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Abstract
Copy number variants (CNVs) represent major etiologic factors in rare genetic diseases. Current clinical CNV interpretation 
workflows require extensive back-and-forth with multiple tools and databases. This increases complexity and time burden, 
potentially resulting in missed genetic diagnoses. We present the Suite for CNV Interpretation and Prioritization (SCIP), a 
software package for the clinical interpretation of CNVs detected by whole-genome sequencing (WGS). The SCIP Visuali-
zation Module near-instantaneously displays all information necessary for CNV interpretation (variant quality, population 
frequency, inheritance pattern, and clinical relevance) on a single page—supported by modules providing variant filtration 
and prioritization. SCIP was comprehensively evaluated using WGS data from 1027 families with congenital cardiac disease 
and/or autism spectrum disorder, containing 187 pathogenic or likely pathogenic (P/LP) CNVs identified in previous cura-
tions. SCIP was efficient in filtration and prioritization: a median of just two CNVs per case were selected for review, yet 
it captured all P/LP findings (92.5% of which ranked 1st). SCIP was also able to identify one pathogenic CNV previously 
missed. SCIP was benchmarked against AnnotSV and a spreadsheet-based manual workflow and performed superiorly than 
both. In conclusion, SCIP is a novel software package for efficient clinical CNV interpretation, substantially faster and more 
accurate than previous tools (available at https://​github.​com/​qd29/​SCIP, a video tutorial series is available at https://​bit.​ly/​
SCIPV​ideos).
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pLI	� Probability of being loss-of-function intolerant
P/LP	� Pathogenic or likely pathogenic
popmax	� The continental population with the highest 

allele frequency (gnomAD)
RAM	� Random access memory
SCIP	� Suite for CNV Interpretation and Prioritization
SNV	� Single-nucleotide variants
SV	� Structural variation
TCAG​	� The Centre for Applied Genomics
TS	� Triplosensitive/triplosensitivity
WGS	� Whole-genome sequencing

Introduction

Deletions or duplications of human genomic regions are col-
lectively termed copy number variants (CNVs). CNVs range 
in size from 50 base-pairs (bp) to mega base-pairs (Mb). 
CNVs can exist as benign variations, e.g., > 20,000 CNVs 
with an allele frequency > 1% have been catalogued (Collins 
et al. 2020; Feuk et al. 2006; Iafrate et al. 2004; MacDonald 
et al. 2014; Sebat et al. 2004); however, they are also a major 
contributor to genetic disease as numerous contiguous gene 
syndromes have been documented (Amberger et al. 2019; 
Yuen et al 2017; Cerruti Mainardi 2006; Costa et al. 2022; 
McDonald-McGinn et al. 2015; Oskoui et al. 2015; Pereira 
and Marion 2018; Zarrei et al. 2019). Whole-gene deletions 
and intragenic deletions or duplications can cause loss-of-
function, while whole-gene duplications result in local trip-
loidy. To date, > 300 genes have been curated by the ClinGen 
Consortium (Rehm et al. 2015) as haploinsufficient.

Whole-genome sequencing (WGS) is increasingly being 
recommended as a first-line test for suspected rare genetic 
disorders (Lionel et al. 2018; Manickam et al. 2021; Mar-
shall et al. 2020; NICUSeq Study Group et al. 2021). One 
major advantage of WGS is the ability to detect single-
nucleotide variants (SNVs), indels, CNVs, and copy-neu-
tral structural variants (SVs) genome-wide in a single test. 
Furthermore, unlike karyotyping and chromosomal microar-
ray analysis (CMA), which have lower bounds on the CNV 
sizes they can detect, WGS identifies CNVs of all sizes. In 
recent studies, WGS was found to have superior sensitiv-
ity in detecting CNVs compared with CMA (Gross et al. 
2019; Jiang et al. 2013; Trost et al. 2018). CNV detection in 
paired-end WGS data is supported by three major types of 
evidence: read depth (Abyzov et al. 2011; Handsaker et al. 
2011; Zhu et al. 2012), paired-end reads with abnormal 
insert size and/or orientation, and split reads (Figure S1), 
with the latter two commonly referred to as anomalous reads 
(Chen et al. 2016).

Several factors make the clinical interpretation of CNVs 
challenging. Caused by the relatively higher false detec-
tion rate of CNVs compared with SNVs and indels, greater 

emphasis must be placed on variant quality assessment. 
Tools such as the Integrative Genomics Viewer (IGV) 
(Thorvaldsdóttir et al. 2013) are used to visually inspect 
read depth and/or anomalous reads at the putative CNV. 
However, this can be time-consuming, as it can take one 
minute or more per CNV for IGV to display alignments 
(depends on read depth and size). In addition, visualization 
relative to other annotations is essential to interpret CNVs. 
During this step, an analyst must query multiple databases, 
e.g., gnomAD-SV (Collins et al. 2020) and DGV (Mac-
Donald et al. 2014) for benign variation, ClinGen dos-
age sensitivity curations for haploinsufficient (HI) and 
triplosensitive (TS) regions, genome browsers for genes, 
and ClinVar (Landrum et al. 2018) and DECIPHER (Firth 
et al. 2009) for pathogenic variation. This process is com-
plex and error-prone, as it involves back-and-forth maneu-
vers and synthesizing evidence across multiple webpages.

