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Abstract
Most patients with congenital anomalies of the kidney and urinary tract (CAKUT) remain genetically unexplained. In 
search of novel genes associated with CAKUT in humans, we applied whole-exome sequencing in a patient with kidney, 
anorectal, spinal, and brain anomalies, and identified a rare heterozygous missense variant in the DACT1 (dishevelled bind-
ing antagonist of beta catenin 1) gene encoding a cytoplasmic WNT signaling mediator. Our patient’s features overlapped 
Townes–Brocks syndrome 2 (TBS2) previously described in a family carrying a DACT1 nonsense variant as well as those of 
Dact1-deficient mice. Therefore, we assessed the role of DACT1 in CAKUT pathogenesis. Taken together, very rare (minor 
allele frequency ≤ 0.0005) non-silent DACT1 variants were detected in eight of 209 (3.8%) CAKUT families, significantly 
more frequently than in controls (1.7%). All seven different DACT1 missense variants, predominantly likely pathogenic and 
exclusively maternally inherited, were located in the interaction region with DVL2 (dishevelled segment polarity protein 2), 
and biochemical characterization revealed reduced binding of mutant DACT1 to DVL2. Patients carrying DACT1 variants 
presented with kidney agenesis, duplex or (multi)cystic (hypo)dysplastic kidneys with hydronephrosis and TBS2 features. 
During murine development, Dact1 was expressed in organs affected by anomalies in patients with DACT1 variants, including 
the kidney, anal canal, vertebrae, and brain. In a branching morphogenesis assay, tubule formation was impaired in CRISPR/
Cas9-induced Dact1−/− murine inner medullary collecting duct cells. In summary, we provide evidence that heterozygous 
hypomorphic DACT1 variants cause CAKUT and other features of TBS2, including anomalies of the skeleton, brain, distal 
digestive and genital tract.
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Introduction

Congenital anomalies of the kidney and urinary tract 
(CAKUT) comprise various malformations resulting from 
defects in the morphogenesis of the kidneys and/or the uri-
nary tract. Kidney anomalies observed within the CAKUT 

spectrum range from severe manifestations, such as kid-
ney agenesis or multicystic dysplastic kidney (MCDK), to 
milder phenotypes, including kidney hypoplasia or fused/
duplex kidney (Schedl 2007). Taken together, all CAKUT 
phenotypes have a prevalence of 3–9/1000 live births (Pohl 
et al. 2002; Queisser-Luft et al. 2002; Stoll et al. 2014), 
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and account for around 40% of cases with end-stage kidney 
disease in children and adolescents (Harambat et al. 2012). 
CAKUT occur sporadically in around 85% of patients. In 
familial cases, inheritance is often dominant. Over 500 
syndromes are associated with CAKUT (Limwongse 
2009), and around one-third of patients present with extra-
renal features (Stoll et al. 2014).

To date, around 60 genes are known to cause isolated 
or mild syndromic CAKUT in humans if mutated (Kosfeld 
et al. 2018; van der Ven et al. 2018b). Chromosomal aber-
rations (Stoll et al. 2014) including microdeletions/-dupli-
cations (Weber et al. 2011; Sanna-Cherchi et al. 2018) may 
also be causative. Despite increasing knowledge about the 
genetic basis of human CAKUT, the majority of patients 
remain genetically unexplained (van der Ven et al. 2018a, 
b). Although identifying new CAKUT-causing genes 
remains challenging due to high genetic heterogeneity, 
variable expressivity and incomplete penetrance (van der 
Ven et al. 2018b), gene discovery has been accelerated by 
the advent and large-scale use of next generation sequenc-
ing (NGS) technologies. Dominant genes associated with 
human CAKUT using NGS include DSTYK (Sanna-Cher-
chi et al. 2013), TBX18 (Vivante et al. 2015), TBC1D1 
(Kosfeld et al. 2016), PBX1 (Heidet et al. 2017), GREB1L 
(Brophy et al. 2017; De Tomasi et al. 2017), LIFR (Kos-
feld et al. 2017; Christians et al. 2020), TBX6 (Verbitsky 
et al. 2019; Yang et al. 2020), GDF6 (Martens et al. 2020), 
and ZMYM2 (Connaughton et al. 2020); recessive genes 
include ITGA8 (Humbert et al. 2014) and ROBO1 (Münch 
et al. 2022).

NGS techniques have been especially successful in iden-
tifying the underlying genetic cause of syndromic CAKUT 
patients (van der Ven et al. 2018a). In this study, whole-
exome sequencing (WES) in a patient presenting with uni-
lateral kidney agenesis and contralateral duplex kidney as 
well as malformations of the spine, distal digestive tract, 
and central nervous system yielded a very rare heterozy-
gous variant in the DACT1 (dapper, dishevelled binding 
antagonist of beta catenin 1) gene. DACT1 is a known 
murine CAKUT gene (Suriben et  al. 2009; Wen et  al. 
2010) encoding a cytoplasmic protein acting in WNT sign-
aling (Cheyette et al. 2002; Zhang et al. 2006). A DACT1 
nonsense variant was described in a family with features 
overlapping Townes–Brocks syndrome 1 (TBS1, OMIM # 
107480) (Webb et al. 2017) referred to as TBS2 (OMIM # 
617466). By studying the frequency, clinical impact, and 
functional consequences of DACT1 variants in a cohort of 
CAKUT patients, investigating Dact1 expression during 
murine development, and analyzing the consequences of 
Dact1 deficiency in an in vitro model of tubulogenesis, we 
provide further evidence that Dact1 deficiency and very rare 
DACT1 variants may cause kidney and specific extrarenal 
anomalies in mice and humans.

Patients and methods

Patients

The study was approved by the Ethics Boards of Han-
nover Medical School, Hannover, Germany; Tübingen 
University Hospital, Tübingen, Germany; Oslo Univer-
sity Hospital, Oslo, Norway; Skopje University Hospital, 
Skopje, North Macedonia. Each family provided informed 
consent for participation in the study. Of the 209 CAKUT 
patients analyzed, 130 were males, 79 were females, and 
their mean age was 11.5 years (range 2–37 years). All 
209 patients had kidney anomalies, 56 were addition-
ally affected by vesicoureteral reflux, and 33 patients had 
undergone kidney transplantation due to end-stage kidney 
disease. The spectrum of kidney anomalies with or with-
out urinary tract malformations of the analyzed patients is 
listed in Supplementary Table 1. Case reports of patients 
carrying DACT1 variants are provided in the supplemen-
tary material.

