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Abstract
Appendicitis affects 9% of Americans and is the most common diagnosis requiring hospitalization of both children and adults. 
We performed a genome-wide association study of self-reported appendectomy with 18,773 affected adults and 114,907 
unaffected adults of European American ancestry. A significant association with appendectomy was observed at 4q25 near 
the gene PITX2 (rs2129979, p value = 8.82 × 10−14) and was replicated in an independent sample of Caucasians (59 affected, 
607 unaffected; p value = 0.005). Meta-analysis of the associated variant across our two cohorts and cohorts from Iceland and 
the Netherlands (in which this association had previously been reported) showed strong cumulative evidence of association 
(OR = 1.12; 95% CI 1.09–1.14; p value = 1.81 × 10−23) and some evidence for effect heterogeneity (p value = 0.03). Eight 
other loci were identified at suggestive significance in the discovery GWAS. Associations were followed up by measuring 
gene expression across resected appendices with varying levels of inflammation (N = 75). We measured expression of 27 
genes based on physical proximity to the GWAS signals, evidence of being targeted by eQTLs near the signals according to 
RegulomeDB (score = 1), or both. Four of the 27 genes (including PITX2) showed significant evidence (p values < 0.0033) 
of differential expression across categories of appendix inflammation. An additional ten genes showed nominal evidence 
(p value < 0.05) of differential expression, which, together with the significant genes, is more than expected by chance (p 
value = 6.6 × 10−12). PITX2 impacts morphological development of intestinal tissue, promotes an anti-oxidant response, and 
its expression correlates with levels of intestinal bacteria and colonic inflammation. Further studies of the role of PITX2 in 
appendicitis are warranted.
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Introduction

The appendix is commonly thought to be vestigial in 
humans (Cakmak et al. 2014), although recent reports 
have indicated a putative role for the appendix in main-
taining a healthy gut microbiota (Donaldson et al. 2015). 
Regardless, inflammation of the appendix remains a major 
source of morbidity worldwide, particularly in developed 
countries. Acute appendicitis affects approximately 9% of 
Americans (Anderson et al. 2012) and is one of the most 
common reasons for emergent abdominal surgery. It is 
more common in males than females (1.4:1) and occurs 
most commonly in the second to third decades of life 
(Anderson et al. 2012; Körner et al. 1997). Roughly 30% 
of affected patients present with advanced disease featur-
ing an appendiceal perforation, resulting in prolonged 
hospitalization and higher rates of complications (Barrett 
et al. 2013).

Historically, appendiceal obstruction from fecaliths or 
lymphoid hyperplasia has been considered the underly-
ing cause of appendicitis (Holcomb and Murphy 2010). 
However, efforts to verify this theory experimentally have 
generally been unsuccessful, and pathologic reviews of 
appendectomy specimens have clearly shown that many or 
most cases of appendicitis occur in the absence of an obvi-
ous luminal obstruction (Carr 2000; Singh and Mariada-
son 2013; Chandrasegaram et al. 2012). For this reason, 
others have proposed that appendicitis, like other inflam-
matory processes, results from both genetic and environ-
mental risk factors (Arnbjörnsson and Bengmark 1984; 
Ergul 2007; Sadr Azodi et al. 2009). For example, much 
evidence supports a role of lack of dietary fiber in the 
increased incidence of disease in developed nations (Ada-
midis et al. 2000; Arnbjörnsson 1983). Newer evidence 
has linked appendicitis with specific disturbances of the 
appendiceal microbiome (Zhong et al. 2014; Swidsinski 
et al. 2011, 2012), and this idea is supported by the fact 
that nonoperative therapy with antibiotics can success-
fully treat some patients with the disease (Minneci et al. 
2016). Overall, there is no consensus on the pathophysiol-
ogy underlying appendicitis, which appears to represent a 
unique disease process distinct from inflammatory disor-
ders elsewhere in the gastrointestinal tract (Murphy et al. 
2008).