Several publicly available tools have been developed to 
address these inefficiencies. ClinSV is a CNV/SV analysis 
pipeline that uses custom IGV tracks to display binned 
read depth and mapping quality, anomalous reads, and 
variants from both an internal database and DGV (Mino-
che et al. 2021). Another tool, samplot, pre-generates read 
depth and anomalous read plots for manual review of CNV 
quality (Belyeu et al. 2021). CNspector is an interface for 
interactive viewing of copy number changes at scales 
from single-exon to genome-wide, particularly suitable 
for cancer genomes (Markham et al. 2019). CNVxplorer 
allows users to query biological annotations (e.g., pathway 
enrichment, KO models, regulatory regions) of a CNV, but 
could not be used for variant quality assessment (Requena 
et al. 2021). AnnotSV (with visualization provided by 
knotAnnotSV) is a web-based tool that performs anno-
tation, prioritization, and visualization for human CNVs 
and SVs (Geoffroy et al. 2021). However, it is not capable 
of visualizing variant quality or incorporating it for pri-
oritization. In summary, some of these tools are suitable 
for CNV quality assessment, while others are designed to 
explore clinical relevance; however, no publicly available 
tool exists that allows for investigation of both aspects 
simultaneously in a unified and integrated environment.

Here we present the Suite for CNV Interpretation and 
Prioritization (SCIP), which provides a Visualization 
Module that near-instantaneously displays all information 
necessary for clinical CNV interpretation. The Visualiza-
tion Module is supported by a backend, providing variant 
filtration and prioritization. SCIP was rigorously evalu-
ated using 1027 families ascertained for congenital cardio-
vascular disease and/or autism spectrum disorder (ASD). 
SCIP performed substantially better than a spreadsheet-
based manual workflow and AnnotSV (Geoffroy et  al. 
2021).
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Materials and methods

Computational requirements and implementation 
of SCIP

The SCIP backend was implemented at the high-perfor-
mance computing facility of SickKids Research Institute. 
Each instance of the SCIP backend was run on a single 
core on a server with a 2.3-GHz Skylake Intel Xeon pro-
cesser and 8 GB of memory (unless for CNVs > 10 Mb in 
size [up to 64 GB of memory was used]) running CentOS 
7. Required software include Perl (v5.16), R (v3.5.1), 
samtools (v1.10), bedtools (v2.26), and tabix 
(v0.2.5). The Visualization Module was implemented on 
the analysts’ personal computers, running macOS Big Sur 
or Windows 10 using Google Chrome. Required software 
includes R, RStudio, and three R packages (shiny, DT, 
and plotrix) and their dependencies. See Supplemen-
tary Materials for details on generating the annotation files 
used by SCIP.

The spreadsheet‑based manual workflow for clinical 
CNV interpretation

After variant calling, all CNVs in a given sample were 
processed by an in-house annotation pipeline, which out-
puts a spreadsheet where each row is a CNV and each 
column is an annotation. The following types of annota-
tion were included: variant quality, overlap with common 
(variant frequency > 1%) and rare CNVs in gnomAD-SV, 
DGV, and internal control databases, overlap with genes 
and curated dosage sensitive regions, gene constraint 
information (e.g., gnomAD and ExAC pLI Karczewski 
et al. 2020; Lek et al. 2016)), and gene–phenotype/disease 
association. This spreadsheet-based workflow was applied 
to both the CGC and MSSNG samples. For the MSSNG 
samples, an additional column indicates whether the CNV 
was considered as “high quality rare”.

The spreadsheet was reviewed by an analyst with an 
advanced degree in genetics, tasked with identifying 
potentially reportable CNVs. Filters, typically a combi-
nation of variant quality and gene constraints, were used 
for CNV prioritization. Regions that harbour candidates 
(putative CNVs that appears to be reportable based on 
the information in the spreadsheet, if their variant quali-
ties are satisfactory, i.e., if they are true positive CNV 
calls) were visualized in IGV to assess read depth and 
anomalous reads. This process is time-consuming, as 
loading read alignments may take a long time (especially 
for large CNVs) and additional efforts may be required 
to inspect anomalous reads (particularly split reads). The 

analyst would consult various online tools to confirm the 
information in the spreadsheet and/or gather additional 
information. Classification was based on the synthesis of 
all available information, considering the patient’s clinical 
manifestation(s).

For the CGC samples, the CNVs identified by the analysts 
were further reviewed by a panel of clinical and molecu-
lar geneticists and genetic counsellors. For the MSSNG 
samples, the CNVs identified by the analysts were further 
reviewed by at least three clinical genetics experts with 
advanced degrees and/or postgraduate experience in human 
genetics.

Cohorts used for the evaluation of SCIP

The CGC samples (n = 316 families) were sequenced at the 
Cardiac Genome Clinic of The Hospital for Sick Children 
for congenital cardiovascular diseases, primarily congenital 
heart defects. Participant recruitment and genome analysis 
procedures were described previously (Reuter et al. 2020). 
Briefly, the samples were sequenced on the Illumina HiSeq 
X or NovaSeq 6000 platforms at The Centre for Applied 
Genomics (TCAG) in Toronto, Canada to generate 150-bp 
paired-end reads at ≥ 30 × coverage. Reads were mapped to 
the GRCh37/hg19 reference genome using BWA (Li and 
Durbin 2009). CNVs were identified using ERDS (Zhu et al. 
2012) and CNVnator (Abyzov et al. 2011) calls, with a win-
dow size of 500 bp. High-quality CNVs were identified as 
those detected by both methods with > 50% overlap (Trost 
et al. 2018). Manta was also used to identify CNVs based on 
anomalous reads (Chen et al. 2016).