Whole‑exome and targeted DACT1 sequencing

WES was performed on leukocyte DNA of 38 CAKUT 
patients and 137 individuals not affected by CAKUT 
(serving as in-house controls for WES data analysis of 
index patient V005-II.04, Supplementary Table 2) using 
the SureSelectXT Human All Exon V4 target enrich-
ment kit (Agilent, Santa Clara, CA, USA) on a HiSeq 
2000 (Illumina, San Diego, CA, USA) sequencer or the 
SureSelectXT Human All Exon V5 + UTRs target enrich-
ment kit (Agilent) on a HiSeq 2500 (Illumina) sequencer. 
All samples were sequenced to a mean coverage of 
50x. Sequencing data were aligned to the human refer-
ence genome (hg19/GRCh37) using the CLC Genomics 
Workbench (version 5.0.2; Qiagen, Hilden, Germany). 
WES data were annotated and prioritized using Ingenu-
ity Variant Analysis (Qiagen) and our in-house NGS data 
analysis workflow. Supplementary Table 2 summarizes 
the candidate gene-based strategy used to analyze WES 
data of index patient V005-II.04. Using conventional 
chain termination protocols and a 3130XL Genetic Ana-
lyzer (Life Technologies, Carlsbad, CA, USA), mutational 
analysis of all coding exons and adjacent intronic regions 
of NM_016651.5(DACT1) was done to verify variants 
identified by WES analysis, to determine familial segre-
gation, and to screen for DACT1 variants in 171 further 
CAKUT patients. Supplementary Table 3 summarizes the 
sequences of oligonucleotides used. The minor allele fre-
quencies (MAF) of genetic variants were retrieved from 
the Genome Aggregation Database (gnomAD controls 
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v2.1.1, total population, https:// gnomad. broad insti tute. 
org/). Variant pathogenicity was predicted using CADD 
(https:// cadd. gs. washi ngton. edu/ snv; Kircher et al. 2014; 
Rentzsch et al. 2019), MutationTaster (http:// www. mutat 
ionta ster. org/), SIFT (https:// sift. bii.a- star. edu. sg/), 
PROVEAN (http:// prove an. jcvi. org/ index. php), Poly-
Phen-2 (http:// genet ics. bwh. harva rd. edu/ pph2/), and clas-
sified using the ACMG guidelines (Richards et al. 2015).

Animals

All applicable international, national and/or institutional 
guidelines for the care and use of animals were followed. 
All experiments were approved by the Ethics Board of the 
Lower Saxony State Office for Consumer Protection and 
Food Safety. Murine embryos were derived from matings 
of Ztm:NMRI wildtype mice. For timed pregnancies, vagi-
nal plugs were checked in the morning after mating, and 
noon was defined as embryonic day (E) 0.5. Embryos or 
urogenital systems were dissected in phosphate-buffered 
saline (PBS) and fixed in 4% paraformaldehyde (PFA) in 
PBS followed by subsequent dehydration in methanol. Fixed 
embryos or urogenital systems were stored in 100% metha-
nol at −20 °C prior to RNA in situ hybridization analysis.

RNA in situ hybridization on sections of murine 
embryos or kidneys

To determine the expression pattern of Dact1 during murine 
embryonic development, non-radioactive RNA in  situ 
hybridization analysis was carried out following a stand-
ard protocol (Moorman et al. 2001). In brief, PFA-fixed 
embryos or urogenital systems of wildtype mice were par-
affin-embedded, and sectioned to 10 µm thickness. Sections 
were deparaffinized in Carl Roth ROTI Histol (#10379029; 
Thermo Fisher Scientific, Waltham, MA, USA), sequentially 
rehydrated in ethanol/H2O, washed in PBS, and treated with 
10 µg/ml proteinase K (#7528; Carl Roth, Karlsruhe, Ger-
many) in 0.1 M Tris, pH 8.0 at 37 °C for 8 min. After wash-
ing with 0.2% glycerin/PBS and PBS, and post-fixation with 
4% PFA / 0.2% glutaraldehyde at room temperature (RT) for 
20 min each, sections were hybridized with a digoxygenin-
labeled riboprobe (DIG RNA Labeling Mix, #11277073910; 
Sigma-Aldrich, St. Louis, MO, USA) directed against mouse 
Dact1 mRNA (514  bp, NM_001190466, position 872-
1385) in hybridization buffer at 70 °C overnight. Sections 
were washed twice in 50% formamide / 50% 2xSSC (pH 
7.0) at 65 °C for 20 min. Probes were detected using Anti-
Digoxigenin-AP, Fab fragments (2 h at RT) and BM-Purple 
AP substrate (#11093274910 and #11442074001; Sigma-
Aldrich). For each developmental stage, at least 3 specimens 
were analyzed. Stained sections were documented on a Leica 

DM5000 microscope using a Leica DFC300 FX digital cam-
era (Leica Microsystems, Wetzlar, Germany).

Cloning of expression constructs and site‑directed 
mutagenesis

To generate a DACT1 expression construct, the full-length 
DACT1 open reading frame was amplified from human 
cDNA and sub-cloned into the pcDNA3.1-Myc vector 
(Thermo Fisher Scientific) using customized oligonu-
cleotides (Supplementary Table 3) and the In-Fusion HD 
Cloning Kit (Takara Bio, Kusatsu, Japan). The variants 
were inserted into the DACT1 expression construct using 
customized oligonucleotides (Supplementary Table 3) and 
the Phusion Site-Directed Mutagenesis Kit (Thermo Fisher 
Scientific).

Cell culture and transient transfection

Human embryonic kidney 293T (HEK293T) cells were cul-
tured in high-glucose Dulbecco's Modified Eagle Medium 
(DMEM; Merck, Darmstadt, Germany) supplemented with 
10% fetal bovine serum, 100 units/ml penicillin, and 100 μg/
ml streptomycin (all Thermo Fisher Scientific). For murine 
inner medullary collecting duct 3 (mIMCD3) cells, DMEM/
Ham's F-12 (1:1) medium (Merck) was used. Cell cultures 
were maintained at 37 °C in a humidified atmosphere con-
taining 5%  CO2. For transient transfection of HEK293T 
cells, Lipofectamine 3000 transfection reagent (Thermo 
Fisher Scientific) was used following standard protocols.

