 
“headache” (a total of 400,837 individuals, comprising 
84,036 headache cases and 335,552 non-headache controls). 
Briefly, between 2005 and 2010, the UK Biobank prospec-
tively recruited 500,000 individuals of various ancestries 
living in the United Kingdom between the ages of 40 and 
69 and conducted a genotypic and phenotypic evaluation 
(Bycroft et  al. 2018). Genotyping, quality control, and 
access to GWAS summary statistics are available at https:// 
pan. ukbb. broad insti tute. org.

GWAS summary statistics for glycemic traits

Publicly available GWAS summary statistics for glucose, 
glycated haemoglobin (HbA1c), and Type 1 diabetes (T1D) 
were obtained from the Pan-UKBB. We used phenocode 
250.1 for “T1D” (total 399,431 individuals, comprising 
3,250 cases and 396,431 controls), biomarker 30,750 for 
“HbA1c” (total 400,837 individuals), and biomarker 30,740 
for “glucose” (total 366,759 individuals) to identify and 
access the GWAS summary statistics from the Pan-UKBB.

We collected publicly available GWAS summary statis-
tics for fasting glucose (FG), fasting insulin (FI), and 2-h 
glucose after an oral glucose challenge (2-h glucose) from 
the meta-analyses of glucose and insulin-related traits con-
sortium (MAGIC) (https:// magic inves tigat ors. org/), com-
prising a total of 281,416 individuals with more than 70% 
European descent (Chen et al. 2021). The FG, FI, and 2-h 
glucose GWAS comprised 208,438, 151,903, and 64,469 
participants, respectively. We also obtained MAGIC GWAS 
summary statistics for homeostatic model assessment of 
insulin resistance (HOMA-IR), HOMA of pancreatic beta-
cell function (HOMA-B), and fasting proinsulin (Dupuis 

et al. 2010; Strawbridge et al. 2011). The HOMA-B and 
HOMA-IR GWAS comprised 46,186 individuals with-
out diabetes, and the fasting proinsulin GWAS comprised 
10,701 non-diabetic European individuals.

Imputation of GWAS summary statistics

To improve SNP overlap across some of the datasets, we 
used the recently published RAISS approach (Julienne et al. 
2019) to impute missing Z-scores for the GWAS summary 
statistics imputed on the HapMap 2 reference panel. First, 
using PLINK 1.9 (Chang et al. 2015), an LD-correlation 
matrix was prepared for 1,703 predefined LD-independent 
regions (Berisa & Pickrell 2016) from the 1000 Genomes 
Project European reference panel. Next, Z-scores were 
derived using summary statistics from HOMA-B, HOMA-
IR, and fasting proinsulin GWAS. After that, RAISS was run 
using the default settings. Then, for imputed SNPs, effect 
sizes (beta) and standard errors of the effect estimate (SE) 
were calculated using the equation reported in the previ-
ously published study (Zhu et al. 2016). Finally, we filtered 
imputed SNPs with R2 < 0.6 to improve the quality of the 
results.

Genetic correlation analysis

SNP-based bivariate genetic correlations (rg) were calcu-
lated using the LD score regression (LDSC) software (Bulik-
Sullivan et al. 2015; Bulik-Sullivan et al. 2015) to investi-
gate the genetic overlap of migraine with glycemic traits and 
headache with glycemic traits. The estimated range of the 
LDSC rg is from − 1 to 1, where − 1 indicates an absolute 
negative genetic correlation and 1 indicates an absolute posi-
tive genetic correlation. We utilised pre-computed estimates 
of LD scores from the HapMap3 European reference panel 
of ~ 1.2 million common SNPs. One of the main strengths 
of LDSC is that it can estimate the genetic correlation when 
there is a sample overlap since sample overlap only affects 
the LDSC intercept and not the slope from which the rg 
is estimated. In addition, cross-trait genetic covariance 
intercepts (indicating sample overlap) were constrained to 
zero if they were not significantly different from zero. We 
examined nine glycemic traits in this study; however, these 
are correlated to a certain degree. Hence, we estimated the 
effective number of independent traits using matrix spectral 
decomposition (matSpD) (Nyholt 2004) of the pairwise rg 
matrix (Supplementary Table S4). MatSpD estimated that 
the nine glycemic traits were equivalent to 6.1849 independ-
ent traits. Therefore, to adjust for multiple testing, we con-
sidered a genetic correlation finding study-wide significant 

https://pan.ukbb.broadinstitute.org
https://pan.ukbb.broadinstitute.org
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in the LDSC analysis at P < 8.26 ×  10–3 (0.05/6.1849) and 
nominally significant when P < 0.05.

Pairwise analysis of GWAS

We used pairwise GWAS analysis (GWAS-PW) (Pickrell 
et al. 2016) to identify genomic regions shared by migraine 
and glycemic traits, and by headache and glycemic traits. 
This technique divides the entire genome into 1703 LD-
independent regions (average size of 1.5 Mb) (Berisa and 
Pickrell 2016) and estimates the posterior probability asso-
ciation (PPA) for four models using a Bayesian statistical 
model. In models 1 and 2, the region is assumed to harbour a 
genetic variant associated with only trait 1 or trait 2, respec-
tively. Model 3 implies that the region contains a genetic 
variant associated with both traits (PPA3), while model 4 
assumes that the region harbours two independent variants 
distinctly associated with each trait (Pickrell et al. 2016). 
Genomic regions with a model 3 PPA3 > 0.9 were consid-
ered to harbour a significant pleiotropic effect, while regions 
with a PPA3 > 0.5 harbour a suggestive pleiotropic effect.

Cross‑trait meta‑analysis between migraine 
and headache with glycemic traits

To detect shared SNPs and loci, we conducted a cross-trait 
meta-analysis between migraine and glycemic traits, and 
between headache and glycemic traits. We used the fixed 
effect (FE) and the modified random effects (RE2) models 
within the METASOFT software (Han and Eskin 2011). The 
FE model is based on the fixed-effect meta-analysis method 
and is most effective when genetic effect sizes are homo-
geneous. However, genetic effect sizes are unlikely to be 
homogenous when analysing multiple traits. Thus, the RE2 
model (Han and Eskin 2011) was used as an extension of 
the FE method, which is more robust and can accommo-
date heterogeneous effects for different traits. SNPs and loci 
that became genome-wide significant after meta-analysis 
(Pmeta < 5 ×  10–8) but were not genome-wide significant in 
the individual trait GWAS before meta-analysis (5 ×  10–8 < 
Psingle-trait < 0.05) were considered potentially novel.

Additionally, we used the METASOFT m-value method 
to assess the likelihood of novel SNP effects existing in the 
individual traits (Han and Eskin 2012). The m-value reflects 
the posterior probability that the effect is present in each 
trait of the cross-trait meta-analysis. M-values larger than 
0.9 denote the presence of the effect, m-values less than 
0.1 denote the absence of the effect, and m-values between 
0.1 and 0.9 denote ambiguity regarding the presence of the 
effect in each trait GWAS (Han and Eskin 2012).

Characterisation of independent novel lead SNPs

We used the FUMA web tool (Watanabe et al. 2017) to 
clump the association results from our cross-trait meta-
analysis of migraine and glycemic traits, and headache and 
glycemic traits to identify independent lead SNPs (r2 < 0.1). 
We began by identifying significant independent SNPs based 
on their cross-trait meta-analysis P-value (P < 5 ×  10–8) and 
independence from one another (r2 < 0.6) within a 1 Mb 
frame (Md Rafiqul Islam et al. 2022). Next, lead SNPs 
were identified using a subset of the significant independent 
SNPs. Using the same 1 Mb frame, significant independent 
SNPs in LD with one another at (r2 < 0.1) were classified as 
the lead SNP. The European ancestry 1000 Genomes Project 
reference panel within FUMA was used to calculate all LD 
information (Auton et al. 2015). More information on the 
LD clump approach can be found on the FUMA website 
(http:// fuma. ctglab. nl/) (Watanabe et al. 2017). Each trait’s 
genome-wide significant SNPs from the original GWAS 
were classified as known lead variants. Lead SNPs in our 
cross-trait meta-analyses that were in LD (r2 > 0.1) with 
an original GWAS trait SNP were considered to be within 
a known locus and thus excluded (Md Rafiqul Islam et al. 
2022). The remaining significant lead SNPs from our cross-
trait meta-analyses were identified as putative novel lead 
SNPs. If putative novel lead SNPs or SNPs in LD (r2 > 0.1) 
mapping to the same gene(s) did not overlap with any previ-
ously reported loci in the GWAS catalog (https:// www. ebi. 
ac. uk/ gwas/; search date: 8 January 2023) for the same traits 
used in the meta-analysis, we identified it as a novel locus. 
To identify novel SNPs with strong evidence for association 
to both migraine and a glycemic trait, we highlight the novel 
lead SNPs with a genome-wide significant association in 
the cross-trait meta-analysis (Pmeta < 5 ×  10–8) and sugges-
tive association in the individual migraine and glycemic trait 
GWAS (Psingle trait < 1 ×  10–4).

Examining causal relationships between migraine 
and headache with glycemic traits

Mendelian randomisation

We used two-sample Mendelian randomisation (2SMR) 
approaches to test for a causal relationship (vertical plei-
otropy) between the genetic liability to glycemic traits on 
migraine and headache, as well as the reverse of causal 
effects of genetic liability to migraine and headache on gly-
cemic traits. Inverse-variance weighted (IVW) model was 
used as the primary method (Burgess et al. 2013). In the 
exposure GWAS, SNPs with GWAS P < 5 ×  10–8 that are 
LD-independent were employed as instrumental variables 
(IVs). The IVW model has the drawback that even a sin-
gle invalid IV might cause the overall estimate to be biased 

http://fuma.ctglab.nl/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
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(Burgess et al. 2013). Therefore, we used four sensitivity 
methods to test its validity. First, we applied the weighted 
median model that can provide a reliable causal estimate 
even when less than half of the weight of the IVs does not 
meet the MR assumptions (Bowden et al. 2016). The second 
method used the MR-Egger model, which tests explicitly 
for horizontal pleiotropy (Bowden et al. 2015), although 
the MR-Egger model has lower statistical power compared 
to the IVW model. Third, the MR pleiotropy residual sum 
and outlier (MR-PRESSO) (Verbanck et al. 2018) method 
was used, which comprised of three tests: (i) global test to 
assess whether horizontal pleiotropy exists or not; (ii) outlier 
test to remove potential outliers to control horizontal pleiot-
ropy, and (iii) distortion test to examine whether the causal 
estimate is significantly different from before and after the 
removal of an outlier. Finally, we used generalised summary 
data-based Mendelian randomisation (GSMR) (Zhu et al. 
2018) to test for a causal relationship between migraine and 
headache with glycemic traits. The default P ≤ 5 ×  10–8 and 
r2 < 0.05 thresholds were used to choose LD-independent 
IVs, although because the GSMR guidelines advise utilising 
at least ten LD-independent IVs to produce reliable results, 
a P ≤ 1 ×  10–5 threshold was applied when fewer than 10 
SNPs met the default level. The HEIDI (heterogeneity in 
the dependent instrument) outlier procedure is used in the 
GSMR analysis to remove SNPs that have a pleiotropic 
effect (Zhu et al. 2018). Therefore, we set the HEIDI outlier 
detection analysis’s P-value threshold to 0.01, eliminating 
1% of SNPs by chance even when there are no pleiotropic 
effects. The MR analyses in this study were performed 
using the ‘TwoSampleMR’ v0.5.6 (Hemani et al. 2018), 
‘MR-PRESSO’ v1.0 packages (Verbanck et al. 2018), and 
the GSMR analysis built into the GCTA v1.93.2 software 
(Yang et al. 2011). Multiple testing correction was applied 
to all MR tests, and a P value threshold of P < 4.13 ×  10–3 
(0.05/6.1849/2, where 6.1849 indicates the total number of 
independent glycemic traits and 2 represents the inclusion 
of both forward and reverse experiments in the MR analysis) 
was deemed study-wide significant, and P < 0.05 was con-
sidered nominally significant.