We also analyzed WGS data from the MSSNG Project, 
which contains nearly 3000 families sequenced for autism 
spectrum disorder (Trost et al. 2022). These samples were 
analyzed by The Centre for Applied Genomics at The Hos-
pital for Sick Children, aligned to GRCh38/hg38. CNVs 
were detected using the algorithms ERDS (Zhu et al. 2012) 
and CNVnator (Abyzov et al. 2011) based on a previously 
described workflow (Trost et al. 2018). A CNV was deemed 
rare if its frequency was < 1% in MSSNG parents and in 
1000 Genomes Project population controls according to both 
algorithms. A CNV was deemed to be “high quality rare" 
if it was rare, was detected by both ERDS and CNVnator 
with at least 50% reciprocal overlap, and less than 70% of 
the CNV overlapped assembly gaps, centromeres, and seg-
mental duplications. CNVs underwent at least three rounds 
of manual curation by experienced scientists to identify 
P/LP CNVs and reportable VUS that may be responsible 
for autism spectrum disorder. As families with no report-
able CNV add little value in evaluating SCIP, we randomly 
excluded about 2/3 of such families from this study, resulting 
in a collection of 711 families.
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CNVs in both cohorts were extensively curated. In both 
the CGC and MSSNG cohorts, P/LP CNVs were identified 
using the spreadsheet-based manual approach described 
above. The CGC and MSSNG cohorts collectively form 
the cohort used to evaluate SCIP. For this study, all previ-
ously identified P/LP CNVs were re-interpreted by an ana-
lyst using the ACMG/ClinGen guidelines (Yuen et al 2017; 
Riggs et al. 2020), ensuring that they met the threshold of LP 
(0.90 points). CNVs not meeting the threshold were down-
graded to VUS.

This highly diverse and expertly curated cohort included 
1,027 families, 316 aligned to hg19 and 711 aligned to hg38 
(Figure S2a), among which 174 had one or more P/LP CNVs 
(Figure S2b). The P/LP CNVs were diverse: 121 deletions 
and 66 duplications (Table S1), size ranging from 2.51 kb to 
77.01 Mb, a mixture of de novo and inherited variants, cov-
ered several recurrent regions (e.g., distal 1q21.1, 16p11.2, 
22q11.2), and reached P/LP by different ACMG/ClinGen 
rule combinations (Figures S2c, S2d, and S2e).

Comparison with AnnotSV

We also compared the performance of SCIP with a recently 
published CNV/SV prioritization tool, AnnotSV (Geoffroy 

et al. 2021). We selected 15 ASD cases with a good diver-
sity of P/LP CNV type and size, including two cases with 
no P/LP CNV. For each case, we uploaded the full list of 
CNVs (the same list provided to the SCIP backend) to the 
AnnotSV web server (https://​lbgi.​fr/​Annot​SV/​runjob). The 
svtBEDcol option was set to 4. For phenotype-driven analy-
sis, we used the HPO term HP:0000717 (autism). All other 
options were kept at default. We did not upload the optional 
SNV VCF file, as we found that it had little, if any, effect on 
prioritization. CNVs with a score of 4 or 5 were considered 
prioritized. Performance was measured by the number of 
prioritized CNVs requiring manual review, as well as the 
rank of the P/LP CNV (if any) among the reviewable CNVs.

Results

Implementation and software architecture of SCIP

SCIP is composed of three modules: Variant Filtration, Pri-
oritization, and Visualization. The Variant Filtration and 
Prioritization Modules together form the SCIP backend, 
while the Visualization Module is the frontend (Fig. 1). 
The backend was implemented using Perl and R, while the 

Fig. 1   Overall Software Architecture of SCIP. SCIP is composed of 
three modules. The Variant Filtration and Prioritization Modules col-
lectively form the SCIP backend (within the dotted rectangle). CNV 
calls, after necessary pre-processing (e.g., merging), pass through the 
three-step Variant Filtration Module (orange). The remaining vari-

ants are then analyzed by the Prioritization Module, which calculates 
a priority score (Figure S3) and generates files for the Visualization 
Module. User may also opt to perform their own filtering and skip the 
SCIP Variant Filtration Module

https://lbgi.fr/AnnotSV/runjob
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frontend was implemented as a R Shiny application. The 
SCIP backend can be implemented on a high-performance 
computing server or a personal computer, while the Visu-
alization Module is implemented on the analyst’s personal 
computer. Files generated by the Prioritization Module must 
be available to the Visualization Module.

For a single sample, the minimum input file require-
ments are a list of CNVs and a BAM/CRAM alignment file. 
Optionally, if genome sequencing has been performed on 
multiple related individuals, CNVs detected in those indi-
viduals may be used as input for the purpose of inheritance 
analysis. SCIP requires annotations from external databases 
and the alignment file of a reference sample (e.g., NA12878, 
a widely used control sample (Zook et al. 2016)) (Table S3). 
Variants passing Filtration are processed by the Prioritiza-
tion Module, then visualized in the Visualization Module, 
sorted by priority and size. SCIP is compatible with both 
hg19 and hg38 genome builds. SCIP is available on GitHub 
(https://​github.​com/​qd29/​SCIP). The SCIP GitHub webpage 
also includes step-by-step instructions (also see Supple-
mentary Texts 1 and 2) and a demo of the SCIP Visualiza-
tion Module. To further improve usability, a video tutorial 
series covering the setup and usage of SCIP is on YouTube 
at https://​bit.​ly/​SCIPV​ideos.