Immunoprecipitation

To analyze binding of wildtype and mutant Myc-DACT1 
to Flag-DVL2 (dishevelled segment polarity protein 2) by 
immunoprecipitation (IP), HEK293T cells (1.0 ×  107) were 
seeded in Petri dishes and transiently co-transfected with 
pcDNA3.1-Myc-DACT1 (wildtype or mutant) and pCMV5-
Flag(3x)-DVL2 (#24802; Addgene, Watertown, MA, USA). 
At 24 h post transfection, cells were lysed in IP buffer 
(50 mM Tris-HCl, pH 8.0, 50 mM sodium fluoride, 1 mM 
sodium orthovanadate, 1% Triton X-100) supplemented 
with protease and phosphatase inhibitors (Roche Diagnos-
tics, Mannheim, Germany). After adding 1 µg of anti-Myc 
antibody (#sc-40; Santa Cruz Biotechnology, Dallas, TX, 
USA), lysates were rotated overnight at 4 °C. Protein G 
Sepharose beads (GE, Boston, MA, USA) were equili-
brated in IP buffer and incubated with the lysates for 4 h at 
4 °C. After washing 5 × with IP lysis buffer, proteins eluted 
from the beads using Laemmli buffer (62.5 mM Tris-HCl, 
pH 6.8, 10% glycerin, 2% sodium dodecyl sulfate (SDS), 
5% 2-mercaptoethanol, 1 mM ethylenediaminetetraacetic 
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acid, 0.01% bromophenol blue) were detected by Western 
blot analysis.

Western blot analysis

After SDS-polyacrylamide gel electrophoresis and semi-
dry electro-blotting, nitrocellulose membranes (GE) were 
treated with 5% fat-free milk powder dissolved in PBS 
with 0.05% Tween 20 (PBST) as blocking agent. The 
primary antibodies mouse anti-Myc (#sc-40; Santa Cruz 
Biotechnology) or mouse anti-Flag (#8146; Cell Sign-
aling Technology, Danvers, MA, USA) were diluted at 
1:1,000 in 5% (w/v) bovine serum albumin in PBST and 
used for immunodetection. After incubation overnight at 
4 °C, membranes were washed with PBST, exposed to the 
secondary horseradish peroxidase-conjugated anti-mouse 
antibody (#sc-2962; Santa Cruz Biotechnology; dilution 
1:3,000) in 5% fat-free milk powder dissolved in PBST 
for 90 min at RT, washed again with PBST, and devel-
oped using the SuperSignal West Dura Extended Dura-
tion Substrate (Thermo Fisher Scientific). Signals were 
acquired using the Fusion FX7 gel documentation system 
(Vilber, Collégien, France). Densitometric quantification 
of protein bands was performed using ImageJ software 
(Schneider et al. 2012).

Qualitative DACT1 mRNA expression analysis

To determine whether mIMCD3 cells express Dact1, 
RNA was isolated from mIMCD3, HEK293T (positive 
control), and HeLa (negative control) cells (estimation 
of RNA expression levels based on www. prote inatl as. 
org) using the RNeasy Mini Kit (Qiagen). cDNA was 
synthesized from RNA samples using the Superscript 
IV First-Strand Synthesis System (Thermo Fisher Sci-
entific). Exon-spanning oligonucleotides specific for 
murine Dact1 cDNA (NM_021532.4, c.390-518) or 
human DACT1 cDNA (NM_016651.6, c.487-709) were 
used for PCR amplification (Supplementary Table 3), 
respectively. Sequencing of the generated amplicons was 
done using conventional chain termination protocols, as 
described above.

CRISPR/Cas9 genomic engineering

To generate a Dact1 knockout cell model, mIMCD3 cells 
and a protocol for CRISPR/Cas9-mediated RNA-guided 
genome editing (Ran et al. 2013) were used. In brief, a 
single guide RNA (sgRNA) targeting the first exon of 
Dact1 (targeted sequence 5’-GCG TAC CCG CGA GCG 
CCA GG-3’) was designed using the CRISPOR web-
based tool (http:// crisp or. tefor. net), and sense and anti-
sense oligonucleotides (Supplementary Table 3) were 

synthesized (Eurofins Genomics, Ebersberg, Germany). 
The dimerized oligonucleotides were inserted into a 
BpiI-digested pSpCas9(BB)-2A-GFP plasmid (#48138; 
Addgene), containing a sgRNA scaffold and expression 
cassettes for Cas9 and GFP. By transient transfection, the 
resulting construct was introduced into mIMCD3 cells. 
GFP-positive cells were isolated 24 h after transfection 
at the Cell Sorting Core Facility of Hannover Medical 
School using a MoFlo XDP cell sorter (Beckman-Coulter, 
Brea, MA, USA). To identify the genotype of selected 
cell clones, their DNA was extracted using the innuPREP 
DNA Mini Kit (Analytik Jena, Jena, Germany), and 
PCR products of Dact1 exon 1 were analyzed by direct 
sequencing (oligonucleotides listed in Supplementary 
Table 3). For allele-specific sequence analysis, the PCR 
product was cloned into a pcDNA3.1 vector (Invitrogen, 
Carlsbad, CA, USA) using oligonucleotides listed in Sup-
plementary Table 3, and the plasmid DNA of at least 10 
Escherichia coli transformants were analyzed by direct 
sequencing. In the three mIMCD3 cell clones selected 
for further analysis harboring either Dact1 wildtype 
(Dact1+/+; clone 2) or a biallelic knockout (Dact1−/−; 
clones 11 and 12), all 13 coding off-target sites were 
analyzed by direct sequencing (oligonucleotides given in 
Supplementary Table 3) to ascertain absence of mutation.

