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Abstract
Alzheimer’s disease (AD) is a common neurological disease that causes dementia in humans. Although the reports of associ-
ated pathological genes have been increasing, the molecular mechanism leading to the accumulation of amyloid-β (Aβ) in 
human brain is still not well understood. To identify novel genes that cause accumulation of Aβ in AD patients, we conducted 
an integrative analysis by combining a human genetic association study and transcriptome analysis in mouse brain. First, 
we examined genome-wide gene expression levels in the hippocampus, comparing them to amyloid Aβ level in mice with 
mixed genetic backgrounds. Next, based on a GWAS statistics obtained by a previous study with human AD subjects, we 
obtained gene-based statistics from the SNP-based statistics. We combined p values from the two types of analysis across 
orthologous gene pairs in human and mouse into one p value for each gene to evaluate AD susceptibility. As a result, we 
found five genes with significant p values in this integrated analysis among the 373 genes analyzed. We also examined the 
gene expression level of these five genes in the hippocampus of independent human AD cases and control subjects. Two 
genes, LBH and SHF, showed lower expression levels in AD cases than control subjects. This is consistent with the gene 
expression levels of both the genes in mouse which were negatively correlated with Aβ accumulation. These results, obtained 
from the integrative approach, suggest that LBH and SHF are associated with the AD pathogenesis.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0043​9-018-1906-z) contains 
supplementary material, which is available to authorized users.
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Introduction

To identify genes affecting phenotypes including diseases, 
animal models are very useful. Experimental studies in ani-
mal models (e.g., mouse) have an advantage in identifying 
phenotype-related genes and clarifying their functional roles 
because experiments can be done with intervention control-
ling for genetic background, age and environments of the 
animals. There are several approaches for clarifying phe-
notypic effects of genes (transgenic or knock-out animals, 
mutagenesis with ENU, RNAi experiment, transcriptome, 
etc.) (Gondo 2008). Many types of animal models for human 
disease were constructed to examine the functional roles 
of genes. A limitation of this approach is that it is usually 
uncertain whether the human orthologue of the identified 
gene has the same functional role in a real human body.

Genome-wide association study (GWAS) is a powerful 
tool for dissecting unknown complex traits by identifying 
loci associated with particular diseases, and the number of 
GWAS reports has been rapidly increasing. The identified 
genes or loci could be seeds for functional analysis, risk pre-
diction and personalized medicine. However, the roles of the 
identified genes in the pathogenesis have typically not been 
clarified, and further study is required (Hindorff et al. 2009). 
Another limitation in GWAS is that statistical analysis with 
only common SNPs may miss some pathological genes for 
which individual genetic difference cannot be captured with 
proxy common variants. For example, the power to detect 
causal rare variants would be too small because of low link-
age disequilibrium (LD) between the causal and the proxy 
common variants. It should be useful to inspect the genes 
with moderate p values while simultaneously looking at 
other information such as biological pathway, gene expres-
sion, and evidence in animal models. Therefore, a transla-
tional approach of integrating genetic association study in 
human and experiments in mouse has a potential value to 
facilitate finding additional disease-related genes, by taking 
advantages of both the approaches.

Alzheimer’s disease (AD) is a common neurological 
disease that causes dementia in humans. Aβ accumulation 
is the central pathology of Alzheimer’s disease. Molecular 
pathogenesis of Aβ accumulation for familial AD has been 
explained by the causative genes, APP, PSEN1 and PSEN2 
(Hardy and Selkoe 2002; Rogaev et al. 1995; Sherrington 
et al. 1995). Genetic risk factors have been reported for spo-
radic AD (APOE, etc) (Bertram et al. 2007; Lambert et al. 
2013; Saunders and Roses 1993; Saunders et al. 1993a, b; 
Strittmatter et al. 1993). However, the mechanism, which 
leads to the accumulation of Aβ in the early stage of the AD, 
is not well understood (Gaiteri et al. 2016).