Latent causal variable model

We utilised a latent causal variable (LCV) model (O’Connor 
and Price 2018) to examine whether a genetic correlation 
demonstrates a causal relationship. The LCV model calcu-
lates a genetic causality proportion (GCP) between migraine 
and headache with glycemic traits. LCV considers that a 
latent variable mediates the genetic correlation between 
the traits and assesses the strength of each trait’s correla-
tion with this latent variable (O’Connor and Price 2018). 
Weak GCP values near zero for genetically correlated traits 
suggest no genetic causality, and their association is likely 

influenced by horizontal pleiotropy. In contrast, a GCP of 
one indicates complete genetic causality. We used the sug-
gested threshold (GCP > 0.6) for partial genetic causality 
because it has been shown in simulations to guard against 
false positives adequately. As recommended by the LCV 
developers, the major histocompatibility complex (MHC) 
region was excluded due to its complicated LD structure, 
and only SNPs with a minor allele frequency (MAF) > 0.05 
were kept in the GWAS summary statistics (O’Connor and 
Price 2018). Analogous to the LDSC analyses (Bulik-Sul-
livan et al. 2015), HapMap3 SNPs outside the MHC region 
(MAF > 0.05) were used to harmonise (‘munge’) all trait 
GWAS summary statistics prior to the LCV analysis, and 
we used the LD scores for HapMap3 SNPs (MHC region 
omitted) from the 1000 Genomes Project European reference 
panel (Abecasis et al. 2012; Consortium 2010).

Gene‑based association analysis

Genes‑based test

Gene-level association analysis has an advantage over indi-
vidual SNP-based studies in that it can integrate the effects 
of multiple SNPs and may provide greater power for iden-
tifying genetic risk variants for complex traits (Zhao et al. 
2016). We used the Gene-Based Association Test Using 
Extended Simes Procedure (GATES) test (Li et al. 2011), 
integrated into the Fast ASsociation Tests (FAST) package 
(Chanda et al. 2013), to perform a gene-based association 
test using SNPs overlapping migraine, headache, and gly-
cemic trait GWAS summary statistics. P-values were calcu-
lated using SNPs annotated to protein-coding genes to deter-
mine the association with migraine, headache, and glycemic 
traits. NCBI build 37 (The human genome version 19) was 
used to determine the locations and boundaries of the genes, 
and the 1000 Genomes Project European reference panel 
was utilised to estimate LD (Md Rafiqul Islam et al. 2022). 
Using NCBI 37 gene coordinate information, SNPs were 
mapped to 19,418 protein-coding genes, and SNPs found 
within 10 kb of each gene were assigned to that gene (Md 
Rafiqul Islam et al. 2022). GATES computes a gene-based 
P-value from the P-values of SNPs assigned to the same 
gene. The GATES test has the advantage of requiring only 
GWAS summary statistics and a suitable LD reference. In 
addition, GATES estimates empirical significance without 
the need for permutation or simulation and can effectively 
control the type 1 error rate (due to testing multiple SNPs 
in a gene) regardless of gene size and LD pattern among 
SNPs (Li et al. 2011). Finally, the minSNP gene-based test 
was applied, which adjusts the minimal P-value assigned 
to the gene by the effective number of independent SNPs 
associated with the gene (Chanda et al. 2013; Md Rafiqul 
Islam et al. 2022).
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Independent gene‑based test

Gene-based association results may be correlated across 
neighbouring genes due to LD between the most significant 
SNP (‘best SNP’) assigned to each gene. Thus, the genetic 
type I error calculator (GEC) (Li et al. 2012) was employed 
to estimate the effective number of independent genes (i.e., 
the number of independent gene-based tests) by examin-
ing the LD between the most significant SNP assigned to 
each gene and providing the correct type 1 error rate. GEC 
accounts for multiple testing and appropriately controls the 
type 1 error rate (Li et al. 2012). This analysis was car-
ried out using the GEC software, which has previously been 
used in other investigations (Adewuyi et al. 2021; Zhao 
and Nyholt 2017). The GEC method first partitioned the 
input SNPs into independent LD blocks (r2 < 0.1), and then 
for each LD block, it conducted an eigenvalue analysis of 
the correlation matrix to calculate the effective number of 
independent SNPs (Li et al. 2012). As GEC input, we used 
the ‘best-SNPs’ (providing the minimal P-value for each 
gene) found in our gene-based analysis. We estimated the 
effective number of independent genes for each GWAS trait 
individually.

Gene‑based genetic overlap test

We tested whether the proportion of associated genes over-
lapping migraine and glycemic traits and headache and 
migraine was more than expected by chance at three dif-
ferent nominal P-values thresholds (gene with Pgene ≤ 0.01, 
Pgene ≤ 0.05, and Pgene ≤ 0.1). The number of genes overlap-
ping both traits at each of the three P-value levels was first 
referred to as the raw number of overlapping genes. Then, 
we calculated the effective number of independent overlap-
ping genes using independent gene-based analysis to deter-
mine whether the proportions of overlapping genes were 
more than expected by chance (Adewuyi et al. 2020; Zhao 
et al. 2016). The migraine or headache GWAS was assigned 
as the ‘discovery’ dataset, and the glycemic traits GWAS 
was assigned as the ‘target’ dataset. The effective number of 
genes with P-values less than the threshold in the discovery 
and target datasets was used to define this study’s observed 
number of overlapping genes (Zhao and Nyholt 2017). The 
observed proportion of overlapping genes was calculated by 
dividing the observed effective number of overlapping genes 
by the effective number of genes in the discovery dataset 
with a P-value less than the threshold (Zhao et al. 2016). The 
effective number of genes in the target dataset with a P-value 
less than the threshold divided by the total effective number 
of genes in the target dataset represented the expected pro-
portion of overlapping genes (Zhao et al. 2016). To assess 
the statistical significance at the three P-value thresholds, we 
performed an exact binomial test to compare the proportion 

of observed and expected overlapping independent genes. 
We examined whether the proportion of overlapping genes 
was higher than expected by chance. Finally, we conducted 
a cross-trait gene-based association meta-analysis to find 
significant shared genes associated with migraine and gly-
cemic traits, and headache and glycemic traits. We employed 
Fisher’s combined P-value (FCP) method to combine gene-
based association P-values across two traits. Recent research 
(Adewuyi et al. 2020, 2021; Zhao et al. 2016) employed this 
gene-based strategy to demonstrate gene-based pleiotropy 
across multiple traits.

Pathway‑based functional enrichment analysis 
of overlapping genes

We used the g:GOst webtool (Raudvere et al. 2019; Rei-
mand et al. 2016) implemented in the g-profiler software 
to investigate the enrichment of shared genes in the Gene 
Ontology (GO) biological process, Kyoto Encyclopedia of 
Genes and Genomes (KEGG), Reactome, and Wiki Path-
ways. The genes overlapping migraine and glycemic traits, 
and headache and glycemic traits at Pgene < 0.05 were uti-
lised as input to identify pathways. However, we used genes 
overlapping at Pgene < 0.01 between migraine with glucose 
and HbA1c, and between headache and HbA1c to keep the 
number of genes less than the recommended maximum of 
1000. Using the default and suggested ‘g:SCS algorithm’, an 
adjusted P-value (Padj < 0.05) was calculated that accounts 
for multiple testing (Raudvere et al. 2019). Furthermore, 
the functional category’s term sizes were lowered to values 
between 5 and 350. We kept all advanced settings at their 
default values in our analysis.

Results

Genetic correlations between migraine 
and headache with glycemic traits

Our genetic correlation analyses reflect the relationships 
between migraine and headache with glycemic traits. We 
found migraine (rg = 0.08, P = 4.07 ×  10–5) and headache 
(rg = 0.09, P = 5.0 ×  10–4) genetically correlated with FI. 
Likewise, there were significant genetic correlations between 
migraine (rg = 0.05, P = 5.0 ×  10–4) and headache (rg = 0.08, 
P = 2.58 ×  10–5) with HbA1c. Additionally, migraine 
(rg = − 0.13, P = 4.59 ×  10–2) and headache (rg = − 0.20, 
P = 1.25 ×  10–2) demonstrated a significant genetic correla-
tion with fasting proinsulin, although this relationship was not 
significant after adjusting for multiple testing. Furthermore, 
2-h glucose (rg = 0.07, P = 6.63 ×  10–3) and T1D (rg = 0.12, 
P = 3.16 ×  10–2, not significant after adjusting for multiple 
testing) both produced evidence for genetic correlation with 
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migraine, but not with a headache. There was no evidence of a 
genetic correlation between migraine and headache with glu-
cose, FG, HOMA-B, and HOMA-IR (all P > 0.05) (Table 1). 
Supplementary Table S2 displays the SNP-based heritability of 
migraine, headache, and glycemic traits on the observed scale 
using the described GWAS summary statistics. Although the 
LDSC heritability (h2) and rg analyses were robust to poten-
tial sample overlap, to aid in the interpretation of downstream 
analyses, we examined the LDSC genetic covariance intercept 
(gcov_int). For migraine, the gcov_int values were all rela-
tively small, with only 2-h glucose (P = 0.016) and HOMA-IR 
(P = 0.044) significantly different from zero, and these were 
not significant after adjusting for multiple testing. Similarly, 
the gcov_int values for headache were small, with only glucose 
(P = 0.005), proinsulin (P = 0.021), and T1D (P = 0.003) being 
significantly different from zero, and only glucose and T1D 
significant after adjusting for multiple testing. The gcov_int 
results (Supplementary Table S3) suggest no substantial sam-
ple overlap between migraine and headache with each of the 
glycemic traits, and the cross-trait SNP meta-analyses were 
unlikely to be confounded by sample overlap.