The role of host genetics in predisposition to appen-
dicitis is poorly understood, but the available evidence 
suggests that genetic factors contribute to susceptibility. 
For example, heritability estimates of appendicitis derived 
from linkage, complex segregation, and twin studies 
range between 27 and 56% (Basta et al. 1990; Duffy et al. 
1990; Oldmeadow et al. 2009). Recently, association was 
observed for a locus on 4q25 near PITX2 with appendicitis 

in Northern European adults (Kristjansson et al. 2017). 
This association was not found in children, suggesting 
potentially different genetic mechanisms or effect sizes of 
genetic risk factors for appendicitis between children and 
adults. Other genetic variants that account for the herit-
ability of appendicitis have yet to be discovered.

Here, we report results of a genome-wide association 
study (GWAS) of appendectomy with the largest number 
of cases to date with independent replication. We follow up 
the association studies with an analysis of gene expression. 
Our results support the role of the 4q25 locus and PITX2 in 
risk for appendicitis, and we nominate additional risk genes 
for the follow-up study.

Methods

GWAS

Research participants were from the personal genetics 
company 23andMe, Inc., and provided informed consent 
and participated in the research online, under a protocol 
approved by the external AAHRPP-accredited IRB, Ethical 
and Independent Review Services (E&I Review). DNA sam-
ples were provided via saliva collection kits and genotyped 
using one of four Illumina® (San Diego, USA) genotyping 
platforms (HumanHap550 BeadChip, OmniExpress + Bead-
Chip, or one of two custom panels designed, in part, for 
comparability to these). Genetic data were imputed to the 
1000 Genomes phase 1 reference using Minimac (Howie 
et al. 2012) and phased using Beagle (Browning and Brown-
ing 2007) (v 3.3.1) separately for the four genotyping plat-
forms. SNPs were filtered for those with call rate > 90%, 
Hardy–Weinberg equilibrium p value > 10−20, MAF > 0.1%, 
and without evidence of a batch effect, or large allele fre-
quency discrepancies compared to European 1000 Genomes 
reference data. SNPs were also flagged if present solely on 
the 23andMe V1 platform (due to small sample size), date 
effects (p value < 10−50), and if logistic regression results 
that did not converge due to complete separation. Imputed 
SNPs are represented by estimated allele dosage over a set 
of possible imputed genotypes and were included in the 
GWAS given satisfaction of quality metrics used in Mini-
mac. Imputation quality and batch effects were evaluated 
using the average (avg.rsqr) and minimum (min.rsqr) of 
Minimac’s rsqr statistic aggregated over a series of imputa-
tion batches and an ANOVA test for a batch effect (p.batch) 
across these imputation batches (criteria: joint avg.rsqr > 0.5, 
min.rsqr > 0.3, and p.batch > 1 × 10−50).

Genetic association analyses were limited to unrelated 
participants with ≥ 97% European ancestry, as compared to 
HapMap2 populations (Falush et al. 2003), and were con-
ducted using self-reported appendectomy as the phenotype 
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in a cohort of 18,773 affected and 114,907 unaffected partic-
ipants as described (Chang et al. 2015; Ferreira et al. 2014; 
Apfel et al. 2012). Those affected answered “yes” to “Have 
you ever had your appendix removed?” (answer choices: 
“yes,” “no,” and “I’m not sure”), and/or “Have you ever 
had any of the following other surgeries?” (answer choices 
to the “appendectomy” selection: “yes,” “no,” and “I don’t 
know.”) Unaffected individuals answered “no,” and those 
who responded with discordant results to the two questions 
or answered “I don’t know/I’m not sure” were excluded from 
the study.

Tests of genetic association were performed using logistic 
regression while assuming an additive genetic model and 
adjusting for age, sex, and the top five principal compo-
nents of ancestry. The genomic control procedure was used 
to account for variance inflation not effectively controlled 
for by principal components; the results were adjusted for a 
genomic inflation factor of 1.034 (Devlin and Roeder 1999). 
The thresholds for genome-wide significance and sugges-
tive significance were set at p values = 5 × 10−8 and 1 × 10−6, 
respectively.