Tubulomorphogenesis assay

To investigate the consequences of a knockout of Dact1 
on branching morphogenesis, a tubulomorphogenesis 
assay was performed using mIMCD3 cells, as previously 
described (De Tomasi et al. 2017). In brief, mIMCD3 cells 
were cultured in a three-dimensional (3-D) gel of colla-
gen type I from rat tail (Corning, Corning, NY, USA) in 
12-well plates. For each experiment, each cell clone was 
plated in duplicate. A thin collagen layer without cells was 
applied to the well, followed by a collagen layer containing 
100,000 cells/ml. After the gel had solidified, 500 µl of 
DMEM/Ham's F-12 (1:1) medium (Merck) supplemented 
with 10% fetal bovine serum, 100 units/ml penicillin, 
and 100 µg/ml streptomycin (all purchased from Thermo 
Fisher Scientific) were added to the well. After seven days 
of cultivation, cells were documented using an inverted 
microscope (DM IL LED Fluo, Leica Microsystems) 
equipped with an EC3 camera (Leica Microsystems). 
For better visualization, 3-D cultures were fixed in 4% 
PFA in PBS and stained with Alexa Fluor 488 Phalloi-
din (#A12379; Invitrogen; dilution 1:200 in PBST). For 
quantification, images of 3-D cultures were blinded, and 
at least 60 cellular structures were classified as tubular or 
spherical for each cell clone in each experiment (n = 3).
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Fig. 1  Identification of very rare heterozygous DACT1 missense vari-
ants in eight of 209 CAKUT families (3.8%). Electropherograms of 
DACT1 variants (affected base positions are indicated by arrows), 
their segregation, and the localization of affected amino acid residues 
within a representation of the DACT1 protein are shown. All seven 
different variants are located within the region of DVL2 interaction 
(*) according to Zhang et  al. (2006). In pedigrees, squares denote 
males, circles females, and colored symbols affected individuals with 
phenotypes as indicated. Six of eight (75%) index CAKUT patients 
(indicated in pedigrees by an arrow) that received reverse phenotyp-

ing presented with extrarenal features including distal digestive tract 
anomalies, skeletal, genital and/or neurological anomalies. Black 
question marks denote family members with no clinical information 
available or without kidney ultrasound. Black circle with white ques-
tion mark denotes individual with putative left-sided non-obstructive 
duplex kidney. Individual V005-II.04 was analyzed by whole-exome 
sequencing. Validation of the variant, identification of variants in 
further patients, and segregation analysis were performed by direct 
sequencing. + , represents DACT1 wildtype sequence; n.d., individual 
with non-available DNA
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Statistical analysis

Statistical significance was calculated using Student’s t test 
or Fisher’s exact test (two-tailed), whereby p values of ≤ 0.05 
were considered significant, and p values of ≤ 0.01 highly 
significant.

Results

Very rare heterozygous DACT1 variants predicted 
to be deleterious were identified in eight of 209 
(3.8%) families with kidney anomalies

Under the assumption that NGS techniques are especially 
successful in identifying the genetic cause in syndromic 
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CAKUT patients, we performed WES on leukocyte DNA 
of a four-year-old male index patient, V005-II.04, the child 
of non-consanguineous Kurdish parents (Fig. 1), born with a 
caudal regression syndrome including kidney, anorectal, and 
spinal anomalies and brain malformations (Fig. 2, Table 1). 
Kidney ultrasound, magnetic resonance imaging, and isotope 
nephrography were notable for left-sided kidney agenesis 
and a right-sided malrotated duplex kidney with hydrone-
phrosis and primary obstructive megaureter (Fig. 2a–d). 
Additionally, a caudal regression syndrome with missing 
coccyx, sacral dysplasia, syringohydromyelia, an intraspinal 
dermoid cyst, anorectal agenesis with rectourethral fistula, 
and neurogenic bladder were diagnosed (Fig. 2e, f). In the 
central nervous system, agenesis of the septum pellucidum, 
triventricular hydrocephalus internus due to aqueductal 
stenosis, and agenesis of the cerebellar vermis were noted 
(Fig. 2g, h). Further details are provided in the supplemen-
tary material. WES data were analyzed using a candidate 
gene-based strategy and our in-house NGS data analysis 
pipeline. By prioritizing good-quality, non-silent, and very 
rare (MAF ≤ 0.0005) variants not present in in-house con-
trol individuals and known or presumed to cause isolated 
or syndromic CAKUT in humans or mice (Supplementary 
Table 2), we identified a very rare (MAF = 0.000333 accord-
ing to gnomAD controls) missense variant in the DACT1 
gene, NM_016651.5(DACT1):c.1100C > A p.(Thr367Lys). 
This variant is predicted to be deleterious by SIFT, 

PROVEAN, and PolyPhen-2, and has a CADD score of 
close to 20 (19.40) predicting that it is among the top 1.15% 
most deleterious variants in the human genome. The variant 
was confirmed to be heterozygous and shown to be inherited 
from the patient’s unaffected mother by targeted sequenc-
ing (Fig. 1). No other heterozygous or biallelic variants of 
interest, especially none in known or presumed CAKUT-
associated genes in humans or mice, were identified in the 
patient. Considering that a family with a DACT1 nonsense 
variant (Webb et al. 2017) and Dact1 knockout mice (Suri-
ben et al. 2009; Wen et al. 2010) had similar phenotypes 
involving the urogenital system, distal digestive tract, and 
spine, the DACT1 variant was considered to be causative 
and to explain the phenotype of our patient.

To determine the frequency of DACT1 variants in  a 
cohort of CAKUT patients, 208 additional families with kid-
ney malformations (Supplementary Table 1) were subjected 
to WES or targeted DACT1 sequencing. We identified very 
rare (MAF ≤ 0.0005 according to gnomAD controls) mis-
sense variants in seven further families (Fig. 1). The variant 
carried by the index patient, c.1100C > A p.(Thr367Lys), 
was detected in a second patient (Fig. 1, Table 1). Two 
variants, c.2005C > G p.(Pro669Ala) and c.2468T > G 
p.(Leu823Arg), are not listed in the gnomAD database and 
have a CADD score ≥ 20, indicating that they are considered 
to be among the top 1% most deleterious variants in the 
human genome (Table 1). All variants except c.1703G > A 
p.(Arg568Lys) were deleterious according to at least two 
of five prediction tools (i.e., CADD, MutationTaster, SIFT, 
PROVEAN, PolyPhen2). Four variants were classified as 
likely pathogenic according to the ACMG guidelines, while 
three variants were of uncertain significance (Table 1). 
Each variant except c.1890G > T p.(Lys630Asn) was sig-
nificantly more frequent in our cohort of CAKUT families 
compared to gnomAD controls (Table 1). Taken together, 
very rare (MAF ≤ 0.0005) non-silent DACT1 variants were 
found in eight of 209 (3.8%) families with kidney anoma-
lies compared to 1,006 of 60,146 (1.7%) individuals from 
the gnomAD control cohort. This difference is statisti-
cally significant (p = 0.03, two-tailed Fisher’s exact test). 
Moreover, in three families we observed co-segregation of 
DACT1 variants with CAKUT or extrarenal phenotypes, i.e., 
megacystis in T004-II.03 and T004-II.04, kidney anoma-
lies in H402-I.02 and H402-II.01, and skeletal anomalies 
in N032-I.02 and N032-II.01 (not all family members were 
available for genetic testing or phenotypic evaluation; Fig. 1, 
Supplementary Table 4). The DACT1 variants were either 
maternally inherited (6/8 families) or inheritance could not 
be determined (2/8 families; Fig. 1).