Among approaches in the mouse model of human 
diseases, transcriptome analysis has an advantage: the 

transcriptome between human and mouse brains is well 
preserved (Miller et al. 2010), and this may facilitate trans-
lational research from mouse to human. APP Tg mice that 
reproduce Aβ accumulation in brain are widely used as 
model animals of AD. Taking advantage of transcriptome 
analysis in the mouse model, our previous study (Gan et al. 
2015; Morihara et al. 2014) used a genome-wide transcrip-
tome analysis with various mouse strains with different 
susceptibilities to Alzheimer’s disease. Genes detected by 
conventional transcriptome analysis include both causa-
tive genes and genes affected by disease pathogenesis. To 
ensure we detect genes affecting AD pathology, we imple-
mented a two-step approach in our transcriptome analysis. 
First, we used non-transgenic mice strains with no Alz-
heimer pathology and selected the genes with differential 
expression compared to the low-susceptibility strain. This 
use of non-transgenic mice selects genes for which differ-
ences in expression are based on the genetic backgrounds 
and not secondary effects caused by Aβ accumulation. 
Second, we used APP transgenic mice with mixed genetic 
backgrounds to find genes associated with accumulation 
of Aβ. The top genes whose expression levels were highly 
correlated with accumulation of Aβ may have roles in the 
accumulation of Aβ in brain. A further examination of 
those genes in human or an integrated analysis with human 
data was desired.

To identify novel AD-related genes that cause Aβ 
accumulation in the current study, we took an integrated 
approach by combining statistics from human GWAS and 
mouse transcriptome experiments (Fig. 1). First, using the 
correlation between gene expression level and accumula-
tion of Aβ in the mouse model (Morihara et al. 2014), we 
obtained a p value for each mouse gene as the significance 
of correlation. Second, by utilizing SNP-based statistics in 
a previous GWAS of human subjects with AD (Hirano et al. 
2015), we obtained gene-based statistics from the SNP-based 
statistics. Third, we combined the results of the two types of 
analyses using orthologous gene pairs between human and 
mouse. Then, each gene was evaluated for the susceptibil-
ity of AD by the combined p value calculated from the two 
types of p values. This integrated analysis detected five sig-
nificant genes as candidate genes for AD pathogenesis. We 
examined gene expression level of those genes in human AD 
subjects, which were independent subjects from the GWAS 
subjects. Two of the five genes showed lower expression 
levels with statistical significance in human AD patients than 
in controls, which is consistent with their mouse orthologues 
which showed a negative correlation between gene expres-
sion level and Aβ accumulation.
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Materials and methods

Gene expression and Aβ accumulation in transgenic 
mice

Aβ levels in mouse brains and two sets of genome-wide gene 
expression data in mouse hippocampus were obtained in a 

previous study (Morihara et al. 2014) (Fig. 1). The first set 
of genome-wide gene expression data (12 arrays) was from 
three inbred non-Transgenic (non-Tg) mouse strains. We 
choose the genes that were differentially expressed in the 
mouse strain (DBA/2) with lower susceptibility to AD com-
pared to the other strains (C57BL/6 and SJL). Because these 
mice carry no APP transgene and have no Aβ pathology, 
the difference in expression levels is based on their genetic 
background and not secondary effects caused by Aβ accu-
mulation. From the original transcriptome data containing 
13,309 probes for 9964 genes, we selected 373 genes which 
had significant differential expression (Student’s two-tailed 
t test p < 0.001, FDR = 3.05%) in the DBA strain compared 
to the B6 and SJL strains. These 373 genes reflect physi-
ological changes in neurodegeneration and some may be 
disease-causing.

The second set of genome-wide gene expression data 
(28 arrays) was from APP transgenic (Tg) mice with 
mixed genetic backgrounds from different strains (DBA/2, 
C57BL/6 and SJL). This APP transgene causes Aβ accumu-
lation in the brain and APP transgenic mice (Tg2576) are 
widely accepted as AD model animals. The accumulated Aβ 
levels in these mouse brains were measured by ELISA. Sta-
tistical significance of correlation between gene expression 
levels of the 373 genes selected as above and accumulation 
of Aβ was tested, and the obtained p values were used in the 
following integrated analysis (see below). All mouse tran-
scriptome datasets used in this study have been deposited in 
the Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo) under accession GSE40330.

Gene‑based statistics from human GWAS

We used the GWAS statistics of a previous study (Hirano 
et al. 2015) of 811 AD case individuals and 7504 control 
individuals with 583,884 autosomal SNPs (Supplementary 
Fig. 1a). In that study, they used samples belonging to the 
Hondo cluster (Yamaguchi-Kabata et al. 2008) of the Japa-
nese population, and association analysis was adjusted for 
age and gender. By checking the distribution of the obtained 
p values (Supplementary Fig. 1b for Q–Q plot; lambda (the 
genomic inflation factor) = 1.078), any significant confound-
ing effects by ancestry of subjects were not observed. We 
conducted the principal component analysis with this dataset 
and obtained principal components (PCs) for their genetic 
backgrounds. However, we did not include any PCs as covar-
iates for the association analysis, because including them did 
not reduce lambda (1.076).