Replication

The top SNPs for seven of the nine loci reaching genome-
wide or suggestive significance (p value < 1 × 10−6) in the 
GWAS were tested for genetic association in an independ-
ent replication cohort of non-Hispanic European ances-
try. Two of the nine SNPs could not be tested in the rep-
lication cohort due to low MAF, and no surrogate SNPs in 
high LD (r2 > 0.8) were available. The replication cohort 
was sourced from the Center for Oral Health Research in 
Appalachia cohort 1 (COHRA1), a study of oral health in 
a rural population described previously (Polk et al. 2008). 
COHRA1 included data collection on prior hospitaliza-
tions and operations as part of a medical history survey. 
Appendicitis cases were ascertained based on self-report of 
appendicitis or appendectomy. 59 appendicitis cases of any 
age and 607 unaffected adults over age 30 were included in 
the replication analyses. A minimum age of 30 was chosen 
for defining unaffected participants to reduce the chances of 
including individuals who were susceptible, but had not yet 
had appendicitis (Körner et al. 1997). Logistic regression 
was performed assuming an additive model and adjusting for 
sex and the first principal component of ancestry. In light of 
multiple comparisons, the significance threshold to declare 
replication was determined by Bonferroni adjustment to be 
p value = 0.007.

Meta‑analysis

A fixed effects meta-analysis was performed for the top 
SNP (rs2129979) across four cohorts and heterogeneity was 

tested using Cochrane’s Q statistic in Plink v1.9 (Purcell 
et al. 2007). Meta-analysis results were visualized in a forest 
plot created in R (v3.4.2). The analysis included results from 
the 23andMe and COHRA1 cohorts, as well as two cohorts 
of Icelandic and Dutch ancestry described previously (Krist-
jansson et al. 2017). The Icelandic cohort consisted of 7267 
affected individuals ascertained through medical record 
review and 327,134 unaffected people recruited for genet-
ics research through deCODE. The Dutch cohort included 
1139 affected people based on self-report of appendicitis/
appendectomy and 4587 unaffected people, with both groups 
drawn from several cancer and other research studies.

Appendiceal gene expression

75 appendix samples were collected from children (aged 
5–18 years; mean = 10.9 years) undergoing appendectomy 
at Children’s Hospital of Pittsburgh of UPMC following 
parental informed consent under approved IRB protocol 
(University of Pittsburgh #PRO14090296). The samples 
were classified based on histopathology as mildly inflamed 
(N = 8), severely inflamed (N = 38), perforated (N = 18), or 
uninflamed (N = 11; due to incidental appendectomy) and 
were preserved as formalin-fixed paraffin-embedded tissue. 
A custom panel of 27 genes was selected for measurement of 
gene expression based on multiple lines of evidence. Genes 
were prioritized based on proximity to the associated vari-
ants observed in the GWAS, with preference given to genes 
with biological plausibility and those nearest to the most 
strongly associated variants. Genes were also prioritized 
based on greatest evidence of regulation by expression quan-
titative trait loci (eQTLs) near the GWAS signals, which was 
defined as a RegulomeDB score of 1, “likely to affect bind-
ing and linked to expression of a gene target” (Table S1). 
Genes targeted by eQTLs across multiple associated loci 
were prioritized. eQTL locations and target genes were 
obtained from RegulomeDB (version 1.1, publicly available 
at regulome.stanford.edu) (Boyle et al. 2012).