Fig. 2  Phenotype spectrum of patients with DACT1 variants. a–h 
The index patient, V005-II.04, presented with numerous anomalies, 
including left-sided kidney agenesis (yellow arrow) and right-sided 
malrotated duplex kidney (ki) (white arrow) on magnetic resonance 
imaging (MRI) scan (a). By kidney ultrasound (US), the duplex kid-
ney (marked by a dashed line, b) shows a dilated kidney pelvis (rp, 
c, d). By MRI scan, a caudal regression syndrome with missing coc-
cyx and sacral dysplasia (yellow arrow, e), syringohydromyelia (sh) 
at T11-T12 (white arrow, f), and an intraspinal dermoid cyst (dc) at 
L2-L3 (yellow arrow, f) were diagnosed, along with a triventricu-
lar hydrocephalus internus (ventricles I-III, yellow arrows, g, h) 
due to an aqueductal stenosis, and an agenesis of the septum pel-
lucidum (white arrow, h) in the central nervous system. i, j Patient 
T004-II.03 presented with bilateral kidney dysplasia on kidney US 
(right-sided kidney with hydronephrosis shown, i), and dilated kid-
ney pelvises, megaureters (mu), and megacystis (mc) upon micturat-
ing cysto-urethrogram (j). k By kidney US of patient H452-II.01, a 
right-sided kidney hypoplasia and a left-sided normal kidney were 
diagnosed. l Patient H402-II.01 presented with right-sided kidney 
hypoplasia with a cyst (cy) and normal left-sided kidney on kid-
ney US. m, n Kidney US of patient B036-II.01 showed a left-sided 
dilated residual ureter (ur) ending in a ureterocele (uc) located in the 
bladder (bl). o–q Patient N032-II.01 presented with a lumbarization 
of S1 (black arrow, o) on spinal X-ray (T12 is marked), no radiotracer 
uptake equivalent to a missing functional kidney on the left due to a 
multicystic dysplastic kidney (residues of which are seen as a cystic 
structure next to the bladder on US, p) and normal uptake in the right 
kidney on dimercaptosuccinic acid (DMSA) kidney scan (q)

◂
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DACT1 variants convey a characteristic phenotype 
consisting of kidney plus anorectal, genital, 
skeletal or neurological anomalies in three quarters 
of CAKUT patients carrying DACT1 variants

In a reverse phenotyping effort, clinical or radiologi-
cal reevaluation was performed of the CAKUT index 
patients from the eight families carrying very rare non-
silent DACT1 variants. All eight patients presented with 
kidney phenotypes, i.e., unilateral kidney agenesis and 
contralateral malrotated duplex kidney with hydrone-
phrosis (1/8 patients), unilateral multicystic dysplastic 
kidney (MCDK) (3/8), bilateral kidney dysplasia with 
or without cysts (2/8), or unilateral kidney hypoplasia 
with or without cysts (2/8) (Table 1, Fig. 2). Four patients 
were additionally diagnosed with anomalies of the urinary 
tract, i.e., megaureter (1/8), megaureter, vesicoureteral 
reflux (VUR) and megacystis (1/8), blind ending ureter 
(1/8), or VUR (1/8) (Table 1, Fig. 2). Notably, six of the 
eight (75%) CAKUT patients harboring DACT1 vari-
ants also presented with extrarenal anomalies similar to 

those described in a family with a heterozygous DACT1 
loss-of-function variant (Webb et al. 2017) and in Dact1-
deficient mice (Suriben et al. 2009; Wen et al. 2010). 
These include anomalies of the distal digestive tract, e.g., 
anorectal agenesis with recto-urethral fistula (1/8), genital 
features, e.g., anomalies of the uterus and ovary (1/8), 
skeletal features, e.g., spinal and craniofacial anomalies 
(3/8), and/or neurological features, e.g., malformations of 
the central nervous system, intellectual disability, autism 
(4/8) (Table 1, Fig. 2). Further details are provided in 
the supplementary material. Conversely, gastrointesti-
nal, genital, skeletal or neurological anomalies were only 
detected in 64 of the 198 (32%) CAKUT patients without 
very rare non-silent DACT1 variants of whom information 
was available. Therefore, CAKUT patients with versus 
without very rare non-silent DACT1 variants were signifi-
cantly more likely to present with extrarenal features in 
the digestive or genital tracts, skeleton or central nervous 
system (6/8, 75% versus 64/198, 32%; p = 0.02, two-tailed 
Fisher’s exact test).

Fig. 3  Dact1 expression pattern in murine embryonic development by 
non-radioactive RNA in situ hybridization. a On sections of murine 
embryos at E11.5, E12.5 and E14.5, Dact1 mRNA was detected in 
a variety of organs, including the kidney, bladder, anal canal, geni-
tal tubercle, lung, inner ear, brain, spinal ganglia, vertebrae, and ribs. 
Expression in the upper urinary tract was found in the mesenchyme 
of the ureter at E11.5, but not in the metanephric mesenchyme. At 
E12.5 and E14.5, Dact1 was additionally expressed in the capsular, 
cortical, and medullary stroma of the kidney. Similarly, in bladder, 

urethra, and anal canal Dact1 expression was confined to mesenchy-
mal cells. b On kidney sections at E16.5 and E18.5, Dact1 expres-
sion, which starts to be reduced at E16.5 and is strongly diminished 
at E18.5, was detected in the mesenchyme of the ureter, the kidney 
capsule, and the stroma of medulla and cortex (higher magnification 
images). a, adrenal gland; ac, anal canal; b, brain; bl, bladder; gt, gen-
ital tubercle; ie, inner ear; k, kidney; l, lung; r, ribs; s, spinal ganglia; 
u, ureter; v, vertebrae. For each embryonic stage, at least 3 specimens 
were analyzed. Scale bars are as indicated
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Dact1 expression during early murine development 
was detected in organs showing defects 
in Dact1‑deficient mice and patients carrying DACT1 
variants