Pleiotropic genomic regions influencing migraine, 
headache, and glycemic traits

In our GWAS-PW analysis, we identified eight (PPA3 > 0.9) 
and 17 (PPA3 > 0.5) genomic regions with a shared associa-
tion between migraine and any of the four glycemic traits 
(FG, FI, HbA1c, and glucose) (Supplementary Table S5). 
The findings from the GWAS-PW study of migraine and 
glycemic traits, and headache and glycemic traits are 
described in Table 2. A highly pleiotropic locus at chromo-
some 14q32.12-q32.13 was found to drive the associations 
between migraine and FI and between migraine and HbA1c. 
Five loci (1q32-q23.1, 2q34, 6q25.3-q26, 14q32.12-q32.13, 
and 17p13.3-13.2) were associated significantly with HbA1c 
and migraine, and three of these loci were common with 
those identified between headache and HbA1c (Table 2). 
GWAS-PW analyses of migraine and FG identified signifi-
cant pleiotropic loci at chromosomes 9q34.13-q34.20 and 
19q13.32. No significant (PPA3 > 0.9) pleiotropic loci were 
identified between migraine with other glycemic traits (glu-
cose, 2-h glucose, fasting proinsulin, HOMA-B, HOMA-
IR, and T1D). GWAS-PW analyses with headache found 
12 (PPA3 > 0.9) and 26 (PPA3 > 0.5) genomic regions to be 
significantly shared across six glycemic traits (glucose, FG, 
FI, fasting proinsulin, HbA1c, and T1D) (Supplementary 
Table S5). Among the 12 pleiotropic loci with PPA3 > 0.9 
between headache and glucose, FI, fasting proinsulin, and 
HbA1c, three (1q32-q23.1, 2q34, and 14q32.12-q32.13) 
overlapped with loci identified in our GWAS-PW analysis 
of migraine and glycemic traits (Table 2). We found one 
pleiotropic locus between headache and glucose (12p13.32) 
and fasting proinsulin (11q13.4), and several pleiotropic loci 
between headache and FI (8p23.1, 9q33.1, and 14q32.12-
q32.13) and HbA1c (1q32-q23.1, 2q34, 5q31.1, 7p22.3, 
8p23.1-p22, 12p13.32, and 14q32.12-q32.13).

Cross‑trait meta‑analysis between migraine 
and headache with glycemic traits

The cross-trait meta-analysis combining migraine and gly-
cemic traits and headache and glycemic traits found 44 (42 
are novel for both traits) and 40 (33 are novel for both traits) 
potential novel independent lead SNPs (Pmeta < 5 ×  10–8 and 
Psingle-trait < 0.05), respectively (Supplementary Tables S6 
and S7). We highlight the lead SNPs having genome-wide 
significance in the cross-trait meta-analysis (Pmeta < 5 ×  10–8) 
and suggestive association in the individual trait GWAS 
(Psingle-trait < 1 ×  10–4). Seven of the 44 putative novel lead 
SNPs between migraine and glycemic traits met this crite-
rion (Table 3). According to the results of posterior prob-
ability (m-value) analysis, all the reported lead SNPs discov-
ered appeared to be associated with both migraine and the 
respective glycemic trait (i.e., the m-value for both headache 

Table 1  SNP-based genetic correlation results for migraine and head-
ache with glycemic traits based on LD score regression analysis

Rg genetic correlation estimate, SE standard error of genetic corre-
lation estimate, SNP single-nucleotide polymorphism, LD linkage 
disequilibrium, T1D Type 1 diabetes, FG Fasting glucose, FI Fasting 
insulin, Proinsulin Fasting proinsulin, HOMA-B homeostatic model 
assessment of β-cell function, HOMA-IR homeostatic model assess-
ment of insulin resistance, 2-h glucose 2-h glucose after an oral glu-
cose challenge, HbA1c glycated haemoglobin

Trait 1 Trait 2 Rg SE P

Migraine FG 0.0005 0.016 9.75 ×  10–1

2-h glucose 0.07 0.026 6.60 ×  10–3

Glucose 0.02 0.015 2.43 ×  10–1

FI 0.08 0.019 4.07 ×  10–5

Proinsulin − 0.13 0.067 4.95 ×  10–2

HOMA-IR − 0.07 0.054 1.72 ×  10–1

HOMA-B 0.02 0.031 5.63 ×  10–1

T1D 0.12 0.054 3.16 ×  10–2

HbA1c 0.05 0.015 5.00 ×  10–4

Headache FG 0.003 0.019 8.79 ×  10–1

2-h glucose 0.02 0.031 4.96 ×  10–1

Glucose 0.03 0.030 3.86 ×  10–1

FI 0.09 0.026 5.00 ×  10–4

Proinsulin − 0.20 0.080 1.25 ×  10–2

HOMA-IR 0.05 0.050 3.20 ×  10–1

HOMA-B 0.06 0.044 1.44 ×  10–1

T1D 0.07 0.085 4.17 ×  10–1

HbA1c 0.08 0.019 2.58 ×  10–5
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and glycemic traits was equal to one). These seven putative 
novel lead SNPs were mapped to the nearest protein-coding 
genes of MANBA, RCCD1, ROBO1, KDM4A, ADAMTS9, 
KCNK16, and MYBPC3. Six of these lead SNPs or loci are 
novel for both migraine and glycemic traits as they were 
not previously reported to be associated with these traits, 
with one locus (MANBA) being novel for migraine but not 
FG. The strongest signal was found on chromosome 4 in the 
MANBA region (lead SNP rs223482, Pmeta = 5.85 ×  10–11). 
The second strongest signal was found on chromosome 
3, closest to the ADAMTS9 gene (lead SNP rs4611812, 
Pmeta = 1.54 ×  10–10).

In the cross-trait meta-analysis of headache and glyce-
mic traits, seven out of the 40 putative novel lead SNPs 
were found (Supplementary Table S7) to be suggestively 
associated (Psingle-trait < 1 ×  10–4) with the single traits 
GWAS (Table 4). According to the posterior probability 
(m-value > 0.90) estimates, the detected lead SNPs sub-
stantially affect both headache and the respective glycemic 
trait. These seven lead SNPs were mapped to the nearest 
protein-coding genes of MANBA, ELFN1, AP3B1, HSPA4, 
MANBA, NBEAL1, and GOLGA6A. Six of these lead SNPs 
or loci are novel for both headache and glycemic traits since 
they were not previously implicated in these traits, while 
one locus (MANBA) being novel for headache but not FG. 
ELFN1 gene represented the most significant locus (lead 
SNP rs28728306, Pmeta = 1.42 ×  10–10). The second locus 
was assigned to the HSPA4 gene (lead SNP rs201681457, 
Pmeta = 2.81 ×  10–10), and the third most significant signal 
was found near the MANBA gene (lead SNP rs223482, 
Pmeta = 3.87 ×  10–10). Interestingly, a novel locus mapped to 
the MANBA gene was common across the migraine, head-
ache, and glycemic traits. This locus was also identified in 
the cross-trait GWAS meta-analysis between migraine and 
FG (lead SNP rs223482), headache and FG (lead SNP: 
rs223482), and headache and glucose (lead SNP rs223497); 
and SNPs rs223482 and rs223497 were found to be in high 
LD (r2 = 0.85). We also noticed that 10 of the 14 putative 
novel lead loci revealed in the cross-trait meta-analysis 
between migraine and headache with glycemic traits were 
in the genomic region having a posterior probability asso-
ciation (PPA3 > 0.5) in the GWAS-PW association analysis 
(Supplementary Tables S6 and S7). Supplementary Tables 
S6 and S7 show the results of cross-trait meta-analysis 
between migraine and glycemic traits (44 lead SNPs) and 
headache and glycemic traits (40 lead SNPs) with unadjusted 
P < 0.05 in their individual single-trait GWAS, respectively.

Gene‑based association analyses across migraine, 
headache, and glycemic traits

Supplementary Table S8 displays the findings of binomial 
tests to assess whether the proportion of genes with small Ta
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P values overlapping migraine and headache with glyce-
mic traits was higher than expected by chance. The primary 
overlap analysis using gene-based P values ≤ 0.05 identified 
significant evidence of gene-based genetic overlap between 
migraine and headache with each of the glycemic traits. 
For instance, the observed proportion of genes overlapping 
migraine (16.6%) and headache (17%) with FG at Pgene ≤ 0.05 
was significantly higher [Pbinomial-test = 1.24 ×  10–16 (migraine 
and FG) and Pbinomial-test = 4.74 ×  10–14 (headache and FG)] 
than the expected proportion (11.5% for migraine and FG, 
and 11.4% for headache and FG), providing additional 
evidence for highly significant genetic overlap between 
migraine and headache with FG (Supplementary Table S8 
(Table II)). Using both stricter (P ≤ 0.01) and less strict 
(P ≤ 0.1) P value thresholds also produced evidence for sig-
nificant gene-based genetic overlap between migraine and 
each of the glycemic traits, and between headache and each 
of the glycemic traits (Supplementary Table S8).

At a gene-based genome-wide significant threshold of 
P < (0.05/effective number of independent genes in the 
gene-based test), 30 genes were overlapping migraine and 
more than one glycemic trait and 66 genes were overlapping 
headache and more than one glycemic trait (Tables 5 and 6, 
respectively). Further details about these genes, including 
their association P-values, are presented in Supplementary 
Tables S9 and S10. Among these shared genome-wide sig-
nificant genes between migraine, headache, and glycemic 
traits, four (NEU2, SLC44A4, EHMT2, and STAC3) were 
common to both migraine and headache that overlapped 
more than one glycemic trait. Furthermore, five of the 
30 genome-wide significant genes overlapping migraine 
and more than one glycemic trait were the nearest genes 
to a lead migraine SNP (THADA, EHMT2, AMBRA1, 
and SMG6) (Hautakangas et al. 2022) and headache SNP 
(ATG13) (Meng et al. 2018). In addition, one of the 66 genes 
(EHMT2) overlapping headache and more than one glycemic 
trait was the nearest gene to a lead migraine SNP (Hautakan-
gas et al. 2022). Using the FCP approach, we calculated the 
combined P values for the genes overlapping migraine and 
headache with each glycemic trait at Pgene < 0.05. The results 
of the FCP show that a total of 483 and 380 unique gene-
based genome-wide significant genes overlapping migraine 
(PFCP < 3.64 ×  10–6 and Psingle-trait < 0.05) and headache 
(PFCP < 3.59 ×  10–6 and Psingle-trait < 0.05) with more than one 
glycemic trait, respectively. Among these overlapping genes, 
181 were common to migraine and headache that overlapped 
more than one glycemic trait (Supplementary Tables S11, 
S12, and S13).
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Causal analyses between migraine and headache 
with glycemic traits

Results from the causal analyses between migraine and 
headache with nine glycemic traits are summarised in 
Tables 7 and 8, respectively. The primary IVW analy-
ses found that genetic liability to all nine glycemic traits 
(exposure) was not causally associated with migraine 
(outcome) (Fig. 2A). A similar pattern of findings was 
observed for the weighted median, MR-Egger, and MR-
PRESSO methods, except for a negative causal effect 
(protective) of elevated FG on migraine risk estimated 
by the weighted median method (OR = 0.86 [95% CI 
0.77–0.97], P = 0.01), although this association did not 
remain significant after adjusting for multiple testing 