NanoString Technologies’ nCounter™ Gene Expression 
Assay was used to measure gene expression (NanoString 
Technologies; Seattle, WA). RNA was extracted from FFPE 
appendix tissue samples with the PureLink FFPE Total RNA 
Isolation Kit (ThermoFisher®). 100 ng of RNA was used 
as input for the protocol recommended by the manufac-
turer. RNA extraction and nCounter assay were performed 
at the University of Pittsburgh HSCRF Genomics Research 
Core. Results from the Nanostring were normalized using 
the nSolver analysis software 2.5 (NanoString). Samples 
underwent quality filtering using default parameters. Six 
positive and eight negative spiked-in controls were used. 
Gene expression levels were normalized to those of eight 
housekeeping genes listed in Table S1. Genes were tested for 
differential expression across categories of appendix sample 
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inflammation or perforation using the nonparametric Cru-
zick trend test. A p value threshold of 0.0033 for declaring 
statistical significance given the effective number of inde-
pendent tests was determined using the Li and Ji method 
(2005). The Kruskal–Wallis test was done as a secondary 
analysis to check for differences that were not monotonic 
across severity categories. The Wilcoxon rank sum test was 
used to compare inflamed or perforated and uninflamed 
tissue only for genes surpassing nominal statistical signifi-
cance (p value < 0.05) via the Kruskal–Wallis test. Enrich-
ment of nominally or significantly differential expression 
across genes in the expression panel was determined using 
the binomial test.

Results

A GWAS of appendectomy was conducted on 133,680 indi-
viduals. Participant demographics are shown in Table 1. 
Results of the GWAS are shown in the Manhattan plot 
in Fig. 1. No evidence of genomic inflation was detected 
(genomic inflation factor, λ, was 1.034; see quantile–quan-
tile plot in Figure S1). One genome-wide significant locus 
was observed on chromosome 4q25 near PITX2 (lead 
SNP rs2129979, p value = 8.82 × 10−14, OR = 1.10, 95% 
CI 1.07–1.13; Fig. 2; Table 2). Genetic association with 
similar effect size has recently been reported at this locus 
in a GWAS of Northern European adults (OR = 1.15, 95% 
CI 1.10–1.20) (Kristjansson et al. 2017). Eight other loci 
reached suggestive significance (p value < 1 × 10−6; Table 2), 
including 15q24 (NEO1), 20q13 (RBM38, CTCFL), 3p21 
(TRAIP), 4q25 (c4orf32), 11p15 (AP2A2), 12q21 (DUSP6), 
1p13 (CD53), and 3p21 (RAD54L2) (Figure S2).

The lead SNPs of seven of the nine loci identified in 
the GWAS were considered for replication testing in 666 
individuals from the COHRA1 cohort. Note, neither lead 

SNPs nor surrogates in high LD were available for three 
of the nine loci due to low MAF. COHRA1 cohort demo-
graphics are listed in Table 1. Evidence of replication 
was observed for rs2129979 (p value = 0.0046), the lead 
SNP at the significant locus on 4q25 near PITX2, after 
adjustment for multiple testing. The direction of effect 
of the SNP in the replication sample (OR = 1.78, 95% CI 
1.194–2.639) was the same as in the 23andMe sample. No 
other SNPs showed evidence of replication. Replication 
results are detailed in Table 2.

A meta-analysis was conducted on the most signifi-
cantly associated SNP (rs2129979) in the 23andMe GWAS 
across the 23andMe, COHRA1, Icelandic (OR = 1.14; 95% 
CI 1.09–1.19; p value = 3.5 × 10−9), and Dutch cohorts 
(OR = 1.19; 95% CI 1.07–1.32; p value = 0.0011) (Fig. 3). 
The direction of effect was consistent for all four groups. 
Statistically significant genetic heterogeneity at this locus 
was found using Cochran’s Q statistic (p value = 0.0336), 
indicating some between-cohort differences in the genetic 
effects of this locus.

Consistent with most genetic associations for complex 
diseases, the associated SNPs near PITX2 and other sug-
gestive loci observed in this GWAS are non-coding, and 
statistical evidence of association at these loci does not 
point to specific mechanisms through which they impact 
susceptibility to appendicitis. Non-coding variants, such as 
these, may regulate gene expression. Therefore, we investi-
gated expression levels for a panel of candidates prioritized 
based on the GWAS results. Expression levels in a custom 
panel of 27 genes were measured in 75 appendix samples 
(11 uninflamed, 8 mildly inflamed, 38 severely inflamed, 18 
perforated) by direct detection of RNA barcodes. The mean 
age of the children from whom the samples were collected 

Table 1   Cohort demographics of the 23andMe (discovery) and 
COHRA1 (replication) data sets