Dact1-deficient mice (Suriben et al. 2009; Wen et al. 2010) 
and patients carrying DACT1 variants (Webb et al. 2017) 
(Fig. 2, Table 1) show developmental defects that belong 
to the caudal regression syndrome including caudal verte-
brae agenesis, anal atresia, kidney malformations, aberrantly 
ending ureters, bladder agenesis, and genital anomalies. In 
some patients carrying DACT1 variants, malformations of 
the brain and/or intellectual disability were also observed 
(Webb et al. 2017) (Fig. 2, Table 1). Detailed analysis of 
Dact1 expression in affected structures, especially in the kid-
ney, during development has not been performed previously. 

Therefore, we analyzed the spatial and temporal expression 
of Dact1 in wildtype mouse embryos using RNA in situ 
hybridization on whole-embryo sections at E11.5, E12.5, 
and E14.5 (Fig. 3a), and on kidney sections at E16.5 and 
E18.5 (Fig. 3b). We detected Dact1 expression in organs of 
the caudal region including vertebrae, anal canal, kidney, 
bladder, genital tubercle as well as in the brain, spinal gan-
glia, inner ear, lung, and ribs (Fig. 3a). Expression in the 
upper urinary tract was confined to the mesenchyme of the 
ureter, and to the capsular, cortical, and medullary stroma of 
the kidney. Expression at these sites strongly decreased after 
E14.5 (Fig. 3a, b). Dact1 expression during early murine 
development is, therefore, observed in organs showing 
anomalies in Dact1-deficient mice and patients carrying 
DACT1 variants.

Fig. 4  Characterization of Dact1-deficient mIMCD3 cells and 
DACT1 mutant proteins. a, b To analyze the relevance of DACT1 for 
tubulogenesis, a process of major relevance for kidney development, 
 Dact1−/− mIMCD3 cells (clones 11 and 12) and control cells (clone 
2, Dact1+/+), generated by CRISPR/Cas9 technology (Supplementary 
Fig. 2), were cultured in a 3-D collagen I matrix for seven days and 
stained with Alexa Fluor 488 phalloidin (scale bar represents 200 µm) 
(a). Quantification of the tubulomorphogenesis assay showed that 
more than 70% of mIMCD3 and clone 2 (Dact1+/+) cells developed 
tubular structures, whereas both Dact1−/− cell lines (clone 11 and 
clone 12) displayed nearly no tubuli. At least 60 structures were 

counted and rated as tubular or spherical for each cell line in each 
experiment (mean ± SD of three independent experiments) (b). c, d 
To explore the pathogenicity of the identified DACT1 variants, inter-
action of mutant DACT1 with DVL2 was analyzed by co-immuno-
precipitation (IP) (c). The ratio of Flag-DVL2 to wildtype or mutant 
Myc-DACT1 in the immunoprecipitates was significantly decreased 
for all mutants compared to wildtype DACT1 (mean ± SD of four 
independent experiments) (d) indicating impaired DVL2 binding of 
the DACT1 mutants detected here. *p ≤ 0.05; **p ≤ 0.01 (Student’s t 
test)
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Dact1 knockout impairs tubule formation 
in a cellular model of branching morphogenesis

To characterize the impact of DACT1 on a process of major 
relevance for kidney development, we analyzed its role in a 
3-D tubulomorphogenesis assay using mIMCD3 cells, a cel-
lular model of branching morphogenesis (Chen et al. 2004; 
Mai et al. 2005; De Tomasi et al. 2017). Murine IMCD3 
cells undergo tubulogenesis in a 3-D collagen gel (Chen 
et al. 2004), a process disrupted after knockout of relevant 
genes, such as GREB1L (De Tomasi et al. 2017). Here, in 
mIMCD3 cells, shown to express Dact1 by RT-PCR (Sup-
plementary Fig. 1), a Dact1 knockout cell line was generated 
using CRISPR/Cas9 technology. For subsequent analysis, 
we selected a wildtype clone without mutational event at the 
sgRNA on-target site (clone 2, Dact1+/+), and two knock-
out clones with different biallelic Dact1 frameshift variants 
(clones 11 and 12, Dact1−/−) predicted to result in truncated 
non-functional proteins (Supplementary Fig. 2). As depicted 
in Fig. 4a and b, over 70% of unmodified mIMCD3 cells and 
clone 2 (Dact1+/+) control cells formed elongated tubular 
structures after seven days in a 3-D collagen gel, whereas 
both Dact1−/− cell clones failed to form tubules and grew 
as spherical structures. These data provide evidence that 
DACT1 is involved in tubulogenesis in vitro.

Binding of DVL2 to DACT1 mutants is reduced

Human DACT1 interacts with DVL2, a WNT signaling media-
tor, inducing DVL2 degradation and antagonizing WNT signal-
ing (Zhang et al. 2006). This interaction is mediated by central 
and C-terminal domains of DACT1, i.e., approximately amino 
acids 311–836 in the human protein (Zhang et al. 2006; Suri-
ben et al. 2009). Remarkably, 8 of 8 (100%) CAKUT families 
carry very rare non-silent DACT1 variants that affect amino acids 
located within the putative DVL2 interaction region of DACT1 
(Fig. 1), while this is only the case in 833 of 1,006 (83%) gno-
mAD controls carrying very rare non-silent DACT1 variants 
(listed in Supplementary Table 5). To explore the functional 
consequence of the seven different DACT1 missense variants 
detected here, we determined DVL2 binding of DACT1 wildtype 
and mutant proteins in a co-immunoprecipitation assay (Fig. 4c). 
All seven mutant proteins showed significantly impaired DVL2 
binding compared to wildtype DACT1 (Fig. 4d), suggesting that 
the identified variants act as hypomorphs that may fail to regulate 
WNT signaling.