(Table 7). Interestingly, GSMR analysis also produced 
that FG has a negative causal effect (OR = 0.88 [95% CI 
0.82–0.94], P = 4.48 ×  10–5) on migraine (Table 7). While 
the MR-Egger intercept (P = 0.203) was not significantly 
different from zero, indicating no significant directional or 
unbalanced pleiotropy. However, Cochran’s Q statistics for 
IVW (P = 3.76 ×  10–12) and MR-Egger (P = 9.16 ×  10–12) 
showed strong heterogeneity among SNPs. Even though 
MR-PRESSO found three outliers, the effect of remov-
ing them was minimal (data not shown). Although the 
IVW, MR-Egger, and MR-PRESSO analyses did not 
support these findings, they all agreed with the direc-
tion of the results (Table 7). In addition, GSMR analy-
sis revealed evidence indicating that genetic liability to 
increased HOMA-B  (ORGSMR = 1.09, P = 6.4 ×  10–3) and 

Table 5  Genome-wide 
significant genes associated 
with migraine and more than 
one glycemic trait

FG fasting glucose, FI fasting insulin, Proinsulin fasting proinsulin, HbA1c glycated haemoglobin, T1D 
Type 1 diabetes, Genes RefSeq genes, hg19 human genome version 19
*These genes overlapped with the genome-wide significant genes identified between headache and more 
than one glycemic trait

Genes Chromosome Start position (hg19) End position (hg19) Glycemic traits

THADA 2 43457975 43823185 FG, Glucose, HbA1c
*NEU1 6 31826829 31830709 Glucose, HbA1c, T1D
*SLC44A4 6 31830969 31846823 Glucose, HbA1c, T1D
*EHMT2 6 31847536 31865464 Glucose, HbA1c, T1D
CALCB 11 15095143 15103888 Glucose, HbA1c
AMBRA1 11 46417962 46615619 FG, Glucose, HbA1c, Proinsulin
ATG13 11 46638826 46697569 FG, Glucose, HbA1c, Proinsulin
ARHGAP1 11 46698625 46722215 FG, Glucose, HbA1c, Proinsulin
ZNF408 11 46722317 46727466 FG, Glucose
F2 11 46740743 46761056 FG, Glucose
CKAP5 11 46765084 46867859 FG, Glucose, HbA1c, Proinsulin
LRP4 11 46878268 46940173 FG, Glucose, Proinsulin
C11orf49 11 46958240 47185932 FG, Glucose, HbA1c, Proinsulin
ARFGAP2 11 47185849 47199054 FG, Glucose
PACSIN3 11 47199073 47208010 FG, Glucose
DDB2 11 47236493 47260769 FG, Glucose, HbA1c, Proinsulin
CELF1 11 47487489 47574792 FG, Glucose, HbA1c, Proinsulin
PTPMT1 11 47586888 47595013 FG, Glucose, HbA1c, Proinsulin
KBTBD4 11 47593749 47600567 FG, Glucose, HbA1c
NDUFS3 11 47600562 47606115 FG, Glucose, HbA1c
FAM180B 11 47608230 47610746 FG, Glucose, HbA1c
C1QTNF4 11 47611216 47615961 FG, Glucose, HbA1c, Proinsulin
MTCH2 11 47638858 47664206 FG, Glucose, HbA1c, Proinsulin
RAB3IL1 11 61664706 61713747 FG, Glucose, HbA1c
*STAC3 12 57637241 57644971 Glucose, HbA1c
SMG6 17 1963133 2207069 HbA1c, Proinsulin
DMWD 19 46286205 46296060 FG, Glucose, HbA1c
RSPH6A 19 46298968 46318605 FG, Glucose, HbA1c
SYMPK 19 46318700 46366548 FG, Glucose, HbA1c
EYA2 20 45523263 45817492 FI, Glucose
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Table 6  Genome-wide 
significant genes associated 
with headache and more than 
one glycemic trait

Genes Chromosome Start position (hg19) End position (hg19) Glycemic traits

ABT1 6 26597171 26600278 HbA1c, T1D
ZNF322 6 26634611 26659980 HbA1c, T1D
HIST1H2BJ 6 27093912 27100743 HbA1c, T1D
HIST1H2AG 6 27100817 27101314 HbA1c, T1D
ZNF391 6 27356524 27371683 HbA1c, T1D
ZNF184 6 27418521 27440897 HbA1c, T1D
HIST1H2BL 6 27775257 27775709 HbA1c, T1D
HIST1H2AI 6 27775977 27776445 HbA1c, T1D
HIST1H3H 6 27777842 27778314 HbA1c, T1D
HIST1H2AJ 6 27782080 27782518 HbA1c, T1D
HIST1H2BM 6 27782822 27783267 HbA1c, T1D
HIST1H4J 6 27791903 27792258 HbA1c, T1D
HIST1H4K 6 27798952 27799305 HbA1c, T1D
HIST1H2BN 6 27805544 27821533 HbA1c, T1D
HIST1H2AK 6 27805658 27806117 HbA1c, T1D
HIST1H2AL 6 27833107 27833576 HbA1c, T1D
HIST1H1B 6 27834570 27835359 HbA1c, T1D
HIST1H3I 6 27839623 27840099 HbA1c, T1D
HIST1H4L 6 27840926 27841289 HbA1c, T1D
HIST1H3J 6 27858093 27858570 HbA1c, T1D
HIST1H2AM 6 27860477 27860963 HbA1c, T1D
HIST1H2BO 6 27861203 27926100 HbA1c, T1D
OR2B2 6 27878963 27880174 HbA1c, T1D
OR2B6 6 27925019 27925960 HbA1c, T1D
ZNF165 6 28048482 28057341 HbA1c, T1D
ZSCAN16 6 28092334 28097864 HbA1c, T1D
ZKSCAN8 6 28109688 28127250 HbA1c, T1D
ZSCAN9 6 28193029 28201265 HbA1c, T1D
ZKSCAN4 6 28212404 28227030 HbA1c, T1D
NKAPL 6 28227075 28228736 HbA1c, T1D
ZSCAN26 6 28234788 28246001 HbA1c, T1D
PGBD1 6 28249314 28270326 HbA1c, T1D
ZSCAN31 6 28292514 28321972 HbA1c, T1D
ZKSCAN3 6 28317691 28336954 HbA1c, T1D
ZSCAN12 6 28346598 28367544 HbA1c, T1D
ZSCAN23 6 28399373 28411279 HbA1c, T1D
C6orf15 6 31079000 31080332 HbA1c, T1D
PSORS1C1 6 31082608 31107869 HbA1c, T1D
CDSN 6 31082865 31088252 HbA1c, T1D
HLA-B 6 31321649 31324989 HbA1c, T1D
MICB 6 31462054 31478901 HbA1c, T1D
DDX39B 6 31497996 31510252 HbA1c, T1D
ATP6V1G2 6 31512228 31514625 HbA1c, T1D
NFKBIL1 6 31514628 31526606 HbA1c, T1D
LTA 6 31539876 31542101 HbA1c, T1D
TNF 6 31543344 31546113 HbA1c, T1D
LTB 6 31548335 31550202 HbA1c, T1D
LST1 6 31553956 31556686 HbA1c, T1D
NCR3 6 31556660 31560762 HbA1c, T1D
C6orf25 6 31691121 31694487 Glucose, HbA1c, T1D
DDAH2 6 31694817 31698039 Glucose, HbA1c, T1D
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T1D  (ORGSMR = 1.01, P = 0.03) increases migraine risk, 
whereas liability to increased glucose (OR = 0.94 [95% 
CI 0.90–0.98], P = 6.0 ×  10–5), HOMA-IR  (ORGSMR = 0.96, 
P = 0.02) and HbA1c  (ORGSMR = 0.96, P = 0.05) decreases 
migraine risk; however, these associations were not study-
wide significant after adjusting for multiple testing, and 
primary and other sensitivity MR analyses did not support 
these findings (Table 7).

Causal analyses using the IVW model between headache 
and the nine glycemic traits indicated that increased fast-
ing proinsulin levels reduce the risk of headache (OR = 0.95 
[95% CI 0.91–0.99], P = 0.01), which was corroborated by 
all MR sensitivity analyses, although these results were not 
study-wide significant after adjusting for multiple testing. 
However, GSMR analysis (OR = 0.95 [95% CI 0.91–0.99], 
P = 3.4 ×  10–3) did produce significant evidence for a causal 
relationship between headache and proinsulin (Table 8 and 
Fig. 2B). The MR-Egger intercept (P = 0.16) demonstrated 
that this was not due to horizontal pleiotropy, and there was 
no heterogeneity (Cochran’s Q Pivw = 0.09). In addition, 
no outlier was found by MR-PRESSO, and the global test 
(P = 0.11, data not shown) was not significant, indicating that 
there is no horizontal pleiotropy. Additionally, GSMR analy-
sis revealed a significant association between genetic liabil-
ity to T1D (OR = 0.99 [95% CI 0.98–0.99], P = 1 ×  10–3), 
HbA1c (OR = 0.94 [(95% CI 0.90–0.98], P = 9.4 ×  10–4), 
and HOMA-IR (OR = 0.96 [95% CI 0.92–0.99], P = 0.04, 
not significant after adjusting for multiple testing) casu-
ally decreases the risk of headache (Table 8). The IVW, 
Weighted median, MR-Egger, and MR-PRESSO models 

were not statistically significant; however, the causal esti-
mate was in line with the direction of effect as the GSMR 
method.

Reverse MR analyses were also performed to test for a 
causal effect of migraine and headache (exposure) on the 
nine glycemic traits (outcome) (Tables 7 and 8). Some 
evidence for a causal association between genetic liability 
to migraine on HbA1c was provided by GSMR (OR = 1.01 
[95% CI 1.01–1.02], P = 7 ×  10–3); however, this associa-
tion was not significant after adjusting for multiple testing. 
The weighted median model corroborated this with simi-
lar effect sizes; however, the IVW, MR-Egger, and MR-
PRESSO models did not provide evidence for a significant 
causal association of migraine on HbA1c. There was evi-
dence for heterogeneity (Cochran’s Q Pivw = 1.08 ×  10–43), 
although the MR-Egger intercept (P = 0.81) indicated that 
this was most likely not caused by horizontal pleiotropy. 
There was no significant evidence of migraine having a 
causal effect on any of the eight remaining glycemic traits. 
Furthermore, we found no evidence for a causal associa-
tion between genetic liability to headache on any of the 
nine glycemic traits. Further details of the genetic instru-
ments utilised for migraine, headache, and glycemic traits 
in 2SMR (Supplementary Tables S14–S17) and GSMR 
(Supplementary Tables S18-S19) analysis are presented 
in the Supplementary Tables.