The ages represent ages at which the research participants were geno-
typed

23andMe COHRA1

Affected Unaffected Affected Unaffected

Total, N (%) 18,773 (14%) 114,907 (86%) 59 (9%) 607 (91%)
Female (%) 56.5 47.9 52.5 59.8
Male (%) 43.5 52.1 47.5 40.2
Age (years) (%)
 (0–30) 4.1 13 30.5 0
 (30–45) 14.4 28.8 55.9 78.7
 (45–60) 25.7 27.6 13.6 19.6
 (60+) 55.9 30.5 0 1.6

Fig. 1   Manhattan plot of GWAS of self-report of appendectomy in 
the 23andMe (discovery) cohort. The upper horizontal line repre-
sents the threshold for genome-wide significance (p value < 5 × 10−8), 
and the lower horizontal line represents suggestive significance (p 
value < 1 × 10−6)
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was 10.9 (range 5–18 years). Of the 27 genes tested, four 
genes showed significant differential expression across cat-
egories of appendix inflammation or perforation using a 
nonparametric trend test: PITX2 (p value = 0.002), UBA7 
(p value = 0.001), CD53 (p value = 0.001), and RHOA (p 
value = 0.003) (Fig. 4). Additionally, ten genes showed nom-
inally significant (p value < 0.05) evidence of differential 
expression (ENPEP p value = 0.006; NEO1 p value = 0.023; 
GMPPB p value = 0.010; MST1 p value = 0.019; MON1A 
p value = 0.011; FAM212A p value = 0.006, AP2A2 p 
value = 0.019, KCNA3 p value = 0.036, RAD54L2 p 

value = 0.024, WDR6 p value = 0.013) (Figure S3). More-
over, the expression panel, overall, showed significant (p 
value < 6.6 × 10−12) enrichment of nominally or significantly 
differentially expressed genes (14 of 27), compared to what 
would be expected for this panel of genes by chance if there 
truly were no expression differences across the inflammation 
groups. Analyses using the Kruskal–Wallis test showed sim-
ilar results to the trend test (Figures S4 and S5) and did not 
yield additional significant findings. PITX2, the gene closest 
to the most significant replicated GWAS signal (rs2129979), 
was among the genes showing differential gene expression. 

Fig. 2   Regional association plot 
of the genome-wide significant 
rs2129979 in the 23andMe 
GWAS. Blue lines indicate the 
recombination rate plotted along 
the right Y-axis. The colors 
indicate the strength of linkage 
disequilibrium (LD) with the 
index SNP. Genes near the 
lead SNP are shown along the 
X-axis. The symbol “+” indi-
cates a genotyped SNP; open 
circle indicates an imputed SNP

Table 2   Replication results: summary statistics for loci reaching suggestive significance (p value < 1 × 10−6) in the 23andMe cohort, and their 
corresponding statistics in the COHRA1 replication cohort

MAF Minor allele frequency in Europeans, Cyto SNP cytogenetic location, Inf infinity
a Some 23andMe lead SNPs were unavailable in COHRA1 due to low MAF, thus have blank values in replication
b The effect allele is the minor allele
c Significantly associated SNPs in 23andMe (p value < 5 × 10−8) and COHRA1 (p value < 0.05) are bold

Cyto SNP BP Effect alleleb MAF Discovery (23andMe) Replication (COHRA1)a

OR 95% CI p valuec OR 95% CI p valuec

4q25 rs2129979 111720997 G 0.31 1.101 1.073, 1.129 8.82 × 10
−14 1.78 1.194, 2.639 0.0046

15q24 rs192656182 7359997 T 0.015 1.453 1.272, 1.660 9.5 × 10−8

20q13 rs137882920 5600525 T 0.019 0.745 0.666, 0.833 9.91 × 10−8

3p21 rs2247036 4988234 C 0.47 0.939 0.917, 0.962 1.01 × 10−7 0.73 0.494, 1.071 0.1068
4q25 rs17044095 11277741 G 0.24 0.931 0.906, 0.957 3.23 × 10−7 1.04 0.654, 1.667 0.8569
11p15 rs117367662 96782 T 0.05 0.863 0.814, 0.915 5.29 × 10−7 1.40 0.578, 3.366 0.4590
12q21 rs1650337 8977006 T 0.001 Inf 1.099, Inf 6.95 × 10−7