From the SNP-based GWAS statistics, gene-based statis-
tics were obtained to conduct the integrated analysis with the 
other gene-based data. There are several available methods 
for generating gene-based statistics (Bacanu 2012; Chris-
toforou et al. 2012; Lehne et al. 2011; Li et al. 2011; Liu 
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Fig. 1   Scheme of integrated analysis of mouse transcriptome and 
human GWAS. To detect genes affecting AD pathology, we imple-
mented two steps in our transcriptome analysis (green). First, we 
used non-transgenic mice strains with no Alzheimer pathology and 
selected the genes with differential expression in the low-susceptibil-
ity strain (DBA/2). This use of non-transgenic mice means that differ-
ences in gene expression are based on the genetic backgrounds and 
not secondary effects caused by Aβ accumulation. Second, we used 
APP transgenic mice with mixed genetic backgrounds to find genes 
associated with accumulation of Aβ (middle left). In mouse brain, the 
relationship of Aβ accumulation and gene expression was examined, 
and p value of correlation was obtained. Genome-wide association 
with AD was conducted with human subjects (Hirano et  al. 2015), 
and SNP-based GWAS statistics were converted into gene-based 
statistics (blue). Both types of gene-based statistics from mouse and 
human were integrated through orthologous gene pairs, and a com-
bined p value was calculated by the inverse-normal method (also 
known as Stouffer’s Z score method) without weighting (magenta, 
see “Materials and methods”). Candidate genes were prioritized by 
the combined p values. The significant genes were selected for fur-
ther evaluation. Human hippocampus postmortem samples were used 
to determine whether the gene is expressed differently between AD 
patients and controls

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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et al. 2010; Neale and Sham 2004). Basically, they address 
two issues, (1) the number of SNPs varies among genes and 
(2) SNPs within the gene are not independent because of 
local LD. The GATES (gene-based association test using 
extended Simes procedure) method (Li et al. 2011) is one 
of these methods to calculate gene-based statistics and is 
implemented in KGG system (http://grass​.cgs.hku.hk/limx/
kgg/). This method does not require simulation and the KGG 
system works with a list of SNP p values and LD data. We 
calculated the gene-based p value from the SNP p value list 
using KGG system and LD data using HapMap JPT (Japa-
nese from Tokyo) genotype data. After an examination of 
how the defined gene regions and LD influence the assign-
ment of SNPs to genes (Supplementary Table 1), each SNP 
was assigned to a gene (genes) if the SNP is located within 
the mapped region of the mRNA of the gene including the 
3 kb surrounding the 5′ and 3′ flanking regions. In addition, 
SNPs outside of gene region were assigned to a gene if they 
were in high LD (r2 > 0.8) with SNPs within the gene. Using 
the KGG system, gene-based statistics were obtained for 
30,584 transcripts, a set of all human transcripts. On aver-
age, 18.0 SNPs were assigned to each gene.

To enroll another type of association study for accumula-
tion of rare and common variants within gene, we used the 
SKAT_CommonRare function of SKAT (version 1.3.2.1) 
(Ionita-Laza et al. 2013; Wu et al. 2011) with default param-
eters for SKAT-C and Burden-C. For each gene, we used the 
same SNP set described above: SNPs within the gene region 
including 3 kb upstream and downstream and SNPs under 
LD with those within the gene region. We included age and 
gender as covariates for calculating the statistics. Obtained 
p values were integrated with the mouse gene expression p 
values for each gene (see “Integrated analysis”).

GWAS statistics data from the International 
Genomics of Alzheimer’s Project (IGAP)

As another dataset for evaluating our methodology, we 
downloaded GWAS statistics data from the International 
Genomics of Alzheimer’s Project (IGAP) (Lambert et al. 
2013). This GWAS was based on cases and controls of Euro-
pean ancestry. The p value list for the combined set of the 
GWAS (stage 1; 17,008 cases and 37,154 controls) and a 
follow-up study (stage 2; 8,572 cases and 11,312 controls 
for 11,632 SNPs after quality-control filtering) was used 
after gene-based annotation using Annovar (Wang et al. 
2010) with the “refGene” table. We selected 954 genes 
linked to the top SNPs with P < 0.001 for further examina-
tion. Eleven of these genes were in common with the 373 
genes selected from the mouse expression experiment data. 
For these eleven genes, SNPs in the IGAP stage 1 set were 
assigned to genes in the same way as described above, and 

we obtained gene-based statistics using the GATES method 
implemented in KGG system.