Although a relatively small SNP-based heritability 
z-score was obtained for fasting proinsulin (z < 7), which 
may lead to an inaccurate heritability estimate, our LCV 
analyses found significant evidence for partial genetic 
causality between fasting proinsulin and both migraine 

HbA1c Glycated haemoglobin, T1D Type 1 diabetes, Genes RefSeq genes, hg19 human genome version 19
*These genes overlapped with the genome-wide significant genes identified between migraine and more 
than one glycemic trait

Table 6  (continued) Genes Chromosome Start position (hg19) End position (hg19) Glycemic traits

CLIC1 6 31698358 31705095 Glucose, HbA1c, T1D
MSH5 6 31707725 31730455 Glucose, HbA1c, T1D
SAPCD1 6 31730773 31732627 Glucose, HbA1c, T1D
VWA7 6 31733178 31745108 Glucose, HbA1c, T1D
*NEU1 6 31826829 31830709 Glucose, HbA1c, T1D
*SLC44A4 6 31830969 31846823 Glucose, HbA1c, T1D
*EHMT2 6 31847536 31865464 Glucose, HbA1c, T1D
C2 6 31865562 31913449 Glucose, HbA1c, T1D
CFB 6 31913721 31919861 Glucose, HbA1c, T1D
NELFE 6 31919864 31926864 Glucose, HbA1c, T1D
SKIV2L 6 31926581 31937532 Glucose, HbA1c, T1D
CYP21A2 6 32006093 32009447 Glucose, HbA1c, T1D
TNXB 6 32008932 32077151 Glucose, HbA1c, T1D
ATF6B 6 32083045 32096017 Glucose, HbA1c, T1D
*STAC3 12 57637241 57644971 Glucose, HbA1c



1162 Human Genetics (2023) 142:1149–1172

1 3

Ta
bl

e 
7 

 M
en

de
lia

n 
ra

nd
om

is
at

io
n 

re
su

lts
 fo

r m
ig

ra
in

e 
an

d 
ea

ch
 o

f t
he

 g
ly

ce
m

ic
 tr

ai
ts

IV
W

 in
ve

rs
e 

va
ria

nc
e 

w
ei

gh
te

d,
 M

R 
Eg

ge
r 

Eg
ge

r r
eg

re
ss

io
n 

ap
pr

oa
ch

, M
R-

PR
ES

SO
 M

en
de

lia
n 

R
an

do
m

iz
at

io
n 

Pl
ei

ot
ro

py
 R

ES
id

ua
l S

um
 a

nd
 O

ut
lie

r, 
G

SM
R 

ge
ne

ra
liz

ed
 s

um
m

ar
y 

da
ta

-b
as

ed
 

M
en

de
lia

n 
ra

nd
om

iz
at

io
n,

 n
SN

Ps
 th

e 
to

ta
l n

um
be

r o
f S

N
Ps

 u
se

d 
as

 g
en

et
ic

 in
str

um
en

ts
, O

R 
O

dd
s 

ra
tio

, C
I C

on
fid

en
ce

 in
te

rv
al

, G
lo

ba
l P

 G
lo

ba
l t

es
t P

-v
al

ue
, F

G
 F

as
tin

g 
gl

uc
os

e,
 F

I F
as

tin
g 

in
su

lin
, H

bA
1c

 G
ly

ca
te

d 
ha

em
og

lo
bi

n,
 H

O
M

A-
B 

H
om

eo
st

at
ic

 m
od

el
 a

ss
es

sm
en

t o
f β

-c
el

l f
un

ct
io

n,
 H

O
M

A-
IR

 H
om

eo
st

at
ic

 m
od

el
 a

ss
es

sm
en

t o
f i

ns
ul

in
 re

si
st

an
ce

, T
1D

 T
yp

e 
1 

di
ab

et
es

*P
 <

 1 
× 

 10
–5

 th
re

sh
ol

d 
us

ed
 to

 e
xt

ra
ct

 g
en

et
ic

 in
str

um
en

ts
; D

as
h 

(–
) m

ar
ke

d 
de

no
te

s M
R-

PR
ES

SO
 p

ro
du

ce
s N

A
s f

or
 o

ut
lie

r c
or

re
ct

ed
 a

na
ly

si
s i

f n
o 

si
gn

ifi
ca

nt
 o

ut
lie

r S
N

Ps
 o

r h
or

iz
on

ta
l p

le
io

t-
ro

py
 a

re
 d

et
ec

te
d

Ex
po

su
re

O
ut

co
m

e
nS

N
Ps

IV
W

W
ei

gh
te

d 
M

ed
ia

n
M

R-
Eg

ge
r

M
R-

PR
ES

SO
nS

N
Ps

G
SM

R

O
R

 (9
5%

 C
I)

P
O

R
 (9

5%
 C

I)
P

O
R

 (9
5%

 C
I)

P
O

R
P

G
lo

ba
l P

O
R

 (9
5%

 C
I)

P

FG
M

ig
ra

in
e

69
0.

94
 (0

.8
4–

1.
04

)
0.

23
0.

86
 (0

.7
7–

0.
97

)
0.

01
0.

84
 (0

.6
8–

1.
02

)
0.

09
0.

91
0.

07
 <

 2 
× 

 10
–5

10
3

0.
88

 (0
.8

2–
0.

94
)

4.
48

 ×
 10

–5

M
ig

ra
in

e
FG

10
4

1.
00

 (0
.9

9–
1.

01
)

0.
46

1.
00

 (0
.9

9–
1.

01
)

1.
00

1.
00

 (0
.9

7–
1.

03
)

0.
89

1.
00

0.
66

8.
6 ×

  10
–4

13
4

1.
00

 (1
.0

0–
1.

01
)

0.
34

2-
h 

gl
uc

os
e

M
ig

ra
in

e
14

1.
04

 (0
.9

4–
1.

14
)

0.
46

1.
04

 (0
.9

6–
1.

12
)

0.
36

0.
95

 (0
.7

3–
1.

24
)

0.
71

1.
01

0.
82

 <
 2 

× 
 10

–5
13

1.
00

 (0
.9

5–
1.

05
)

0.
91

M
ig

ra
in

e
2-

h 
gl

uc
os

e
10

4
1.

01
 (0

.9
6–

1.
07

)
0.

6
1.

05
 (0

.9
8–

1.
12

)
0.

14
1.

09
 (0

.9
5–

1.
25

)
0.

22
1.

02
0.

35
1.

6 ×
  10

–4
13

8
1.

01
 (0

.9
7–

1.
05

)
0.

64
G

lu
co

se
M

ig
ra

in
e

13
1

0.
96

 (0
.8

9–
1.

02
)

0.
19

0.
95

 (0
.8

9–
1.

02
)

0.
17

1.
00

 (0
.8

7–
1.

14
)

0.
95

0.
95

0.
10

 <
 2 

× 
 10

–5
22

7
0.

94
 (0

.9
0–

0.
98

)
6.

0 ×
 10

–5

M
ig

ra
in

e
G

lu
co

se
10

4
1.

00
 (0

.9
7–

1.
02

)
0.

86
0.

99
 (0

.9
7–

1.
01

)
0.

40
0.

96
 (0

.9
1–

1.
01

)
0.

10
1.

00
0.

76
 <

 2 
× 

 10
–5

13
4

1.
00

 (0
.9

8–
1.

02
)

0.
49

FI
M

ig
ra

in
e

38
0.

99
 (0

.8
0–

1.
23

)
0.

91
1.

01
 (0

.8
1–

1.
25

)
0.

95
0.

63
 (0

.3
2–

1.
22

)
0.

18
-

-
 <

 2 
× 

 10
–5

38
0.

96
 (0

.8
4–

1.
08

)
0.

49
M

ig
ra

in
e

FI
10

4
1.

01
 (1

.0
0–

1.
02

)
0.

16
1.

00
 (0

.9
8–

1.
01

)
0.

81
1.

01
 (0

.9
7–

1.
04

)
0.

70
1.

01
0.

25
 <

 2 
× 

 10
–5

13
2

1.
00

 (1
.0

0–
1.

01
)

0.
33

Pr
oi

ns
ul

in
M

ig
ra

in
e

12
1.

00
 (0

.9
4–

1.
05

)
0.

84
1.

02
 (0

.9
7–

1.
07

)
0.

41
0.

98
 (0

.8
0–

1.
21

)
0.

86
1.

02
0.

21
 <

 1 
× 

 10
–3

14
1.

03
 (1

.0
0–

1.
07

)
0.

08
M

ig
ra

in
e

Pr
oi

ns
ul

in
51

0.
99

 (0
.9

5–
1.

04
)

0.
66

1.
04

 (0
.9

7–
1.

11
)

0.
32

1.
07

 (0
.9

5–
1.

21
)

0.
25

-
-

0.
82

11
9

0.
98

 (0
.9

4–
1.

02
)

0.
28

H
O

M
A

-I
R

M
ig

ra
in

e
66

*
0.

96
 (0

.9
1–

1.
01

)
0.

13
0.

96
 (0

.9
0–

1.
01

)
0.

12
0.

95
 (0

.8
0–

1.
12

)
0.

51
-

-
1.

4 ×
  10

–4
75

*
0.

96
 (0

.9
2–

0.
99

)
0.

02
M

ig
ra

in
e

H
O

M
A

-I
R

51
1.

00
 (0

.9
7–

1.
03

)
0.

93
0.

99
 (0

.9
5–

1.
04

)
0.

81
1.

02
 (0

.9
4–

1.
11

)
0.

61
-

-
0.

05
12

0
1.

00
 (0

.9
8–

1.
02

)
0.

92
H

O
M

A
-B

M
ig

ra
in

e
10

1.
08

 (0
.9

7–
1.

19
)

0.
15

1.
10

 (1
.0

0–
1.

21
)

0.
06

1.
08

 (0
.7

9–
1.

47
)

0.
65

1.
07

0.
18

0.
03

11
1.

09
 (1

.0
3–

1.
15

)
6.

4 ×
 10

–3

M
ig

ra
in

e
H

O
M

A
-B

51
1.

01
 (0

.9
9–

1.
04

0.
34

1.
03

 (0
.9

9–
1.

07
)

0.
11

1.
01

 (0
.9

5–
1.

08
)

0.
66

-
-

0.
11

12
0

1.
02

 (1
.0

0–
1.

04
)

0.
07

T1
D

M
ig

ra
in

e
8

1.
00

 (0
.9

7–
1.

03
)

0.
97

1.
01

 (0
.9

8–
1.

03
)

0.
54

1.
04

 (0
.9

7–
1.

12
)

0.
31

1.
01

0.
41

0.
01

48
1.

01
 (1

.0
1–

1.
02

)
0.

03
M

ig
ra

in
e

T1
D

10
4

1.
08

 (0
.9

3–
1.

26
)

0.
30

1.
08

 (0
.8

9–
1.

30
)

0.
44

0.
88

 (0
.5

8–
1.

32
)

0.
54

1.
07

0.
30

8 ×
  10

–5
13

9
1.

07
 (0

.9
5–

1.
19

)
0.

21
H

bA
1c

M
ig

ra
in

e
26

3
1.

03
 (0

.9
6–

1.
10

)
0.

46
0.

96
 (0

.8
8–

1.
04

)
0.

34
0.

95
 (0

.8
2–

1.
09

)
0.

43
1.

03
0.

42
 <

 1 
× 

 10
–5

63
2

0.
96

 (0
.9

2–
1.

00
)

0.
05

M
ig

ra
in

e
H

bA
1c

10
4

1.
01

 (1
.0

0–
1.

03
)

0.
09

1.
02

 (1
.0

1–
1.

03
)

0.
01

1.
01

 (0
.9

7–
1.

05
)

0.
69

1.
01

0.
07

 <
 2 

× 
 10

–5
12

3
1.

01
 (1

.0
0–

1.
02

)
7.