1p13 rs75972139 111373721 A 0.01 1.250 1.147, 1.364 7.77 × 10−7 2.65 0.849, 8.295 0.0933
3p21 rs6445791 5160198 G 0.12 1.084 1.050, 1.120 9.62 × 10−7 1.08 0.650, 1.804 0.7588



42	 Human Genetics (2019) 138:37–47

1 3

eQTLs and corresponding GWAS signals for each gene on 
the expression panel, and statistical results of expression 
analysis are listed in Table S1.

Discussion

GWAS replicates PITX2 signal at 4q25

This GWAS of appendectomy in 18,773 affected and 
114,907 unaffected individuals of European ancestry 
identified one genome-wide significant locus (lead SNP 
rs2129979 at 4q25), which was replicated in a second 
cohort. This is the same SNP recently reported in a GWAS 
of appendicitis in Dutch and Icelandic cohorts (Kristjans-
son et al. 2017). Meta-analysis of rs2129979 across these 
four groups showed strong cumulative evidence of associa-
tion (OR = 1.12; 95% CI 1.09–1.14; p value = 1.81 × 10−23) 
and weaker evidence of heterogeneity in effect size 
(Cochran’s Q p value = 0.0336).

The gene nearest the association signal is PITX2, which 
encodes the transcription factor Paired-Like Homeodo-
main 2. PITX2 plays a role in tissue-specific cell prolifera-
tion and left–right asymmetry during fetal development, 
and is important in morphogenesis of the cecum, the 
location in the gut at which the appendix develops in the 
embryo (Ryan et al. 1998; Essner et al. 2000; Logan et al. 
1998). PITX2 is also associated with Mendelian organ 
morphogenesis disorders, such as Axenfeld-Rieger (Fitch 
and Kaback 1978) and others (Cheong et al. 2016; Mattos 
et al. 1980). The 4q25 locus is also associated with atrial 
fibrillation (Gudbjartsson et al. 2007), but the specific 
associated SNPs are distinct from those associated with 
appendicitis (Kristjansson et al. 2017). Over- and under-
expression of PITX2 is also associated with atrial fibril-
lation (Syeda et al. 2017; Chinchilla et al. 2011; Pérez-
Hernández et al. 2016), and PITX2 represses translation of 
genes that encode transcriptional regulators, ion channels, 
and cell junction proteins in the heart (Tao et al. 2014).

Differential gene expression across appendix 
inflammation categories

The significant and suggestive variants observed in the 
GWAS were not protein coding, suggesting possible reg-
ulatory functions. Genetic association results were fol-
lowed by an investigation into whether genes in associ-
ated regions and/or those targeted by eQTLs in the regions 
showed differential expression across uninflamed, mildly 
inflamed, severely inflamed or perforated appendix tis-
sue samples. With this approach, we identified significant 
trends in gene expression across inflammation categories 
for four of 27 genes (PITX2, UBA7, CD53, and RHOA), 
and nominally significant trends for 10 genes. Though the 
expression differences of these latter genes were not sig-
nificant after multiple testing correction, the expression 

Fig. 3   Forest plot for rs2129979. Odds ratios for appendicitis/appen-
dectomy are shown as squares proportional to the sample size. Error 
bars indicate the 95% confidence interval. The fixed effects meta-
analysis odds ratio estimate and confidence interval are represented 
by the position and width of the diamond
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panel, overall, was enriched for nominally and significantly 
differentially expressed genes (p value = 6.6 × 10−12). This 
may be due to global differences in expression across 
inflammation categories, or because the selection proce-
dure based on the GWAS results yielded a panel of genes 
with differential expression.