SCIP variant filtration and prioritization modules

CNVs are first processed by the SCIP Variant Filtration and 
Prioritization Modules (collectively, the SCIP backend; 
Fig. 1). While CNVs from all callers (based on read depth 
or anomalous reads) are acceptable, interval merging is nec-
essary if large CNVs were broken into fragments (e.g., by 
gaps), as SCIP may not be able to handle substantial under-
calling (see Discussion and Supplementary Materials).

Variant filtration has three steps for optimal efficiency. In 
the first step, CNVs fully contained in regions with known 
issues (gaps, centromeres, repeats) and recurrence regions 
(for details, see Supplementary Materials) are removed. 
In the second step, CNVs that overlap coding sequences 
are retained, in addition to CNVs that overlap genes with 
clinically relevant non-coding variation (Table S2). Finally, 
CNVs are removed if they are fully contained in population 
variations (i.e., same type of CNV seen in > 1% frequency in 
a gnomAD-SV population). The remaining CNVs are passed 
to the Prioritization Module. If users opt to perform their 
own filtration, they may start directly with the Prioritization 
Module.

The Prioritization Module (Table S3) annotates and cal-
culates a priority score for each CNV. For a given CNV, 
the following types of annotations are generated by the Pri-
oritization Module: (1) overlapping CNVs in gnomAD-SV 
(including their allele frequencies), (2) overlapping CNVs 
in ClinVar (including their pathogenicity interpretations, 

associated conditions, allele origins, and gene contents), 
(3) overlapping CNVs in the internal cohort (if provided), 
(4) overlapping ClinGen dosage sensitive regions and genes, 
and (5) overlapping genes (including whether the overlap 
is full or partial, strand information, associated conditions 
provided by OMIM and GenCC, gnomAD gene constraints, 
exons and transcripts affected by the CNV, and exon-level 
relative expression data [i.e., pext scores]).

It is important to note that some annotation files used 
by the Prioritization Module, specifically (1) ClinGen dos-
age sensitivity curations, (2) ClinVar CNV information, (3) 
OMIM and GenCC gene-disease associations, and (4) the 
non-coding pathogenic regions, require periodic updates. 
The current guidelines recommend updating items 1–3 at 
least quarterly (Austin-Tse et al. 2022), and update item 4 
if new pathogenic non-coding regions are discovered. See 
Table S3 for additional instructions.

The priority score is the sum of two components: clini-
cal relevance and adverse information. Lower scores denote 
higher priority. The clinical relevance score is based on 
whether the CNV overlaps any ClinGen-curated dosage 
sensitive region, genes with substantial loss-of-function 
constraints, and/or genes associated with genetic conditions. 
While the theoretical range of the clinical relevance score is 
from 1 to 99, currently we only use 1–5 and 99 for deletions, 
and 1–7 and 99 for duplications. The default clinical rel-
evance score (for CNVs without known clinical relevance) 
is 99. In other words, a CNV with any clinical relevance 
will have a score between 1 and 5 for deletions, and 1 and 7 
for duplications. For example, a deletion that fully contains 
a ClinGen-curated HI region has a clinical relevance score 
of 1. The adverse information score is based on whether 
there is evidence against the CNV being true and/or patho-
genic. This score is binary: if adverse information exists, 
the score will be 100; otherwise, the score will be zero. A 
priority score below 99 (with clinical relevance and without 
adverse information, currently 1–5 for deletions and 1–7 for 
duplications) denotes high priority. A priority score of 99 
(without clinical relevance or adverse information) denotes 
moderate priority. A priority score above 99 (any clinical 
relevance and with adverse information) denotes low prior-
ity. Only CNVs with high priority need further review. The 
scoring scheme was described in detail in Figure S3. The 
Prioritization Module also generates files to be used by the 
Visualization Module for rendering tables and plots. The 
SCIP backend is fully programmatic and can be seamlessly 
integrated into the clinical WGS bioinformatics pipeline.

Overview of the SCIP visualization module/interface

The SCIP Visualization Module is a web-based graphi-
cal user interface (GUI) developed using the R Shiny 

https://github.com/qd29/SCIP
https://bit.ly/SCIPVideos
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package. Parameters are specified in a text configuration 
file (Table S5).

The GUI contains six sections (Fig. 2a), logically organ-
ized based on the manual workflow and the ACMG/Clin-
Gen CNV interpretation guidelines (Riggs et al. 2020). The 
first section (Fig. 2b) allows the user to navigate through the 
CNVs in a sample, view previous interpretations (if any), 
and enter or modify interpretations. Interpretations are cen-
trally stored in a text file.

The second section (Fig. 2c) provides an overview of a 
given CNV, intended to improve the efficiency of interpreta-
tion by highlighting key evidence. Priority calculated by the 
Prioritization Module is colour-coded (Figure S3). Struc-
tured sentences list positive (e.g., fully contains HI region) 
and negative (e.g., substantial overlap with population vari-
ants) findings (Table S4). In addition, the ratio of median 
read depth within vs. flanking the variant, median mapping 
quality within the variant, and a quality score (guidance 
only, Supplementary Materials) are displayed in the table.

The third and fourth sections facilitate variant quality 
assessment, as a more efficient alternative to IGV. The third 
section (Figs. 3a and S4) plots binned read depth and map-
ping quality of the CNV and its flanking regions (50% of 
variant size, minimum 100 kb, on both sides). All plots in 
the Visualization Module are interactive, allowing parameter 
adjustments and zooming in and out. By default, the plots 
have data from NA12878 overlaid (as a reference) but may 
be adjusted to display the clinical sample only. Common 
spurious read depth changes (e.g., regions with mapping 
issues) visible in the reference sample can be identified and 
excluded.

