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Abstract
In rare cases, hepatitis A virus (HAV) and hepatitis B virus (HBV) can cause fulminant viral hepatitis (FVH), characterized by 
massive hepatocyte necrosis and an inflammatory infiltrate. Other viral etiologies of FVH are rarer. FVH is life-threatening, 
but the patients are typically otherwise healthy, and normally resistant to other microbes. Only a small minority of infected 
individuals develop FVH, and this is the key issue to be addressed for this disease. In mice, mouse hepatitis virus 3 (MHV3) 
infection is the main model for dissecting FVH pathogenesis. Susceptibility to MHV3 differs between genetic backgrounds, 
with high and low mortality in C57BL6 and A/J mice, respectively. FVH pathogenesis in mice is related to uncontrolled 
inflammation and fibrinogen deposition. In humans, FVH is typically sporadic, but rare familial forms also exist, suggesting 
that there may be causal monogenic inborn errors. A recent study reported a single-gene inborn error of human immunity 
underlying FVH. A patient with autosomal recessive complete IL-18BP deficiency was shown to have FVH following HAV 
infection. The mechanism probably involves enhanced IL-18- and IFN-γ-dependent killing of hepatocytes by NK and CD8 
T cytotoxic cells. Proof-of-principle that FVH can be genetic is important clinically, for the affected patients and their fami-
lies, and immunologically, for the study of immunity to viruses in the liver. Moreover, the FVH-causing IL18BP genotype 
suggests that excessive IL-18 immunity may be a general mechanism underlying FVH, perhaps through the enhancement 
of IFN-γ immunity.

Introduction

Acute liver failure (ALF) is a life-threatening condition char-
acterized by massive necrosis of the liver in humans. Clini-
cal manifestations include a severe impairment of hepatic 
function, with progressive jaundice, disturbed coagulation, 
and encephalopathy developing within 8 weeks of the onset 
of the first symptoms and signs, at least in individuals with-
out preexisting liver disease. The main causes of ALF are 
diverse and include paracetamol toxicity, metabolic disor-
ders (such as Wilson’s disease), autoimmune diseases, and 
infection with liver-tropic viruses, also known as fulminant 

viral hepatitis (FVH) (Stravitz and Lee 2019; Bernal and 
Wendon 2013; Bernal et al. 2010; Ganger et al. 2018; Kath-
emann et al. 2015; Ichai and Samuel 2008). Around 5% of 
all cases of ALF remain unexplained (Ganger et al. 2018). 
The percentage of ALF due to viral infections ranges from 
10 to 45% depending on geographic area (Stravitz and Lee 
2019; Colleti Junior et al. 2019). Hepatitis A virus (HAV) 
and hepatitis B virus (HBV) are the liver-tropic viruses most 
frequently implicated in FVH (Liu et al. 2001; European 
Association for the Study of the Liver 2017). Other viruses, 
such as herpes viruses, may be involved to a lesser extent. 
The current prevalence and incidence of FVH worldwide 
are not precisely known, but previous studies have sug-
gested that FVH develops in no more than 0.5% and 0.1% 
of individuals with symptomatic HAV (Lemon et al. 2018) 
and HBV (Asgari et al. 2019) infections, respectively. The 
outcome is poor, with fewer than 20% of patients surviving 
in the absence of liver transplantation. By contrast, survival 
rates may reach 80% after liver transplantation (Lemon et al. 
2018; Bernal et al. 2015). Very little is known about the 
pathogenesis of FVH. Its rarity and typically sporadic nature 
suggested that the causal viruses were unlikely to be abnor-
mally virulent (Ajmera et al. 2011; Fujiwara et al. 2001; Sato 
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et al. 2003). Several groups have reported the more frequent 
occurrence of some HBV mutations in patients with FVH 
than in patients with other forms of HBV infection (Sai-
nokami et al. 2007; Ozasa et al. 2006; Friedt et al. 1999). 
Conversely, reports of rare multiplex and/or consanguineous 
families have suggested a possible contribution of inborn 
errors of immunity (IEI) (Durst et al. 2001; Yalniz et al. 
2005; Yoshida et al. 2017). Moreover, single-gene IEI have 
been found to underlie other severe, isolated viral infections, 
such as herpes simplex virus encephalitis, attenuated live 
measles and yellow fever vaccine diseases, Kaposi sarcoma, 
severe influenza pneumonitis, epidermodysplasia verruci-
formis, and fulminant EBV disease (Byun et al. 2013; Cian-
canelli et al. 2015, 2016; Jong et al. 2018a, b; Hernandez 
et al. 2018, 2019; Jackson et al. 2016; Tangye and Latour 
2020; Zhang and Casanova 2015; Zhang et al. 2018, 2019; 
Lafaille et al. 2012, 2015; Latour and Fischer 2019). These 
observations suggest that FVH may be caused by a liver IEI 
to viruses. Here, we review the mouse and human genetic 
studies leading to the recent discovery of the first inborn 
error of liver immunity to viruses.