Previous expression studies of inflamed appendices iden-
tified inflammatory gene expression signatures specific to 
mediators of the innate immune response and distinct from 
inflammatory bowel diseases (Yoon et al. 2002; Paajanen 
et al. 2002; Mazzucchelli et al. 1994; Dalal et al. 2005; Zeil-
lemaker et al. 1996; Murphy et al. 2008). Our gene expres-
sion panel focused on following up specific GWAS results 
and did not include any genes whose expression has been 
previously associated with appendicitis. The fold-change 
of the significant genes’ expression ranged up to approxi-
mately twofold across conditions; although this is not as 
dramatic as the expression changes in inflammation-related 
genes previously observed in appendicitis (Murphy et al. 
2008), these small changes may be biologically meaningful. 
Indeed, a fold-change of 2.2 in PITX2 expression produces 
laterality defects in a mouse model (Bentham et al. 2010). 
While trends in gene expression of candidates identified in 
the GWAS lend additional support for their possible role in 
genetic susceptibility, we did not explicitly test the effect of 
the genetic variants on gene expression, and these results 
do not indicate the mechanisms through which they impact 
disease risk.

Potential roles of PITX2 in appendicitis

Among the risk factors for appendicitis are diet, variation in 
the intestinal microbiome, and genetics, which may interact 
in promoting inflammation. For example, a low-fiber diet 
can influence intestinal microbiome composition and health 
outcomes by allowing microbes to contact the intestinal 
epithelium, leading to inflammation (Arnbjörnsson 1983; 
Veronese et al. 2018; Desai et al. 2016). Appendiceal micro-
biota in particular are known to be affected by both dietary 
intake and genetics (Goodrich et al. 2014), and several stud-
ies have found evidence for a microbial role in appendicitis 
(Swidsinski et al. 2011, 2012; Zhong et al. 2014; Jackson 
et al. 2014).

Based on its associations with diet, intestinal inflamma-
tion, and the intestinal microbiome, we hypothesize that 
tissue-specific PITX2 expression may interact with these 
factors to contribute to the development of appendicitis. Spe-
cifically, PITX2 expression is diet-dependent (Bentham et al. 
2010) and negatively associated with colonic inflamma-
tion (Suzuki et al. 2007), a trend also found in appendiceal 
inflammation in this study. Additionally, decreased PITX2 
expression correlates with increased abundance of Entero-
bacteriaceae (Steegenga et al. 2017), a class of intestinal 

microbes often seen at times of inflammation (Lupp et al. 
2007).

Another hypothesis is that PITX2 affects appendicitis risk 
during development, given its role as an important regula-
tor during intestinal development (Fitch and Kaback 1978; 
Nichol and Saijoh 2011). It is plausible that PITX2-related 
appendiceal anatomical differences predispose to appendi-
citis (Kristjansson et al. 2017).

Further, we speculate that PITX2 may be involved in 
anti-oxidant or regenerative responses in the appendix. In 
the heart PITX2 promotes regeneration after injury through 
anti-oxidant response (Tao et al. 2016), and in the eye it 
may mediate the response to oxidative stress (Paylakhi 
et al. 2011; Strungaru et al. 2011), where it targets a pro-
inflammatory cytokine (Moazzeni et al. 2016) and a gene 
encoding response to oxidative stress (Strungaru et al. 2011). 
PITX2 also promotes skeletal muscle regeneration through 
its repression of miR-31 (Vallejo et al. 2018). Inhibition of 
miR-31 in the colon alleviates colonic inflammation (Shi 
et al. 2017). Thus if PITX2 affects miR-31 in the appendix, 
it could help explain its association with the inflammation 
in appendicitis; indeed, miR-31 is abnormally expressed in 
multiple inflammatory diseases (Shi et al. 2017). However 
it is unclear to what extent target genes of PITX2 in various 
organs are concordant with those in the appendix given the 
scant overlap of its targets in muscle, eye, and other tissues 
(Strungaru et al. 2011).