The fourth section (Figs. 3b and S5) displays colour-
coded anomalous reads: read pairs with inward (normal) ori-
entation but very large or small insert size (red), read pairs 
facing outward (blue) or in the same direction (cyan), and 
split reads (purple). Due to technical differences, the num-
ber of supporting reads plotted may be slightly lower than 
displayed in the second section. When zoomed-in, partial 

Fig. 2   SCIP Visualization Module, Part 1. a Schematic of the SCIP 
Visualization Module. This panel provides an overview of the SCIP 
Graphical User Interface (GUI, i.e., the Visualization Module). This 
panel illustrates that the SCIP Visualization Module displays multi-
ple sections sequentially. The details of these sections are shown in 
additional figure panels (the names and colour codes of which are 
indicated). One of the sections (Sect. 6.1) of the SCIP Visualization 
Module is toggled by a mouse click (for more details, see Fig. 5), as 

indicated by the “click” wording in this panel. b Sect. 1 allows navi-
gation through CNVs, either using the searchable CNV Name drop-
down menu or the previous/next buttons. A user may view, modify, 
or enter interpretations. c The Variant Summary section offers an 
overview of a CNV, facilitating precision analysis. For this deletion, 
this section displays that it overlaps CHD2, a curated HI gene, and is 
well-supported by anomalous reads
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Fig. 3   SCIP Visualization 
Module, Part 2. a Sect. 3 plots 
binned read depth and mapping 
quality information. b Sect. 4 
plots anomalous reads in the 
region flanking the variant. The 
upper/lower bound of insert 
size (for outlier detection) is set 
as 99.5/0.5-percentile of that 
of all read pairs by default and 
is adjustable. A user may view 
specific kinds of anomalous 
reads depending on the CNV 
type. For example, this plot 
only shows read pairs with 
normal orientation but unusu-
ally large insert size (expected 
for a deletion). Part of their 
names is displayed alongside 
the reads, which are searchable 
in the table below. Together 
with Sect. 3 (panel a), they 
offer a more efficient alterna-
tive to IGV in assessing CNV 
quality. Purple text in the figure 
highlights additional features of 
the interface
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read names are displayed next to the reads, which are search-
able in the accompanying table. This table shows details of 
anomalous reads, which is helpful when determining the 
exact CNV breakpoints. Using the Read Type drop-down 
menu, users may view a subset of anomalous reads specific 
to the variant type (Figures S1 and S5), e.g., inward pairs 
with large insert size when interpreting a deletion.

After a putative CNV is determined to be of satisfactory 
quality using Sects. 3 and 4, a user will then proceed to 
Sect. 5 (Figs. 4 and S6). This section visualizes the CNV-
of-interest relative to known CNVs, allowing the identifica-
tion of benign population variants (gnomAD-SV (Collins 
et al. 2020)) and recurrent pathogenic variants that have been 
interpreted previously (ClinVar (Landrum et al. 2018)). If 
the user provided CNV data from other family members, 
their CNVs will be coloured in red in the Internal Cohort 
panel, facilitating the study of inheritance patterns. Figure 4 

shows a de novo variant (trio sequenced where the variant 
was absent in parents), and Figure S6 demonstrates a mater-
nally inherited variant. When zoomed-in, IDs are displayed 
alongside the variants, which are searchable in the tables 
below that contain additional information (e.g., links to data-
bases, gene content for ClinVar variants).

The sixth section (Figs. 5 and S7) provides the biological 
and clinical context of the CNV relative to genomic anno-
tations. Tailored to the ACMG/ClinGen guidelines (Riggs 
et al. 2020), the following are plotted: dosage sensitivity 
curations (ClinGen) and constraints (gnomAD pLI (Karc-
zewski et al. 2020)), coding exons (see Table S2 for limited 
exceptions), and relative exon expression (gnomAD pext 
(Cummings et al. 2020)). The pext score is helpful to evalu-
ate the biological relevance of affected exons (Abou Tayoun 
et al. 2018). The accompanying tables contain a wealth of 
information, including direct links to databases and Google 

Fig. 4   SCIP Visualization 
Module, Part 3. The External 
and Internal Variant Databases 
section compares the variant-
of-interest with known CNVs, 
as well as the internal cohort 
(if provided). In the gnomAD-
SV panel, names and popmax 
allele frequencies are displayed 
next to the variants. This is 
supplemented by a table with 
links to gnomAD-SV. For this 
CNV, no gnomAD-SV variants 
overlapping CHD2 (purple box) 
were observed. Filtering of 
variants by popmax frequency 
is available. ClinVar variants 
are colour-coded by conse-
quence (see legend) and may 
be filtered by consequence or 
size. The accompanying table 
displays gene content of the 
ClinVar variants (including 
whether full or partial overlap), 
allowing comparison with the 
CNV-of-interest. In the Internal 
Cohort panel, variants from the 
same family as the proband are 
coloured in red. There are no 
red-coloured similar-sized vari-
ants in this panel (despite trio 
sequenced), indicating that the 
variant is de novo
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search terms (gene + phenotype), to facilitate additional 
exploration of genes overlapping the CNV. Further, the first 
three columns of the Genes table function as clickable but-
tons that lead to a pop-up window containing affected exon 
information (Fig. 5b). This is helpful in investigating the 
impact of intragenic CNVs on reading frames.