1 ×
 10

–3



1163Human Genetics (2023) 142:1149–1172 

1 3

Ta
bl

e 
8 

 M
en

de
lia

n 
ra

nd
om

is
at

io
n 

re
su

lts
 fo

r h
ea

da
ch

e 
an

d 
ea

ch
 o

f t
he

 g
ly

ce
m

ic
 tr

ai
ts

IV
W

 in
ve

rs
e 

va
ria

nc
e 

w
ei

gh
te

d,
 M

R 
Eg

ge
r 

Eg
ge

r r
eg

re
ss

io
n 

ap
pr

oa
ch

, M
R-

PR
ES

SO
 M

en
de

lia
n 

R
an

do
m

iz
at

io
n 

Pl
ei

ot
ro

py
 R

ES
id

ua
l S

um
 a

nd
 O

ut
lie

r, 
G

SM
R 

ge
ne

ra
liz

ed
 s

um
m

ar
y 

da
ta

-b
as

ed
 

M
en

de
lia

n 
ra

nd
om

iz
at

io
n,

 n
SN

Ps
 th

e 
to

ta
l n

um
be

r o
f S

N
Ps

 u
se

d 
as

 g
en

et
ic

 in
str

um
en

ts
, O

R 
O

dd
s 

ra
tio

, C
I c

on
fid

en
ce

 in
te

rv
al

, G
lo

ba
l P

 G
lo

ba
l t

es
t P

-v
al

ue
, F

G
 fa

sti
ng

 g
lu

co
se

, F
I 

fa
sti

ng
 

in
su

lin
, H

bA
1c

 g
ly

ca
te

d 
ha

em
og

lo
bi

n,
 H

O
M

A-
B 

H
om

eo
st

at
ic

 m
od

el
 a

ss
es

sm
en

t o
f β

-c
el

l f
un

ct
io

n,
 H

O
M

A-
IR

 h
om

eo
st

at
ic

 m
od

el
 a

ss
es

sm
en

t o
f i

ns
ul

in
 re

si
st

an
ce

, T
1D

 T
yp

e 
1 

di
ab

et
es

*P
 <

 1 
× 

 10
–5

 th
re

sh
ol

d 
us

ed
 to

 e
xt

ra
ct

 g
en

et
ic

 in
str

um
en

ts
; D

as
h 

(–
) m

ar
ke

d 
de

no
te

s M
R-

PR
ES

SO
 p

ro
du

ce
s N

A
s f

or
 o

ut
lie

r c
or

re
ct

ed
 a

na
ly

si
s i

f n
o 

si
gn

ifi
ca

nt
 o

ut
lie

r S
N

Ps
 o

r h
or

iz
on

ta
l p

le
io

t-
ro

py
 a

re
 d

et
ec

te
d

Ex
po

su
re

O
ut

co
m

e
nS

N
Ps

IV
W

W
ei

gh
te

d 
M

ed
ia

n
M

R-
Eg

ge
r

M
R-

PR
ES

SO
nS

N
Ps

G
SM

R

O
R

 (9
5%

 C
I)

P
O

R
 (9

5%
 C

I)
P

O
R

 (9
5%

 C
I)

P
O

R
P

G
lo

ba
l P

O
R

 (9
5%

 C
I)

P

FG
H

ea
da

ch
e

69
1.

02
 (0

.9
3–

1.
11

)
0.

72
0.

99
 (0

.8
8–

1.
11

)
0.

88
0.

95
 (0

.8
0–

1.
13

)
0.

55
–

–
3.

7 ×
  10

–3
11

1
1.

02
 (0

.9
6–

1.
08

)
0.

52
H

ea
da

ch
e

FG
32

1.
00

 (0
.9

9–
1.

02
)

0.
67

1.
01

 (0
.9

8–
1.

03
)

0.
64

0.
98

 (0
.9

3–
1.

03
)

0.
44

–
–

0.
03

40
1.

01
 (1

.0
0–

1.
03

)
0.

45
2-

h 
gl

uc
os

e
H

ea
da

ch
e

13
1.

04
 (0

.9
5–

1.
13

)
0.

38
1.

03
 (0

.9
5–

1.
13

)
0.

46
1.

04
 (0

.8
2–

1.
33

)
0.

73
1.

06
0.

12
1.

3 ×
  10

–3
14

1.
02

 (0
.9

6–
1.

08
)

0.
56

H
ea

da
ch

e
2-

h 
gl

uc
os

e
32

1.
07

 (0
.9

9–
1.

16
)

0.
07

1.
12

 (1
.0

1–
1.

25
)

0.
03

1.
08

 (0
.8

7–
1.

34
)

0.
48

–
–

0.
18

39
1.

03
 (0

.9
7–

1.
08

)
0.

32
G

lu
co

se
H

ea
da

ch
e

13
2

0.
94

 (0
.8

8–
1.

00
)

0.
07

0.
99

 (0
.9

2–
1.

06
)

0.
72

0.
96

 (0
.8

5–
1.

09
)

0.
52

0.
96

0.
16

 <
 2 

× 
 10

–5
24

8
0.

97
 (0

.9
3–

1.
01

)
0.

12
H

ea
da

ch
e

G
lu

co
se

34
0.

98
 (0

.9
5–

1.
01

)
0.

24
0.

98
 (0

.9
5–

1.
01

)
0.

26
0.

93
 (0

.8
6–

1.
02

)
0.

12
0.

99
0.

38
 <

 1 
× 

 10
–4

39
1.

00
 (0

.9
8–

1.
02

)
0.

66
FI

H
ea

da
ch

e
38

1.
00

 (0
.8

3–
1.

21
)

0.
97

1.
00

 (0
.8

1–
1.

24
)

1.
00

0.
85

 (0
.4

9–
1.

49
)

0.
57

1.
06

0.
50

2.
2 ×

  10
–4

37
0.

99
 (0

.8
5–

1.
13

)
0.

86
H

ea
da

ch
e

FI
32

1.
02

 (0
.9

9–
1.

06
)

0.
18

0.
99

 (0
.9

7–
1.

02
)

0.
62

1.
01

 (0
.9

2–
1.

11
)

0.
87

1.
01

0.
28

 <
 2 

× 
 10

–5
36

1.
01

 (0
.9

9–
1.

03
)

0.
22

Pr
oi

ns
ul

in
H

ea
da

ch
e

12
0.

95
 (0

.9
1–

0.
99

)
0.

01
0.

95
 (0

.9
0–

1.
00

)
0.

03
0.

85
 (0

.7
4–

0.
98

)
0.

05
–

–
0.

12
14

0.
95

 (0
.9

1–
0.

99
)

3.
4 ×

 10
–3

H
ea

da
ch

e
Pr

oi
ns

ul
in

19
1.

07
 (1

.0
0–

1.
15

)
0.

06
1.

06
 (0

.9
6–

1.
17

)
0.

23
1.

02
 (0

.8
4–

1.
23

)
0.

87
–

–
0.

77
32

1.
06

 (1
.0

0–
1.

12
)

0.
08

5
H

O
M

A
-I

R
H

ea
da

ch
e

66
*

0.
96

 (0
.9

1–
1.

01
)

0.
09

0.
95

 (0
.8

9–
1.

01
)

0.
11

1.
03

 (0
.8

6–
1.

23
)

0.
74

–
–

6.
2 ×

  10
–3

74
*

0.
96

 (0
.9

2–
0.

99
)

0.
04

1
H

ea
da

ch
e

H
O

M
A

-I
R

19
1.

00
 (0

.9
6–

1.
05

)
0.

90
1.

00
 (0

.9
4–

1.
06

)
1.

00
1.

04
 (0

.9
2–

1.
18

)
0.

54
–

–
0.

20
33

0.
99

 (0
.9

5–
1.

03
)

0.
76

H
O

M
A

-B
H

ea
da

ch
e

10
1.

02
 (0

.9
2–

1.
13

)
0.

67
1.

03
 (0

.9
3–

1.
14

)
0.

61
0.

92
 (0

.6
8–

1.
25

)
0.

62
–

–
0.

09
11

1.
02

 (0
.9

6–
1.

08
)

0.
50

H
ea

da
ch

e
H

O
M

A
-B

19
1.

01
 (0

.9
7–

1.
05

)
0.

53
1.

04
 (0

.9
9–

1.
09

)
0.

13
1.

04
 (0

.9
3–

1.
16

)
0.

53
–

–
0.

09
33

0.
99

 (0
.9

5–
1.

03
)

0.
50

T1
D

H
ea

da
ch

e
9

0.
98

 (0
.9

6–
1.

00
)

0.
12

0.
98

 (0
.9

7–
0.

99
)

0.
00

2
0.

98
 (0

.9
3–

1.
03

)
0.

50
0.

98
0.

03
4 ×

  10
–3

43
0.

99
 (0

.9
8–

0.
99

)
1.

0 ×
 10

–3

H
ea

da
ch

e
T1

D
34

1.
03

 (0
.8

5–
1.

25
)

0.
77

1.
14

 (0
.8

6–
1.

51
)

0.
37

1.
11

 (0
.6

4–
1.

91
)

0.
72

–
–

0.
73

39
1.

08
 (0

.8
8–

1.
28

)
0.

41
H

bA
1c

H
ea

da
ch

e
26

6
0.

97
 (0

.9
0–

1.
03

)
0.

31
0.

98
 (0

.9
1–

1.
06

)
0.

62
0.

92
 (0

.8
1–

1.
05

)
0.

21
0.

97
0.

30
 <

 2 
× 

 10
–5

66
2

0.
94

 (0
.9

0–
0.

98
)

9.
3 ×

 10
–4

H
ea

da
ch

e
H

bA
1c

34
1.

00
 (0

.9
6–

1.
02

)
0.

66
1.

02
 (1

.0
0–

1.
04

)
0.

10
0.

99
 (0

.9
1–

1.
08

)
0.

85
1.

01
0.

41
 <

 2 
× 

 10
–5

34
1.

01
 (1

.0
0–

1.
02

)
0.

15



1164 Human Genetics (2023) 142:1149–1172

1 3

Fig. 2  The forest plot demon-
strates the odds ratios (ORs) and 
95% confidence intervals (CIs) 
for MR analyses examining the 
causal effects of glycemic traits 
on migraine (A) and headache 
(B). IVW Inverse variance 
weighted was employed as 
the primary analysis, GSMR 
Generalised summary data-
based Mendelian Randomisa-
tion was used as a sensitivity 
analysis, FG Fasting glucose, 
FI Fasting insulin, HbA1c Gly-
cated haemoglobin, HOMA-B 
Homeostatic model assessment 
of β-cell function, HOMA-IR 
Homeostatic model assessment 
of insulin resistance, T1D Type 
1 diabetes
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2hr glucose

Glucose

FI

Proinsulin

HOMA-IR

HOMA-B

T1D

HbA1c

1.02 [0.93-1.11]
1.02 [0.96-1.08]

1.04 [0.95-1.13]
1.02 [0.96-1.08]

0.94 [0.88-1.00]
0.97 [0.93-1.01]

1.00 [0.83-1.21]
0.99 [0.85-1.13]

0.95 [0.91-0.99]
0.95 [0.91-0.99]

0.96 [0.91-1.01]
0.96 [0.92-0.99]

1.02 [0.92-1.13]
1.02 [0.96-1.08]

0.98 [0.96-1.00]
0.99 [0.98-0.99]

0.97 [0.90-1.03]
0.94 [0.90-0.98]

0.72
0.52

0.38
0.56

0.07
0.12

0.97
0.86

0.01
3.4 × 10-3

0.09
0.04

0.67
0.5

0.12
1.1 × 10-3

0.31
9.4 × 10-4

Odds ratio (95%CI) P-value

0.8 0.9 1 1.1 1.2 1.3 1.4

Odds ratio ± 95% CI

Glycaemic traits on headache

IVW GSMR

B
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(GCP = 0.74, SE = 0.18, P = 9.67 ×  10–9) and headache 
(GCP = 0.85, SE = 0.11, P = 8.05 ×  10–22) (Supplementary 
Table S20). No other glycemic traits showed significant 
evidence for genetic causality with migraine and headache 
in the LCV analyses. Supplementary Table S20 contains 
all LCV model results.