Genetic studies in mice

Human hepatitis viruses are not natural pathogens of mice. 
Alternative infectious and non-infectious mouse mod-
els have, therefore, been developed, for dissection of the 
pathogenesis of FVH. The most common infectious model 
of hepatitis is based on viruses from the mouse hepatitis 
virus (MHV) family. These viruses are coronaviruses, which 
resemble HAV in being single-stranded (+) RNA viruses, 
but differ from HAV in having an envelope. MHVs differ in 
tissue tropism and virulence, with the hepatotropic viruses 
MHV3 and MHVA59 having high and low virulence, 
respectively (Le Prevost et al. 1975a; Wijburg et al. 1997). 
In mice, MHV3 infection leads to a spectrum of hepatic 
phenotypes, ranging from high susceptibility to complete 
resistance, depending on genetic background. The BALB/c 
and C57BL6 strains are both highly susceptible to MHV3 
infection, whereas the A/J strain is resistant, except dur-
ing the neonatal period (Le Prevost et al. 1975b; Tardieu 
et al. 1980; Levy et al. 1981). A cytopathic effect of the 
virus is not the only explanation for this, as viral replication 
in hepatocytes is similar in susceptible and resistant mice 
(Taguchi et al. 1983; Levy et al. 1983). Hepatic failure is 
the major disorder observed in susceptible mice, but hepato-
cytes are not the only cells targeted by MHV3. This virus 
also replicates in endothelial (sinusoidal and vascular) and 
immunological cells (hepatic macrophages, also known as 
Kupffer cells, and natural killer (NK) cells) (Pereira et al. 
1984). MHV3 infection has been studied for decades, both 

genetically and immunologically, to decipher the spectrum 
of infectious phenotypes (Le Prevost et al. 1975a).

In the 1970s, macrophages and lymphocytes (Tardieu 
et al. 1980) were reported to be involved in the anti-MHV3 
immune response, together with type I (in vivo) and type II 
(in vitro) interferons (IFNs) (Virelizier et al. 1976; 1977; 
Virelizier and Gresser 1978). In 1979, Levy-Leblond et al. 
showed, by crossing MHV3-resistant and MHV3-suscepti-
ble mouse strains, that acute liver disease was determined 
by one or two genes unrelated to the H-2 complex with a 
recessive mode of inheritance (Levy-Leblond et al. 1979). 
A few years later, another group published results confirm-
ing the model of two recessive genes unrelated to the H-2 
locus (Dindzans et al. 1986). They also established a link 
between susceptibility to MHV3 infection and the level of 
macrophage procoagulant activity (PCA) (Dindzans et al. 
1986). This link was confirmed by the treatment of sus-
ceptible mice with a neutralizing antibody against MHV3-
induced PCA, which rendered these mice resistant, and by 
the induction of PCA in resistant mice, which rendered them 
susceptible (Li et al. 1992; Fingerote et al. 1996). Following 
molecular cloning, the Fgl2 gene was identified as encod-
ing an interferon (IFN)γ-inducible fibrinogen-like protein, 
responsible for macrophage PCA (Levy et al. 1981; Qureshi 
et al. 1995; Parr et al. 1995a, b). Its expression promotes 
fibrinogen deposition, leading to the activation of coagu-
lation cascades and PCA. By contrast to the nucleocapsid 
proteins of non-hepatotropic MVHs, the nucleocapsid (N) 
protein of MHV3 and MHVA59 is required for the induction 
of Fgl2 expression, through the binding of the transcription 
factor hepatic nuclear factor 4 to the Fgl2 promoter (Ning 
et al. 1999; 2003) Finally, following MHV3 infection, Fgl2-
knockout (KO) mice display milder disease and lower mor-
tality than wild-type mice, suggesting a key role for FGL2 
in the pathogenesis of MHV3-induced FVH (Marsden et al. 
2003).