Taken together, the SCIP Visualization Module offers 
a logically organized workflow, guiding users through a 
thorough clinical interpretation of CNVs—quality assess-
ment, relationship to known benign and pathogenic variants, 
inheritance, and genomic context. Taking advantage of being 
web-based, the interface also provides many direct links, 
e.g., to DGV, OMIM, GeneCards, and Google. These links 
allow users to explore databases rapidly and seamlessly, sav-
ing time and reducing errors. A video walkthrough of the 
SCIP Visualization Module can be found on YouTube at 
https://​bit.​ly/​SCIPV​ideos (video #3).

To further demonstrate how SCIP facilitates efficient 
identification of clinically reportable CNVs and exclusion 
of non-relevant putative CNVs, we presented four typical 
use cases of SCIP in Supplementary Text 3 (a pathogenic 
deletion, a pathogenic duplication, a population variant, and 
a CNV not affecting biologically relevant transcript).

Computational performance of the SCIP backend

We evaluated the computational burden of the SCIP backend 
using a single core on a server with a 2.3-GHz Skylake Intel 
Xeon processer. Variant filtration took 0.18 min per sample 
(i.e., 0.58 min per 10,000 CNVs), while the Prioritization 
Module used a median of 10.47 min (IQR: 10.06, range 
0.52–136.77) per sample. Files generated for the Visualiza-
tion Module occupied a median of 64.90 MB (IQR: 64.67, 
range 4.04–1039.49) of storage per sample. While RAM 

Fig. 5   SCIP Visualization 
Module, Part 4. a The Genomic 
Neighbourhood section plots 
dosage sensitivity curations 
and constraints, genes, and 
pext (relative exon expression) 
scores. Dosage information is 
colour-coded (see legend). The 
Genes table comprises a wealth 
of information, including links 
to external resources (e.g., 
OMIM clinical synopsis and 
allelic variants pages, GTEx, 
GeneCards, Google search 
terms). b The Transcript Infor-
mation table shows exons in 
biologically relevant transcripts 
affected by the CNV. This 
pop-up table can be toggled by 
clicking one of the first three 
columns of the Genes table. 
The queried CNV removed 
exons 1–7 of the MANE Select 
transcript of CHD2, supporting 
its pathogenicity

https://bit.ly/SCIPVideos
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usage was not monitored, 8 GB was adequate for the Variant 
Filtration Module and most CNVs processed by the Prioriti-
zation Module (although CNVs > 10 Mb may require more 
than 8 GB of RAM). These results indicate that the SCIP 
backend had a minimal computational burden. Furthermore, 
the Variant Filtration (by chromosome) and Prioritization 
Modules (by CNV) support parallelization, allowing speed 
improvements when resources permit.

SCIP was efficient at variant filtration 
and prioritization

We next evaluated SCIP using a large collection of clini-
cal WGS samples. We assembled this collection from two 
sources at The Hospital for Sick Children: a cohort of 
patients with cardiovascular anomalies (primarily congeni-
tal heart defects) from the Cardiac Genome Clinic (CGC, 
n = 316 families) (Reuter et  al. 2020), and a cohort of 
patients with autism spectrum disorder from the MSSNG 
Project and analyzed at The Centre for Applied Genomics 
(TCAG) (n = 711 families) (Trost et al. 2022; Yuen et al. 
2016), for a total of 1027 families. Because some fami-
lies had multiple sequenced siblings, the 1027 families 

harboured 1188 non-parental WGS samples. Before filtering, 
they contained a median of 3,222 CNVs (inter-quartile range 
[IQR]: 930.75, range: 816–17,586). After the application 
of the Variant Filtration Module, a median of 12 CNVs per 
sample remained (IQR: 8, range: 1–84), reflecting > 99.5% 
in reduction (Fig. 6a).

The remaining CNVs were processed through the SCIP 
Prioritization Module, by which only a median of two CNVs 
per sample (IQR: 3, range: 0–40) were classified as high 
priority (score less than 99, Figure S3) requiring manual 
review. This represents an 81% further reduction (Fig. 6a). 
More than 13% (159/1,188) of the samples had no high pri-
ority CNVs (Fig. 6b). Taken together, the SCIP Variant Fil-
tration and Prioritization Modules were highly efficient at 
CNV filtration, with < 0.1% of all CNVs requiring manual 
review.

SCIP‑prioritized CNVs captured all previously 
identified P/LP findings

We then focused on the 174 families (183 non-parental sam-
ples) with previously identified P/LP CNV findings (Figure 
S2). Reassuringly, all 187 previously identified P/LP CNVs 

Fig. 6   SCIP was Highly Efficient at Filtration and Prioritization of P/
LP CNVs. a The SCIP Variant Filtration and Prioritization Modules 
were effective, reducing the median number of variants per sample 
from 3222 (pre-filtering) to two (after prioritization). CNVs remain-
ing per sample after each step of variant filtration are also plotted. b 
Distribution of the number of variants requiring manual review per 
sample. The majority (695/1188) of the samples had two or fewer 
reviewable CNVs, while nearly 95% (1109) had no more than eight 

reviewable CNVs. c SCIP further prioritized P/LP variants among 
reviewable CNVs, with 92.5% of them ranked first in the respective 
sample. CNVs were ranked by priority score and size. dAll but two 
previously identified P/LP CNVs had priority scores of 1 or 2 (as 
determined by the SCIP Prioritization Module). While we currently 
select variants with priority scores < 99 for manual review, this find-
ing indicates that further efficiencies in selecting reviewable CNVs 
may be possible
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were classified by SCIP as high priority for manual review, 
indicating that SCIP was non-inferior in sensitivity than 
the spreadsheet-based workflow at identifying P/LP CNVs 
(Materials and Methods). SCIP further prioritized the P/
LP findings among reviewable CNVs: 92.5% (173/187) 
of them ranked first in the respective sample (Fig. 6c; 
p = 6.37 × 10–26, one-tailed Wilcoxon rank-sum test). In sum-
mary, SCIP was effective at prioritizing P/LP CNVs.