Pathway analysis

Pathway analyses of the genes associated with migraine 
and the glycemic traits, and headache and the glycemic 
traits found multiple pathways significantly enriched by the 
overlapping associated genes (Supplementary Tables S21 
and S22). There were no significantly enriched pathways 
for genes overlapping migraine and HOMA-IR. However, 
genes associated with migraine and the remaining eight gly-
cemic traits were enriched in pathways including ‘regula-
tion of carbohydrate catabolic process,’ ‘response to axon 
injury,’ ‘chromatin assembly or disassembly,’ ‘signalling by 
Notch,’ ‘pre-notch transcription and translation,’ ‘pre-notch 
expression and processing,’ ‘oxidative stress induced senes-
cence,’ ‘systemic lupus erythematosus,’ and ‘alcoholism’. 
In addition, genes associated with headache and glycemic 
traits were enriched in pathways including ‘magnesium ion 
binding,’ ‘chromatin assembly or disassembly,’ ‘antigen 
processing and presentation of exogenous peptide antigen,’ 
‘nucleosome assembly,’ ‘type I diabetes mellitus,’ ‘autoim-
mune thyroid disease,’ and ‘systemic lupus erythematosus’ 
pathways. These pathways may play a role in the mecha-
nisms underlying the co-occurrence of migraine, headache, 
and glycemic traits. Supplementary Tables S21 and S22 pro-
vide further details on these pathways, including the genes 
involved.

Discussion

This in-depth genome-wide cross-trait study explores the 
shared genetic basis underpinning migraine and headache 
with glycemic traits. We discovered a nominally significant 
genetic correlation between migraine and five glycemic traits 
(2-h glucose, FI, fasting proinsulin, T1D, and HbA1c), and 
between headache and three glycemic traits (FI, fasting pro-
insulin, and HbA1c). When the genome was divided into 
independent genomic regions for the pairwise association 
(GWAS-PW) analysis, we found eight and twelve genomic 
regions containing significant pleiotropic effects between 
migraine and glycemic traits, and headache and glycemic 
traits, respectively. Using cross-trait meta-analysis, we found 
multiple shared loci between migraine and headache with 
glycemic traits, and MR analysis indicated a causal role for 
fasting proinsulin in preventing headache.

In the LDSC analyses, 2-h glucose, FI and HbA1c pro-
duced a statistically significant genetic correlation with 
migraine, while FI and HbA1c produced a significant genetic 
correlation with a headache. These results offer new insight 
and are consistent with the known relationship between 
migraine and higher glucose and insulin levels in published 
observational epidemiological research (Cavestro et  al. 
2007; Gruber et al. 2010; Islam and Nyholt 2022; Zhang 
et al. 2020). In addition, previous research has also discov-
ered that T1D (a high level of HbA1c) and a higher glu-
cose level are inversely associated with migraine (Aamodt 
et al. 2007; Fagherazzi et al. 2019; Gray and Burtness 1935; 
Hagen et al. 2018). Our findings, however, show that a 
shared genetic overlap likely caused the significant associa-
tion between migraine and headache with glycemic traits. In 
support of this idea, gene-based association analysis dem-
onstrates a highly substantial amount of gene-level genetic 
overlap between migraine and headache with glycemic traits.

GWAS-PW analyses found significant shared genomic 
regions between migraine and glycemic traits, and head-
ache and glycemic traits, including some glycemic traits 
that did not produce a significant LDSC genetic correlation 
(Table 2). These pleiotropic regions suggest a shared genetic 
basis underlying these two traits either directly through the 
genetic variants that affect both traits because of horizon-
tal pleiotropy and/or vertical pleiotropy, the causal effect 
of one trait on the other, also known as causality. Among 
these shared genomic regions, those on chromosomes 1 and 
9 harbour the MEF2D and ASTN2 genes, previously reported 
to be the closest genes to a lead migraine SNP (Hautakangas 
et al. 2022) and headache SNP (Meng et al. 2018). Interest-
ingly, ASTN2 (astrotactin 2) is a neuronal protein that plays 
a crucial function in neural development through its involve-
ment in neuronal adhesion (Jiao et al. 2015). In addition, 
neuronal pathways can influence insulin sensitivity (Uno 
et al. 2006) and contribute to the symptoms of insulin resist-
ance syndrome in people with T2D and obesity (Jiao et al. 
2015). Earlier research reported that genetic variants within 
or near the ASTN2 gene are associated with neuropsychiatric 
conditions such as schizophrenia, autism, and cognitive dys-
function (Wilson et al. 2010), making it a potential candidate 
for both migraine and glycemic traits. Additionally, regions 
at chromosomes 14 and 17 contain the SERPINA1 and SMG6 
genes, which were previously shown to be the closest genes 
to a lead migraine SNP (Hautakangas et al. 2022). Notably, 
there is an overlap between the significant shared regions 
for migraine and glycemic traits found in chr1: 156336133-
158027330, chr2: 209941529-212379238, and chr14: 
94325812-95750857 with the shared region reported for 
headache and glycemic traits. These regions contain genetic 
variants that were mapped to multiple genome-wide signifi-
cant genes with top SNPs P < 1.0 ×  10–5 (C1orf61, MEF2D, 
NTRK1, CPS1, SERPINA2, SERPINA1, and ITPK1); many 
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of these loci have been previously reported to be the near-
est genes to a lead migraine SNP (Hautakangas et al. 2022) 
and headache SNP (Meng et al. 2018, 2021), thus further 
highlighting genes that may provide insight into the shared 
biology underlying the comorbidity of migraine and head-
ache with glycemic traits. The GWAS-PW analyses found no 
shared genomic regions for HOMA-B and HOMA-IR with 
migraine and headache; however, given that their GWAS 
sample sizes are relatively small, further investigation using 
more powerful HOMA-B and HOMA-IR GWAS summary 
statistics is required to clarify their relationships.

Genetic correlation estimates the average genetic effects 
shared between two traits, while GWAS-PW analysis iden-
tifies particular genomic regions shared by both traits. We 
also conducted a cross-trait meta-analysis to explore fur-
ther the complicated genetic relationships between migraine 
and headache with glycemic traits. Using cross-trait meta-
analysis, we found six novel loci (lead SNPs) shared across 
migraine and glycemic traits and six novel loci shared 
across headache and glycemic traits, providing leads into 
the potential genes and biological pathways underlying 
their comorbidity (Table 3). Notably, all but one of these 12 
novel SNPs (i.e., rs223497 from a meta-analysis of head-
ache and glucose) were identified from a meta-analysis of 
GWAS datasets with no sample overlap. In terms of poten-
tial pathophysiology, among these shared loci, we high-
light five interesting loci of MANBA, KCNK16, ADAMTS9, 
NBEAL1, and ELFN1. MANBA, a novel locus shared by 
migraine and FG (lead SNP rs223482), headache and FG 
(lead SNP: rs223482), and headache and glucose (lead SNP 
rs223497) in the cross-trait meta-analyses. We also identi-
fied the MANBA locus as a significant pleiotropic region 
(chr4: 103221459-105304491) in the GWAS-PW analyses 
for migraine and FG, headache and FG, and headache and 
glucose. A study of the MANBA expression in brain tissues 
suggests that the cerebellar cortex, medulla, and pons are the 
primary sites where it is expressed, in line with the idea that 
the cerebellar cortex plays a role in migraine pathophysiol-
ogy (Chen et al. 2022). Guo et al. recently reported MANBA 
as a risk gene associated with migraine and blood pressure 
through transcriptome-wide association studies (Guo et al. 
2020). In addition, genomic regions containing the MANBA 
gene are associated with migraine and small vessel disease 
(Malik et al. 2015). Several other genes (CISD2, NFKB1, 
SLC9B1/2, BDH2, and CENPE) in this region (± 500 kb) 
have been strongly associated with essential hypertension 
(Malik et al. 2015), inflammatory diseases, and autoimmune 
disorders (Lagou et al. 2021); these conditions are signifi-
cant risk factors for migraine and glycemic traits like hyper-
glycaemia and IR. However, further research is required to 
confirm and understand the genetic basis and involvement 
of MANBA in the onset and progression of diseases like 
migraine and glycemic traits.

KCNK16, located near lead SNP rs9380862, was revealed 
as a significant shared locus associated with both migraine 
and glucose. KCNK16 encodes potassium two-pore domain 
channel subfamily K member 16 (also called TALK1). This 
channel was shown to be expressed in human and animal 
pancreatic beta cells and is crucial for the cell’s electrical 
excitability and glucose-induced insulin secretion (Ndiaye 
et al. 2017). Reduced expression of the KCNK16 gene has 
been suggested to play a role in beta-cell function and was 
strongly associated with altered insulin secretion (Ndiaye 
et al. 2017) and discovered as a susceptibility locus for T2D 
in several GWAS studies conducted in East Asian, Indian, 
and European descent populations (Cho et al. 2011; Wood 
et al. 2017). Of the 123 migraine risk loci identified in the 
most recent and largest GWAS study of migraine (Hautakan-
gas et al. 2022), one ion channel gene (KCNK5) was found 
to be associated with migraine. Additionally, KCNK16 and 
KCNK17 variants were associated with a higher risk of epi-
lepsy as they altered channel currents and spike frequencies 
(Lee et al. 2021) which is noteworthy given epilepsy is more 
prevalent in migraine patients than in the general popula-
tion, and the prevalence of migraine in epilepsy patients is 
higher than in non-epilepsy controls (Keezer et al. 2015) 
and migraine and epilepsy have been shown to have a shared 
genetic etiology (Anttila et al. 2018).

The ADAMTS9 gene, located near lead SNP rs4611812, 
encodes the ADAMTS-9 protein, a member of the ADAMTS 
(a disintegrin and metalloproteinase with thrombospondin 
motifs) protein family, which may also play a key role in 
the pathophysiological processes underlying the diseases of 
the central nervous system like ischemic stroke and spinal 
cord injury (Lin et al. 2017). Our findings are supported by 
studies showing the association of the ADAMTS9 gene with 
T2D, IR, and insulin sensitivity (Boesgaard et al. 2009; Lin 
et al. 2017; Zeggini et al. 2008). Given that IR is a risk factor 
for migraine development, we hypothesised that the genes 
relevant to IR might be associated with migraine and head-
ache (Islam and Nyholt 2022). Furthermore, in addition to 
playing a significant role in maintaining normal brain func-
tion, insulin imbalances also raise the chance of developing 
migraines (Islam and Nyholt 2022) and other neurodegen-
erative diseases like Alzheimer’s and cognitive aging (Lin 
et al. 2017). However, the molecular mechanisms underlying 
ADAMTS9’s effect on insulin action and migraine risk are 
currently unknown.