Reverse genetics techniques have been used to dissect 
out the mechanism of MHV3-induced FVH in greater 
detail. A few KO mice have been tested, some of which 
were more susceptible than WT mice, with earlier and 
higher mortality. These models included knockouts of 
programmed death (PD)-1, IL-33 and V-set immuno-
globulin domain-containing 4 (VSIG4) (Carriere et al. 
2017; Chen et al. 2011; Li et al. 2017). PD-1 modulates 
the balance between the antimicrobial immune response 
and immune system-mediated tissue damage. IFNγ and 
TNFα are more strongly induced in PD-1-KO mice than 
in WT mice, leading to higher levels of FGL2 secretion 
and greater tissue damage. Treatments blocking IFNγ 
and TNFα decrease mortality in PD-1-KO mice, sug-
gesting a role for these two cytokines in the pathogen-
esis of MHV3-induced FVH (Chen et al. 2011). IL-33 is 
a ubiquitously and constitutively expressed cytokine. It 
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belongs to the IL-1 family and has pleiotropic functions, 
including IFNγ induction and inflammatory effects (Car-
riere et al. 2017). MHV3 infection in IL-33-KO mice is 
associated with an increase in neutrophil recruitment and 
a lack of infiltrating NK cells, T cells, and macrophages 
(Carriere et al. 2017). These mice display lower levels of 
IFNγ induction, but much higher levels of TNFα and IL-6 
induction than WT mice during infection. Finally, VSIG4 
is a complement receptor of the immunoglobulin super-
family. It is expressed exclusively in tissue macrophages, 
including Kupffer cells. Inflammatory cytokines, not 
only such as IFNγ and TNFγ but also FGL2, are strongly 
induced in VSIG4-KO mice, leading to uncontrolled 
macrophage-mediated inflammation and tissue damage 
(Li et al. 2017).

By contrast, other KO mice become resistant to MHV3-
induced FVH. For example, mortality was shown to be 
much lower in B- and T-lymphocyte attenuator (BTLA)-
KO mice than in their WT littermates (Yang et al. 2013). 
This resistant phenotype is related to a lack of FGL2 
induction, resulting in lower levels of fibrinogen deposi-
tion and tissue damage. Despite similar levels of IFNγ 
and TNFα production in WT and BLTA-KO mice, mac-
rophage apoptosis rates were higher in BTLA-KO mice, 
and a smaller number of these macrophages infiltrated the 
liver (Yang et al. 2013). TNFα-KO mice were also found 
to have a resistant phenotype, due to lower levels of FGL2 
induction (Yang et al. 2013). In another study, C5aR-KO 
mice were found to be resistant to MHV3-induced FVH, 
with lower mortality, reflecting lower levels of TNFα, 
IL6 and FGL2 induction, whereas IFNγ production was 
similar to that in WT mice (Liu et al. 2015). Interestingly, 
macrophage scavenger receptor 1 (MSR1)-KO mice were 
less susceptible to MHVA59-induced FVH. The authors 
reported a lower induction of inflammatory cytokines 
(TNFα, IL-6 and IFNγ) and lower levels of FGL2 and 
C5a secretion (Tang et al. 2018). FLG2- and TNFα-KO 
mice were confirmed to be resistant to infection, whereas 
IL-6-KO mice have a phenotype similar to that of WT 
mice (Liu et al. 2015). Finally, TLR2 is strongly induced 
during MHV3 infection, as are IL6, IL33 and TNFα (Li 
et al. 1992). TLR2-KO mice are less susceptible to MHV3 
infection than WT mice, with lower levels of viral rep-
lication and liver damage, and delayed mortality. These 
findings reflect lower levels of inflammatory cytokine 
production, but not of FGL2 production, together with a 
delayed recruitment of neutrophils, macrophages and NK 
cells (Bleau et al. 2016). Overall, they suggest that, in the 
mouse model, MHVA59- or MHV3-induced FHV results 
from uncontrolled PCA due to high levels of inflamma-
tion and macrophage activation, leading to high levels of 
fibrinogen deposition and tissue damage.