Additional gene candidates for appendicitis

We nominate the gene candidate RHOA (Ras Homolog 
Family Member A), which is located near the GWAS 
signal at 3p21 (lead SNP rs2247036), targeted by by 22 
eQTLs (Table S1) and shows a significant trend of increas-
ing expression with increasing appendix inflammation. 
RHOA is involved in signal transduction, actin cytoskeleton 
dynamics, and its overexpression is associated with tumor 
growth (Chen et al. 2016). It is required for intestinal epi-
thelial cell integrity (Chung et al. 2015), controls intestinal 
stem cell regeneration in development and after injury or 
inflammation(Liu et al. 2017), and is upregulated in response 
to endotoxin (Cetin et al. 2004). These functions suggest a 
multifactorial cause of appendicitis in which multiple path-
ways—including an inability to repair damage—converge to 
predispose to the disease.

Another notable nominally differentially expressed (p 
value = 0.009) candidate gene, MST1, encodes macrophage 
stimulating protein. It is targeted by the eQTL rs11718165 
near the GWAS signal at 3p21 (lead SNP rs2247036), and 
is associated with susceptibility to inflammatory bowel 
diseases (Fisher et al. 2008). MST1 regulates the innate 
immune response (Wu et  al. 2018) (Galan and Avruch 
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2016), and biallelic MST1 loss causes an immunodeficiency 
syndrome (Galan and Avruch 2016).

Conclusions and limitations

A limitation of the study is the sample size of the COHRA1 
replication cohort, which was underpowered to detect the 
identified signals in the discovery dataset. Nevertheless, the 
lead discovery SNP showed evidence of replication, and 
additional evidence from the Icelandic/Dutch cohorts under-
scores the strength of evidence for this locus. In addition, it 
is possible that alternative sources of eQTL target data other 
than RegulomeDB (e.g., GTEx, which was inaccessible 
during study design) would have led to different choices of 
genes for the expression panel and led to additional insights.

In this study, the appendicitis phenotypes were collected 
by self-report in both 23andMe and COHRA1 cohorts. 
Despite the frequency of incidental appendectomies (i.e., 
those not due to appendicitis) in the population and limita-
tions of personal recall of medical procedures, self-report of 
this trait produced a viable phenotype that yielded a strong 
association in this GWAS and was replicated in the inde-
pendent cohort. Phenotype misclassification, if present, 
would bias the GWAS toward the null hypothesis of no asso-
ciation, but would not cause false positive results. Therefore, 
true associations may have gone unobserved, whereas the 
observed associations, if false, were not due to limitations in 
the phenotype data collection. The fact that the strong previ-
ously reported association at PITX2 was observed in both of 
our cohorts supports the utility of self-reported appendicitis 
phenotypes.

Appendix samples from the expression panel were drawn 
from a pediatric population, and it is possible that samples 
from adults might have yielded different results. Our expres-
sion experiment was designed prior to the publication of 
Kristjansson’s appendicitis GWAS (Kristjansson et al. 2017), 
in which the lead GWAS SNP near PITX2 showed stronger 
association with disease with increasing age of onset. We 
cannot determine whether the same pattern holds true in our 
discovery cohort given that 23andMe did not collect data on 
age at the time of appendectomy. Moreover, the COHRA1 
cohort included too few affected participants to evaluate 
genetic association across age-of-onset strata. Given the 
potential differences in pathophysiology between pediatric 
and adult-onset appendicitis it is a strength that we do not 
have a mixed age group of appendices, however, our results 
can only be interpreted in the context of pediatric-onset dis-
ease and cannot be generalized to adult-onset disease.

Future work to further understand the role of PITX2 and 
other gene candidates in appendicitis would be to investi-
gate potential eQTL effects on expression data and corre-
late those with genotype data on the tissue samples. Gene 

expression analyses in adult populations may also elucidate 
differences and similarities in pediatric versus adult-onset 
appendicitis.

Understanding the genetic factors influencing appen-
dicitis may help elucidate the etiology of the disease and 
ultimately may inform systems for classifying patients by 
disease risk for optimal management. Further studies to 
understand the genetic contributors may also lead to more 
accurate diagnosis, more targeted treatment, and ultimately 
personalized prevention of this common disease.
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