NBEAL1, near lead SNP rs375380888, encodes the Neu-
robeachin-like 1 protein, one of the nine proteins that share 
the BEACH (Beige and Chediak-Higashi) domain. NBEAL1 
was previously identified in a GWAS of migraine (Gorm-
ley et al. 2016) and cerebral small vessel disease (Chung 
et al. 2019). Furthermore, it was reported to affect cellu-
lar cholesterol metabolism and LDL absorption and to be 
related to coronary artery diseases (Bindesbøll et al. 2020). 
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NBEAL1 has also recently been found to be associated with 
white matter hyperintensities (Traylor et al. 2016). However, 
the biological roles of NBEAL1 in the pathophysiology of 
migraine and headache are yet unclear and require further 
research. ELFN1 (extracellular-leucine-rich repeat fibronec-
tin domain1), located near lead SNP rs28728306, is abun-
dantly expressed in hippocampal gamma-aminobutyric acid 
(GABA)-ergic interneurons. A cross-trait genetic study very 
recently found ELFN1 implicated in migraine, headache, and 
T2D (Md Rafiqul Islam et al. 2022). ELFN1 recruits metabo-
tropic glutamate receptors like mGluR7 to the presynaptic 
membrane (Stafstrom et al. 2017). ELFN1-deficit mutant 
mice develop seizures (Stafstrom et al. 2017). An imbal-
ance between excitation and inhibition in one or more brain 
regions causes a seizure. Moreover, neuronal hyperexcitabil-
ity is also associated with neurological disorders, including 
migraines and headache, suggesting ELFN1 to be an exciting 
candidate gene for migraine susceptibility (Lee et al. 2021).

We further assessed the relationship between migraine 
and headache with glycemic traits using gene-based associa-
tion analyses. Our analyses identified shared genes signifi-
cantly associated with migraine or headache, and multiple 
glycemic traits. Among the shared genes, four genes (NEU2, 
SLC44A4, and EHMT2 on chromosome 6, and STAC3 on 
chromosome 12) were associated with both migraine and 
headache. Interestingly, neuronal subunits express the pro-
tein encoded by the STAC3 gene, which has Src homology 3 
and cysteine-rich domains (Hsu et al. 2020). STAC3 controls 
excitation and contraction coupling in murine skeletal mus-
cles and is responsible for a congenital condition known as 
Native American myopathy (Horstick et al. 2013). STAC3 
has recently been discovered as a risk gene for migraine and 
metabolic traits (Tanha et al. 2021). Additionally, among 
the overlapping genes between migraine and headache with 
glycemic traits, five genes have previously been associated 
with migraine (THADA, EHMT2, AMBRA1, and SMG6) 
(Hautakangas et al. 2022) and headache (ATG13) (Meng 
et al. 2018); now, these genes are also implicated in gly-
cemic traits. Further research is required to fully under-
stand the function of the shared genes with their putative 
molecular interactions in the development of migraine, 
headache, and glycemic traits. Furthermore, the FCP test 
identified 181 genes with genome-wide significant gene-
based P values overlapping migraine, headache, and more 
than one glycemic trait. Among the overlapping genes, four 
(ADAMTSL4, EHMT2, SUGP1, and MAU2) were associated 
with migraine, headache, and at least five glycemic traits 
(Supplementary Table S11). Genes like ADAMTSL4 encode 
a protease and play a vital role in various biological pro-
cesses, such as inflammation and angiogenesis (Abramowitz 
et al. 2016). Interestingly, in addition to migraine (Gorm-
ley et al. 2016), ADAMTSL4 has recently been identified 
as a risk gene for migraine and cervical artery dissection 

(Daghals et al. 2022). According to recent research, MAU2, 
a protein-coding gene, has a significant role in chromatin-
related functions such as DNA repair and regulation of tran-
scription and has been associated with headache (Meng et al. 
2021) and the rare condition Cornelia de Lange Syndrome 
(Parenti et al. 2020).

Our comprehensive MR investigation results support 
the hypothesis that a genetic liability to fasting proinsulin 
may reduce the risk of headache. The sensitivity analysis 
likewise supports this finding, indicating that horizontal 
pleiotropy is unlikely to impact the outcomes. This con-
clusion is further corroborated by LCV, which found a 
partial causal relationship between fasting proinsulin and 
headache. We do not currently understand the pathophysi-
ological mechanisms that may underlie a protective effect 
of fasting proinsulin on headache. However, proinsulin has 
been identified to activate neuroprotective pathways in the 
hippocampus and trigger a downstream signalling cascade 
that reduces astrocyte reactivity and neuroinflammatory 
biomarkers, all of which are involved in the pathogenesis 
of migraine, headache, and other neurological conditions 
(Corpas et al. 2017). Additionally, we note that many sig-
nificant genes (e.g., AMBRA1, ATG13, ARHGAP1, CKAP5, 
LRP4, and DDB2; Supplementary Tables S12 and S13) 
have been associated with migraine, headache, and proin-
sulin. Intriguingly, AMBRA1 is involved in many cellular 
processes, including neuroprotection, apoptosis, autophagy, 
and neuronal development (La Barbera et al. 2019). GWAS 
have shown that AMBRA1, along with other ATG proteins 
like ATG13 (autophagy-related 13), is involved in activat-
ing beclin-1-regulated autophagy and favours the autophago-
some core complex (Portilla-Fernandez et al. 2019). In 
experimental settings, disturbed proinsulin or insulin home-
ostasis in pancreatic beta cells has also been associated with 
a dysfunctional autophagy process (Portilla-Fernandez et al. 
2019). Recent evidence suggested that abnormal autophagy 
is involved in neuropathic pain and may have a role in the 
etiology of chronic migraine by controlling microglial acti-
vation and following inflammatory response (Jiang et al. 
2021). It supports the idea that autophagy pathways may be 
involved in the association of proinsulin with migraine and 
headache. Further research is needed to determine which 
specific function of proinsulin may reduce the risk of head-
ache. Thus, deciphering the molecular mechanisms behind 
proinsulin’s protective effect on headache should be of inter-
est to the headache research community.

Additionally, we note inconclusive evidence for the 
causal effects of some of the glycemic traits on migraine 
and headache after adjusting for multiple testing, primarily 
in GSMR analysis, although the direction of causal effects 
was consistent across various MR sensitivity analyses. For 
instance, we found evidence that genetic liability to FG and 
glucose causally reduce migraine; however, our sensitivity 
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studies revealed that this finding could have been affected 
by other biological processes because of horizontal pleiot-
ropy. Similarly, there was inconsistent evidence that genetic 
liability to HbA1c was associated with a decreased risk of 
headache. Interestingly, these results support earlier observa-
tional findings that hypoglycaemia triggers migraines (Gray 
and Burtness 1935), and hyperglycaemia or a higher level 
of HbA1c can prevent migraine headache (Fagherazzi et al. 
2019; Hagen et al. 2018). These differences in MR find-
ings may be due to the lower number of genetic instruments 
utilised in the 2SMR analysis than in the GSMR analysis, 
hence there may be inadequate power to detect a causal rela-
tionship across all methods. Additional research with more 
powerful GWAS summary statistics is required to investigate 
the relationship between markers of glycemic dysregulation 
and the risk of migraine and headache. Given none of the 
other glycemic traits were causally associated with migraine 
and headache risk in the MR analyses, their relationships 
appear most likely to be due to shared genetics (pleiotropy) 
and common biological mechanisms rather than causality.

Gene-based association analyses of migraine and head-
ache with glycemic traits identified significant overlapping 
genes enriched in multiple pathways such as cell signalling 
(e.g., signalling by a notch), cellular processes, oxidative 
stress-induced senescence, epigenetic mechanisms, catabolic 
and autoimmune pathways. According to earlier observa-
tional studies (Biscetti et al. 2021; Borkum 2016; Gerring 
et al. 2018; Gross et al. 2019), there is a relationship between 
metabolic imbalances, oxidative stress, epigenetics, and 
autoimmunity with migraine and headache. Our results thus 
support the potential involvement of these pathways in the 
comorbidity of migraine and headache with glycemic traits.

Strengths and limitations

Our research has several important strengths. First, we 
conducted robust cross-trait analyses leveraging the most 
comprehensive GWAS summary statistics and current 
statistical genetic methodologies. In addition to estimat-
ing genetic correlations and identifying shared loci, we 
used the LCV technique and multiple 2SMR approaches, 
including GSMR, to test for causality, which combined, 
should minimise the chance of false positive causal rela-
tionships and avoid bias due to weak instruments, reverse 
causality, and horizontal pleiotropy. However, we acknowl-
edge several limitations in our study. First, the general-
isability of our findings is limited to European ancestry 
populations; however, we could not analyse non-European 
populations due to the unavailability of summary statis-
tics from migraine and headache GWAS in non-European 
samples. Therefore, when they become available, it will be 
important to conduct analogous cross-trait analyses using 
GWAS summary statistics from non-European ancestries. 

Second, although we analysed the latest and most pow-
erful GWAS summary statistics, there are currently no 
sufficiently-powered independent migraine and headache 
GWAS datasets that could be used to replicate our results. 
Third, the GWAS summary statistics for fasting proinsulin 
are limited by their relatively small sample size; therefore, 
larger and more powerful GWAS summary statistics for 
fasting proinsulin are needed to conclusively character-
ise a causal relationship between migraine and headache. 
Fourth, examination of LDSC gcov_int values indicated a 
small sample overlap between headache and glucose and 
headache and T1D. Although the levels of sample over-
lap are unlikely to confound the cross-trait SNP meta-
analyses, future analyses should utilize non-overlapping 
samples to ultimately confirm the relevant findings. Fifth, 
we acknowledge that there were not many IVs for some 
glycemic traits (i.e., HOMA-B, HOMA-IR, and T1D) at a 
genome-wide significant level in our MR analyses. Thus, 
further investigations are warranted using future, more 
powerful GWAS summary statistics (producing stronger 
genetic instruments) for HOMA-B, HOMA-IR, and T1D.

Conclusion

The current study confirmed and provides an improved 
understanding of the relationship between migraine, head-
ache, and glycemic traits by identifying genetic correlation, 
and shared loci and genes, and inferring causal association. 
These findings provide novel insight into the potential under-
lying biology influencing migraine, headache, and glycemic 
traits. The implicated genes, loci, and pathways, provide 
important targets for further functional investigations to 
uncover the precise molecular mechanisms that contribute 
to their comorbidity. Furthermore, findings from this study 
provide important motivation and avenues to develop novel 
treatment strategies for managing glycemic traits in migraine 
and headache patients, particularly increasing fasting proin-
sulin levels to protect against headache.
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