Genetic studies in humans

Very little is known about the pathogenesis of human 
FVH. The human FGL2 gene was identified following 
studies in mice (Levy et al. 2000). In patients with FVH 
due to HBV, FGL2 is strongly expressed in macrophages 
in liver tissue, as observed in the mouse model. Plasma 
concentrations of FGL2, IFNγ, IL-1β, and IL-18 are 
higher in patients with FVH than in healthy or chroni-
cally infected individuals without FVH (Liu et al. 2015; 
Shinoda et al. 2006; Yumoto et al. 2002; Zhu et al. 2005). 
Activated  CD68+ macrophages have been detected in areas 
of active necrosis (Levy et al. 2000). The serum viral load 
in patients with FVH due to HAV or HBV is similar to 
or lower than that in patients with acute benign HAV or 
HBV hepatitis (Sainokami et al. 2007; Ozasa et al. 2006; 
Rezende et  al. 2003). These observations suggest that 
the clinical phenotype is probably due more to a lack of 
inflammation regulation than to a lack of control over viral 
replication. Interestingly, three multiplex families with 
FVH due to HAV have been described: an Iranian family 
with three previously healthy siblings (17, 19 and 24 years 
old), a Turkish family including an affected brother and 
sister (16 and 18 years old), and a Japanese family with 
two affected brothers (59 and 63 years old) (Durst et al. 
2001; Yalniz et al. 2005; Yoshida et al. 2017), consistent 
with genetic predisposition. Despite these findings, little is 
known about the pathogenesis of FVH in humans. Genetic 
studies have recently been performed on large cohorts of 
FVH patients, with either a candidate gene approach or a 
genome-wide approach. These studies yielded suggestive, 
but not conclusive findings.

A first human genetic study was published in 2011 by 
Kim et al. (2011). In this paper, the authors reported a 
case–control study on children from Argentina (30 chil-
dren with FVH due to HAV and 102 controls) and one can-
didate gene TIM1, also known as HAVCR1, encoding the 
HAV receptor. They found a difference of borderline sig-
nificance in the distribution of the 157insMTTTVP inser-
tion between patients and controls (p value 0.037), with 
an allelic frequency of the insertion of 37% in patients and 
28% in controls. This insertion leads to the production of 
an elongated form of the receptor. HAV infects hepatocytes 
expressing the short and long forms of this receptor with 
equal efficiency. However, NKT cells expressing the long 
form of TIM1 are more cytotoxic, potentially accounting 
for the rapid destruction of hepatocytes. This study was 
the first to investigate why only some HAV-infected indi-
viduals develop FVH. However, given the incidence of 
the disease, the allele frequency in the general population 
is too high to be compatible with the hypothesis of sin-
gle-gene IEI, as previously reported in other severe viral 
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diseases (Byun et al. 2013; Ciancanelli et al. 2015, 2016; 
Jong et al. 2018a, b; Hernandez et al. 2018, 2019; Jackson 
et al. 2016; Tangye and Latour 2020; Zhang and Casanova 
2015; Zhang et al. 2018, 2019; Lafaille et al. 2012, 2015; 
Latour and Fischer 2019). In 2014, a second study was 
performed on a cohort of ten adult patients with acute 
liver injury or failure due to HAV. This study made use 
of a “hypothesis-free” strategy based on whole-genome 
sequencing. The authors initially analyzed their data under 
a hypothesis of genetic homogeneity, implying that one 
or several mutations of the same gene were common to 
most patients. No rare mutation meeting this criterion was 
detected under either the autosomal recessive (AR) or the 
autosomal dominant (AD) genetic model. Under a hypoth-
esis of genetic heterogeneity, implying that each patient 
has a mutation of a different gene, the authors identified 
eight candidate genes, four under the AR model and four 
under the AD model, but no further functional investiga-
tions were performed to establish a genotype–phenotype 
correlation (Long et al. 2014).