Discussion

Based on an index patient with caudal regression syndrome 
including unilateral kidney agenesis, contralateral duplex 
kidney with hydronephrosis, anorectal agenesis, sacral 

dysplasia, and malformations of the central nervous system, 
this study of 209 families with congenital kidney anomalies 
associates DACT1 with human CAKUT and characteristic 
extrarenal features. Very rare non-silent DACT1 variants 
were significantly more frequent in CAKUT patients of our 
cohort compared to controls (3.8% versus 1.7%). Moreover, 
CAKUT patients carrying DACT1 variants were significantly 
more likely to be additionally affected by anomalies of the 
digestive or genital tract, skeleton (particularly the spine) 
or central nervous system, compared to CAKUT patients 
without DACT1 variants of our cohort. Our data add DACT1 
to the list of genes underlying human syndromic CAKUT if 
mutated. We also establish the kidney and extrarenal pheno-
type spectrum caused by pathogenic DACT1 variants, more 
fully defining the spectrum of features in TBS2 (Fig. 5).

DACT1 (Dapper) is required for notochord formation in 
Xenopus (Cheyette et al. 2002). Dact1-deficient mice have 
posterior malformations resembling a human caudal regres-
sion syndrome including caudal vertebrae agenesis, anorec-
tal malformation including agenesis, and anomalies of the 
genitourinary system (Suriben et al. 2009; Wen et al. 2010). 
Kidney malformations in Dact1-deficient mice included 
fused kidneys, unilateral or bilateral kidney agenesis, cystic 
kidneys, and hydronephrosis, the ureters were blind-ended 
(Suriben et al. 2009; Wen et al. 2010). Except for bilateral 
kidney agenesis, all of these CAKUT phenotypes were 
also detected in our patients carrying DACT1 variants, par-
ticularly frequently cystic dysplastic kidneys (comprising 
MCDK, cystic kidney dysplasia, and kidney hypoplasia 
with a single cyst). Extrarenal anomalies detected in Dact1-
deficient mice (Suriben et al. 2009; Wen et al. 2010) and 
our patients with DACT1 variants included sacral anomalies, 
anorectal agenesis, genital tract and bladder anomalies, i.e., 
a spectrum of posterior malformations. With rare exceptions, 
homozygous Dact1-deficient mice died perinatally (Suriben 
et al. 2009; Wen et al. 2010), thus psychomotor develop-
ment, delayed in half of our patients carrying DACT1 vari-
ants, could not be monitored. One surviving Dact1-deficient 
female adult mouse had cystic kidneys, as did more than half 
of our patients with DACT1 variants, and vaginal agenesis 
leading to infertility (Wen et al. 2010). Infertility may par-
ticularly affect male patients with DACT1 variants, consist-
ent with the finding of blind-ended vas deferens in Dact1-
deficient male mice (Wen et al. 2010), because all DACT1 
variants identified here were maternally inherited, as far as 
this could be determined.

The spatiotemporal expression pattern of Dact1 detected 
here in murine embryos supports a direct role of DACT1 
in the development of structures malformed in Dact1-
deficient mice and patients with DACT1 variants, such as 
the vertebrae, anal canal, genital tubercle, kidney and ure-
ter, bladder, and brain. DACT1 inhibits WNT signaling, 
a function conserved from Xenopus to humans (Cheyette 
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et al. 2002; Zhang et al. 2006). WNT signaling, initiated 
by binding of extracellular WNT ligands to the transmem-
brane receptor Frizzled leading to activation of Dishevelled 
(DVL), plays a key role in embryogenesis and kidney devel-
opment (Schedl, 2007; Goggolidou 2014; Halt and Vainio 
2014; Wang et al. 2018; Meng et al. 2020; https:// www. 
wikip athwa ys. org/ index. php/ Pathw ay: WP4150). In kidney 
organogenesis, WNT-mediated signals control a number of 
critical processes, such as intermediate mesoderm extension 
(WNT5A), early ureteric bud branching (WNT11), nephron 
induction (WNT4 and WNT9B), and the morphogenesis of 
the medulla (WNT7B) (Schedl 2007; Yu et al. 2009; Halt 
and Vainio 2014; Yun et al. 2014). In ureter development, 
WNTs (WNT7B, WNT9B) control smooth muscle differ-
entiation (Trowe et al. 2012). WNT9B, expressed in the 
epithelial component (ureteric bud), and WNT4, expressed 
in the metanephric mesenchyme, are encoded by genes that 
can cause kidney agenesis and hypodysplasia in humans if 

mutated (Mandel et al. 2008; Vivante et al. 2013; Halt and 
Vainio 2014; Wu et al. 2017; Lemire et al. 2021; https:// 
www. wikip athwa ys. org/ index. php/ Pathw ay: WP5052). 
Here, we show that DACT1, acting downstream of these 
WNT ligands, is strongly expressed in the mesenchyme of 
the ureter and the capsular, cortical, and medullary kidney 
stroma from murine developmental stage E11.5 to E14.5, is 
involved in tubulogenesis in vitro and encodes a gene caus-
ing CAKUT in humans if mutated. Consistent with our find-
ings that more than half of our patients with DACT1 variants 
had cystic dysplastic kidneys, WNT signaling is particu-
larly linked to cystic kidney diseases including polycystic 
kidney disease, nephronophthisis, medullary cystic kidney 
disease, and HNF1β-associated kidney anomalies (Pulk-
kinen et al. 2008; Goggolidou 2014). DACT1 antagonizes 
WNT signaling by binding DVL (Cheyette et al. 2002), and 
inducing DVL degradation (Zhang et al. 2006), among other 
mechanisms. Considering that all DACT1 variants identified 
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Ears4

• Microtia

Skeletal2-5
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• Imperforate anus (with/without fistula)

Kidneys and urinary tract2,4-7

• Multicystic dysplastic kidney, kidney dysplasia,
kidney hypoplasia, kidney agenesis, duplex
kidney/collecting system, crossed fused renal ectopia, 
hydronephrosis, megaureter, megacystis, 
neurogenic bladder

Genital tract2,4,8

• Anomalies of the Mullerian duct, uterus, ovaries
• Hypospadias

Central nervous system
• Malformations, developmental delay, behavioral 

problems, cranial nerve paralysis
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• Congenital hypothyroidism
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• Microtia, congenital sensorineural and/or 
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• Rib anomalies, mild vertebral anomalies, 
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gastroesophageal reflux 
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• Kidney agenesis, kidney hypoplasia, polycystic kidneys
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• Club foot, overlapping or missing toes, syndactyly 
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b Townes-Brocks syndrome 2 – DACT1 variantsa Townes-Brocks syndrome 1 – SALL1 variants1