SCIP had higher sensitivity than the manual 
workflow

Given the complexity of the manual workflow, we hypoth-
esized that some P/LP CNVs may have remained unde-
tected. Therefore, we re-interpreted CNVs in all 1027 fami-
lies (Figure S2b) using SCIP. We identified an additional 
835.20-kb pathogenic deletion at 15q11.2 (BP1–BP2) that 
fully contained HI region ISCA-37448, in a patient with 
autism spectrum disorder. This ISCA region was recurrent 
and previously reported in patients with autism. This result 
suggests that SCIP, benefitting from efficient variant filtra-
tion and user-friendly visualization, is more sensitive than 
the spreadsheet-based manual workflow in identifying P/
LP CNVs.

SCIP substantially reduced time burden of clinical 
CNV interpretation

We performed a blinded, timed, head-to-head comparison 
(SCIP vs. the spreadsheet-based manual workflow) of CNV 
interpretation with 15 ASD cases (Table S6). They were 
selected for good representation of CNV types and sizes 
(including no CNV finding) and randomized. Two analysts 
experienced in SCIP (1 year of experience) and the manual 
workflow (1.75 years of experience), respectively, blinded 
to case selection, was tasked with identifying reportable 
findings and timing the analyses using the corresponding 
approach. Each case was assigned different IDs for SCIP 
and the manual workflow.

The analysts were able to identify all reportable find-
ings, or lack thereof, using either approach. However, SCIP 
was substantially faster (Fig. 7a): it took SCIP a median of 
2 min 21 s (IQR: 90.5, range: 23–268 s) per case, corre-
sponding to an 80.7%-reduction (median, IQR: 12.2, range: 
64.3–90.0) in time burden compared with the manual work-
flow. This was statistically significant (p = 3.05 × 10–5, paired 
one-tailed Wilcoxon rank-sum test). In addition, SCIP was 
consistently faster across diverse scenarios (Fig. 7b). Thus, 
SCIP achieved the designed goal of substantially reducing 
the time burden of CNV interpretation without compromis-
ing efficacy.

SCIP substantially outperformed AnnotSV in CNV 
prioritization

We then benchmarked SCIP against AnnotSV (Geoffroy 
et al. 2021), a recently published tool for annotation, pri-
oritization, and tabular visualization (with the knotAn-
notSV tool) of CNVs detected in clinical cases. Because 
AnnotSV has minimal support for variant quality assess-
ment, we compared the performance of CNV prioritization 
between SCIP and AnnotSV. The 15 ASD cases selected for 
the above head-to-head comparison (with the spreadsheet-
based workflow) were used in this analysis. Unfiltered lists 
of CNVs detected in these samples were provided to both 
SCIP and AnnotSV. We then compared the number of pri-
oritized CNVs and rank of the P/LP variant (if any) among 
prioritized CNVs between the two tools.

SCIP significantly outperformed AnnotSV in both metrics 
(Fig. 7c). Among the 15 cases, a median of two CNVs per 
case were prioritized by SCIP, which was significantly less 
than the median of eight CNVs by AnnotSV (p = 8.88 × 10–4, 
paired one-tailed Wilcoxon rank-sum test). In addition, we 
found that in one case, AnnotSV failed to include the patho-
genic variant among the prioritized CNVs. In the remaining 
cases, the median rank of the P/LP variant was 1 and 4.5 
for SCIP and AnnotSV, respectively (p = 6.66 × 10–3, paired 
one-tailed Wilcoxon rank-sum test). Taken together, these 
findings indicate that SCIP was substantially superior to 
AnnotSV in prioritizing P/LP CNVs in clinical cases.

Discussion

SCIP is substantially better than the manual 
workflow and published tools

SCIP streamlines the workflow for clinical interpretation 
of CNVs. We rigorously evaluated SCIP using more than 
1,000 families containing nearly 200 P/LP CNVs. It is note-
worthy that this cohort size and the number of P/LP CNVs 
are almost unprecedented. Most tools were evaluated using 
a small number of P/LP CNVs (a few dozen or less), or 
only with benign or simulated variants (Belyeu et al. 2021; 
Minoche et al. 2021).

We revealed that SCIP was more sensitive than the 
spreadsheet-based manual workflow, not only selecting all 
previously identified P/LP CNVs for manual review, but also 
discovering one pathogenic CNV overlooked by previous 
curations. Meanwhile, CNV interpretation using SCIP was 
more than 60% faster per case than the manual workflow. 
We also showed that SCIP was significantly more effective 
than AnnotSV (Geoffroy et al. 2021) in CNV prioritization. 
These results convincingly indicate that SCIP is substantially 
better than previous workflows and tools.
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All components of SCIP contributed to its performance. 
The Variant Filtration and Prioritization Modules efficiently 
selected < 0.1% of all variants for manual review. While the 
Visualization Module provided an integrated interface dis-
playing most, if not all, information needed for CNV inter-
pretation, keeping the back-and-forth among multiple tools 
to a minimum. When working in unison, fewer variants will 
be presented to an analyst in a more user-friendly manner, 
resulting in time reduction without sacrificing sensitivity.