More recently, two other genetic studies have been per-
formed on cohorts of patients with FVH due to HBV. In 
2018, Ajmera et al. compared exome data from 14 patients 
with FVH, and 50 patients with chronic or acute (non-FVH) 
hepatitis to exome data for 2963 controls, all of European 
ancestry (Ajmera et al. 2019). They identified one single-
nucleotide polymorphism (SNP), a missense mutation 
(rs2277680, A181V) in CXCL16, which was underrepre-
sented in the FVH cohort relative to the others (only 9% of 
patients in the FVH cohort had a valine residue at position 
181 (V181) vs. 43–50% in the others), including the con-
trols, with a p value of 8.8 × 10–5. CXCL16 is a chemokine 
highly expressed in liver, especially on cholangiocytes, 
hepatocytes and hepatic endothelial cells, and it interacts 
with the CXCR6 receptor expressed on NKT cells. Func-
tional studies have shown that the V181 allele cannot medi-
ate monocyte adhesion ex vivo (Petit et al. 2011). Ajmera 
et al. hypothesized that the overrepresented A181 allele 
has a deleterious impact due to greater NKT cell adhesion, 
which may mediate hepatic inflammation, leading to massive 
destruction of the liver in FVH patients. In 2019, an asso-
ciation study on exome data compared 21 cases of FVH in 
adult patients to 172  HBV+ controls (Asgari et al. 2019). At 
the single-variant and gene-based levels, the analyses found 
no significant association. These results suggest various 
possibilities: predisposition to FVH may not be inherited, 
or may be caused by monogenic lesions in some patients, 
and perhaps digenic or oligogenic lesions in others, with a 
high degree of genetic heterogeneity (with patients carrying 
FVH-causing variants of different genes).

In this context, we recently reported a child who died 
from FVH following infection with HAV who was homozy-
gous for a private 40-nucleotide deletion in IL18BP, which 

encodes the IL-18-binding protein (IL-18BP) (Belkaya et al. 
2019). Unlike the four non-synonymous variants of this gene 
found in the homozygous state in public databases, this vari-
ant is loss-of-function. IL18BP is a soluble antagonist of 
IL18, an inflammatory IFNγ-inducing cytokine that acti-
vates NK and T-cell cytotoxicity. IL18BP has a high affin-
ity for IL18 and blocks the binding of this cytokine to its 
membrane-bound receptor, IL18R. IL-18 is hepatotoxic and 
was initially identified as the cytokine responsible for liver 
failure in the mouse model (Okamura et al. 1995; Tsutsui 
et al. 1992). Human IL-18 and IL-18BP are both produced 
by hepatocytes and macrophages, which are destroyed and 
highly activated, respectively, during FVH. We have shown 
that, in the absence of IL-18BP, excessive NK cell activation 
by IL-18 results in the uncontrolled killing of human hepato-
cytes in vitro. We suggest that the lack of negative regulation 
of IL-18 by IL-18BP in vivo leads to the enhanced activa-
tion and production of IFN-γ by NK and T lymphocytes 
in patients, resulting in the activation of macrophages and 
hepatocyte killing (Fig. 1). Inherited human IL-18BP defi-
ciency thus underlies fulminant HAV hepatitis by unleash-
ing IL-18, and possibly IFN-γ. These findings suggest that 
human IL-18 is toxic to the liver and that IL-18BP is its 
antidote.

Conclusion

In conclusion, the discovery of IL-18BP deficiency as a 
genetic etiology of FVH provided proof-of-principle that 
FVH can be caused by single-gene inborn errors selectively 
disrupting liver-specific immunity to viruses. It also points to 
IL-18 as an anchor molecule in the pathogenesis of FVH. The 
massive killing of hepatocytes due to uncontrolled inflamma-
tion seems to be the mechanism underlying the pathogenesis 
of FVH. However, the genetic and mechanistic dissection 
of FVH pathogenesis remains in its infancy. Further studies 
are required to determine, in more detail, the roles of hemat-
opoietic cells (cytotoxic lymphocytes, macrophages) and 
non-hematopoietic cells (hepatocytes) in the establishment of 
FVH. The discovery of an IEI underlying FVH is important 
from a clinical standpoint, as it makes it possible to deliver a 
diagnosis to patients and their families, and from an immuno-
logical standpoint, as it will facilitate the deciphering of liver-
intrinsic immunity. These studies may pave the way for the 
development of novel preventive or therapeutic interventions. 
Recombinant human IL-18BP (Tadekinig Alfa; AB2 Bio) has 
been proposed as a treatment for preventing acetaminophen 
hepatotoxicity (Bachmann et al. 2018). There may be other 
ways to manage patients who would die from infection with-
out liver transplantation, a procedure that remains associated 
with heavy short- and long-term morbidity and mortality. The 
discovery of novel genetic etiologies of FVH may also pave the 
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way for the development of a new treatment for other forms of 
fulminant hepatitis, such as acetaminophen-induced hepatitis, 
and, perhaps, chronic hepatitis.
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