Heart3
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Fig. 5  Comparison of Townes–Brocks syndrome 1 and 2 accord-
ing to the literature and this study. a, b Schematic representation of 
the most prominent phenotypical features of TBS1 caused by het-
erozygous variants in the SALL1 gene (Kohlhase et  al. 1998; Kohl-
hase 2007) (a) and of TBS2 caused by heterozygous variants in the 
DACT1 gene (Shi et al. 2012; Nicolaou et al. 2016; Xing et al. 2016; 
Heidet et  al. 2017; Webb et  al. 2017; Connaughton et  al. 2019 and 
this study) (b). For detailed case descriptions, see Table 1 and sup-

plementary material including Supplementary Table  4. Please note 
the phenotypical overlap of both syndromes with respect to features 
of the central nervous system, eyes, and ears as well as endocrine, 
heart, skeletal, kidney, gastrointestinal, and genital anomalies. 1Kohl-
hase et  al. (1998); Kohlhase (2007), 2this study  (features are given 
in bold print), 3Shi et al. (2012), 4Webb et al. (2017), 5Connaughton 
et  al. (2019), 6Heidet et  al. (2017), 7Nicolaou et  al. (2016), 8Xing 
et al. (2016)
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in this study encode amino acids located within the puta-
tive DVL2-binding region (Zhang et al. 2006), and showed 
impaired DVL2 binding, their inhibitory activity on WNT 
signaling may be diminished. As DVL is a central compo-
nent of canonical β-catenin-dependent and non-canonical 
WNT signaling, both pathways may be affected by DACT1 
variants, although DACT1 appears to act mainly upstream of 
non-canonical planar cell polarity signaling (Suriben et al. 
2009; Wen et al. 2010; Yang et al. 2013).

Recently, a heterozygous DACT1 nonsense variant in a 
three-generation family was proposed to cause a TBS-like 
syndrome referred to as TBS2 (Webb et al. 2017). Autoso-
mal dominant TBS1 is characterized by the triad of imper-
forate anus or anal stenosis in 84%, dysplastic ears in 87%, 
and thumb malformations in 89%, and is caused by variants 
in the SALL1 (spalt like transcription factor 1) gene (Kohl-
hase et al. 1998; Kohlhase 2007). Functional kidney impair-
ment with or without structural abnormalities, including 
polycystic kidneys, has been reported in 42% of individu-
als with TBS1 (Kohlhase 2007), and rare SALL1 variants 
were detected in 0.5–1.4% of CAKUT patients (Hwang 
et al. 2014; Heidet et al. 2017; Kosfeld et al. 2018). Several 
anomalies in the family with TBS2 carrying a pathogenic 
DACT1 variant (Webb et al. 2017) overlap with TBS1 (Kohl-
hase et al. 1998; Kohlhase 2007), affecting the central nerv-
ous system, the ears, the endocrine system, the kidneys, the 
gastrointestinal and genital tract, and the skeleton, whereas 
thumb abnormalities were not observed (Fig. 5). Here, we 
report eight new families with heterozygous DACT1 vari-
ants, emphasizing the importance of kidney anomalies and 
supporting the observation of a characteristic phenotype 
spectrum additionally involving the skeleton (particularly 
the spine), the digestive and genital tract, and the central 
nervous system in TBS2, similar to that in TBS1 (Fig. 5). 
This combination of phenotypic features in TBS2 is con-
firmed when combining our data with that from the literature 
totaling 26 patients from 19 families with very rare DACT1 
variants, investigated because of neural tube defects (Shi 
et al. 2012), Müllerian duct (Xing et al. 2016) or kidney 
anomalies (Nicolaou et al. 2016; Heidet et al. 2017; Con-
naughton et al. 2019; this study) or TBS-like features (Webb 
et al. 2017). Families carrying DACT1 variants recurrently 
presented with anomalies of the kidney (12/19, 63%), skel-
eton (12/19, 63%), central nervous system (10/19, 53%), 
genital tract (4/19, 21%), lung (3/19, 16%), and distal diges-
tive tract (2/19, 10.5%) (Fig. 5; Supplementary Table 4). Of 
note, congenital kidney anomalies were observed in almost 
two-thirds of families. Thus, similar to the mouse model, in 
which Dact1 deficiency is fully penetrant for kidney anoma-
lies (Suriben et al. 2009; Wen et al. 2010), CAKUT seem to 
be a major feature in patients with rare heterozygous DACT1 
variants.

However, incomplete penetrance with respect to CAKUT 
and extrarenal phenotypes and variable expressivity is 
observed in individuals carrying heterozygous DACT1 
variants that may be unaffected or show variable features 
of TBS2, leading to miscarriage in the worst case (Fig. 1, 
Supplementary Table 4). Similarly, few Dact1-deficient 
mice survive postnatally and present with milder malfor-
mations, while most die perinatally due to severe devel-
opmental defects (Suriben et al. 2009; Wen et al. 2010). 
Incomplete penetrance is commonly observed in autosomal 
dominant familial CAKUT, and environmental factors or 
epigenetic alterations may contribute to CAKUT pathogen-
esis and severity of defects (Sanna-Cherchi et al. 2018; van 
der Ven et al. 2018b; Nigam et al. 2019). Similar to findings 
in patients with heterozygous DACT1 variants, heterozy-
gous variants in SALL1 have been identified in patients with 
typical features of TBS1, but also in patients with isolated 
CAKUT (Hwang et al. 2014; Heidet et al. 2017; Kosfeld 
et al. 2018).

In conclusion, we identified very rare heterozygous mis-
sense variants in the DVL2 interaction region of DACT1 
in 3.8% of CAKUT families. We provide further evidence 
that deleterious DACT1 variants and Dact1 deficiency cause 
kidney anomalies and a defined spectrum of extrarenal mal-
formations in mice and humans, referred to as TBS2. When 
identified in CAKUT patients with features of TBS2, rare 
DACT1 variants may be considered causative, especially in 
cases without SALL1 variants. Kidney ultrasound is war-
ranted in patients carrying rare DACT1 variants since two-
thirds of families described so far present with kidney agen-
esis, duplex/fused or (multi)cystic (hypo)dysplastic kidneys 
with hydronephrosis.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00439- 022- 02481-6.
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