SCIP has superior visualization capabilities compared to 
previously published tools, such as ClinSV (Minoche et al. 
2021), samplot (Belyeu et al. 2021), CNVxplorer (Requena 
et al. 2021), and AnnotSV/knotAnnotSV (Geoffroy et al. 
2021). Most importantly, none of these tools provide a fea-
ture analogous to Sect. 2 of the SCIP Visualization Module, 
i.e., summarizing evidence that may support or refute CNV 
quality and/or pathogenicity. The summary feature within 

the SCIP Visualization Module is useful in quickly showing 
analysts where to focus their attention during the detailed 
review. For example, an analyst might need to spend more 
time on quality assessment when alerted that the CNV was 
not supported by anomalous reads. Further, being a web-
based tool, SCIP provides many direct links to external 
resources. Most other tools are unable to do so as they are 
not web-based. We found this feature greatly reduced time 
burden and error. For example, using SCIP, only one click 
is required to view the CNV region in the gnomAD browser, 
while three separate steps are needed otherwise (open the 
main page, enter the coordinates [error-prone], then click 
search). In addition, while some tools are good at variant 
quality assessment, and others are good at visualizing bio-
logical context, none are ideal for both. SCIP, in contrast, 
displays all information, including variant quality and bio-
logical context, in one unified interface.

Fig. 7   SCIP was Substantially Superior to Previous Approaches 
for CNV Interpretation. a, b In a head-to-head comparison with the 
spreadsheet-based manual workflow using 15 samples sequenced 
for autism spectrum disorder, SCIP was 80.7% (median) faster than 
the manual approach currently used by the CGC and TCAG at The 
Hospital for Sick Children. b The observed time savings of SCIP was 
consistent across a diverse range of scenarios, including deletions of 
varying sizes (n = 2 for each category), duplications (n = 3), and two 

cases with no reportable CNV findings. c SCIP was statistically sig-
nificantly more effective at CNV prioritization than AnnotSV. Each 
case is represented by two columns of circles (one orange and one 
green). Circles indicate prioritized CNVs, while solid dots indicate P/
LP CNVs. Rank of the P/LP variant among prioritized CNVs can be 
inferred using the Y-axis. Compared with AnnotSV, SCIP had signifi-
cantly lower number of prioritized CNVs per case and better ranking 
for P/LP CNVs
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Limitations and future developments

Improvements may be possible in selecting CNVs for man-
ual review. CNVs with priority scores below 99 require 
manual review, while nearly 99% (185/187) of the P/LP 
CNVs had priority score 1 or 2 (Fig. 6d). Further refine-
ments may reduce the number of reviewable CNVs per case 
while maintaining sensitivity. A small subset (6.6%) of sam-
ples analyzed in this study had relatively larger numbers 
(> 8) of reviewable CNVs. We found that the SCIP Filtra-
tion Module had lower efficiency for these samples, the root 
cause of which remains to be determined. In addition, SCIP 
currently does not use patient phenotypes in prioritization. 
Incorporating patient phenotypes may further prioritize P/
LP variants among the reviewable CNVs.

While most known pathogenic CNVs directly impact 
protein-coding genes, emerging evidence reveals that non-
coding CNVs, particularly those overlapping regulatory 
elements, may also be causative for Mendelian disease 
(Flöttmann et al. 2018). SCIP currently has limited capabil-
ity in analyzing non-coding CNVs. This limitation is inher-
ent to the incomplete understanding of clinical relevance of 
non-coding CNVs. For well-established non-coding patho-
genic regions, SCIP uses an exception list (Table S2), i.e., 
essentially treating them as coding. We suggest updating 
the exception list if new pathogenic non-coding regions are 
discovered in the future. Updated lists will be posted on the 
SCIP GitHub site. We plan to accommodate non-coding 
CNVs when guidelines become available in the future.

SCIP is designed for CNVs detected by WGS for consti-
tutional genetic disorders, therefore its applicability in other 
scenarios may be limited (e.g., somatic CNVs in cancer or 
CNVs detected on exome sequencing or gene panels). Fur-
thermore, SCIP is not intended for the visualization of full-
chromosome aneuploidies. SCIP had been primarily tested 
in patients with congenital cardiovascular disease and/or 
ASD, and we plan to further evaluate SCIP in patients with 
other rare genetic disorders. Additionally, SCIP does not yet 
support the identification of compound heterozygous vari-
ants involving both CNV and SNV. This functionality will 
be incorporated in a forthcoming sister tool of SCIP for the 
clinical interpretation of SNVs.

Finally, SCIP may be unable to handle substantial CNV 
under-calling (identifying variants smaller than their actual 
sizes). This typically results from the fragmentation of a 
large (0.5–1 + Mb) variant, with the CNV caller identifying 
it as multiple discrete but nearby smaller variants. To avoid 
this issue, merging nearby CNVs before using SCIP is rec-
ommended (see the “Pre-processing: Merging Under-called 
CNVs” section in Supplementary Materials for details). We 
did not encounter any issue with under-calling using this 
approach, despite more than 50 P/LP CNVs being initially 
fragmented.

Conclusions

We designed and implemented SCIP, a tool that effectively 
reduces the complexity and improves the efficiency of clini-
cal CNV interpretation. SCIP was evaluated on an unparal-
leled cohort of more than 1000 WGS samples containing 
nearly 200 P/LP CNVs. SCIP had superior performance than 
previous workflows and tools. SCIP is fully available for 
implementation in clinical diagnostic laboratories, and we 
are confident that it will substantially improve clinical CNV 
interpretation.
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