Integrated analysis

The data of mouse transcriptome and the gene-based statis-
tics from human GWAS were combined using orthologous 
gene pairs between human and mouse. The orthologous 
table from Mouse Genome Informatics (http://www.infor​
matic​s.jax.org) (Shaw 2004) was used to identify ortholo-
gous genes between human and mouse. The human and the 
mouse data were combined for the 373 genes (409 probes 
for the mouse data). To obtain the combined p value for each 
gene, we used the inverse-normal method (also known as 
Stouffer’s z score method) (Stouffer 1949) without weight-
ing. First, z scores for mouse and human p values (one 
tailed) were obtained by the inverse function of standard 
normal distribution cumulative function, then the averaged 
z score was calculated:

where ZC, ZMEXP, and ZHGWAS are z scores for combined, 
mouse expression, and gene-based human statistics of 
GWAS, respectively. Then, the combined p value (one 
tailed) was obtained by the standard normal distribution with 
ZC. Lastly, the combined p value was doubled (two tailed). 
The R programming language (version 3.5.0) was used for 
this calculation.

eQTL analysis

We checked whether the SNPs used in this study for each 
gene were reported eQTLs—SNPs with alleles associated 
with the expression level of a gene. For this, we used data 
in GTEx (The Genotype-Tissue Expression (GTEx) project 
2013; https​://www.gtexp​ortal​.org/home/; version 7; Cau-
casian) (Aguet et al. 2017; GTEx Consortium 2013) for 
brain tissues: amygdala (n = 88), anterior cingulate cortex 
(BA24; n = 109), caudate (basal ganglia; n = 144), cerebellar 
hemisphere (n = 125), cerebellum (n = 154), cortex (n = 136), 
frontal cortex (BA9; n = 118), hippocampus (n = 111), hypo-
thalamus (n = 108), nucleus accumbens (basal ganglia; 
n = 130), putamen (basal ganglia; n = 111), spinal cord cer-
vical (cervical c-1; n = 83), and substantia nigra (n = 80). To 
combine data from multiple tissues, we used METASOFT 
(v2.0.1; http://genet​ics.cs.ucla.edu/meta/) (Han and Eskin 
2011), and looked at p values using a fixed effect model 
and one of the random effect models (Han and Eskin 2011).

ZC =
1
√

2

�

ZMEXP + ZHGWAS

�

,

http://grass.cgs.hku.hk/limx/kgg/
http://grass.cgs.hku.hk/limx/kgg/
http://www.informatics.jax.org
http://www.informatics.jax.org
https://www.gtexportal.org/home/
http://genetics.cs.ucla.edu/meta/
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Gene expression in human brain

Tissue samples of human hippocampus were obtained from 
the brain bank of the Choju Medical Institute of Fukush-
imura Hospital (Toyohashi, Aichi, Japan), and they were 
independent of the subjects of the GWAS. Hippocampus 
samples for AD subjects (n = 10) were selected for this gene 
expression experiment, based on the criteria of the Con-
sortium to Establish a Registry for Alzheimer’s Disease 
(CERAD) (Fillenbaum et al. 2008; Morris et al. 1989) and 
Braak stage. Control samples (n = 13) were selected from 
the subjects who had died without dementia. RNA integ-
rity numbers (RIN) of the analyzed human hippocampus 
tissues were above 7.0 as described previously (Morihara 
et al. 2014). The protocol used here was approved indepen-
dently by the local ethics committees of Osaka University 
and Fukushimura Hospital. Gene expression levels of the 
significant genes in the integrated analysis were examined in 
human hippocampus tissues of ten AD patients and 13 con-
trol subjects. The levels of mRNA were measured by real-
time quantitative polymerase chain reaction (qPCR) assays 
as previously described (Morihara et al. 2014). The ABI pre-
designed qPCR assays were used for GUSB (#Hs00205241-
m1), LBH (#Hs00368853-m1), SHF (#Hs00403125-m1), 
C5orf51 (#Hs00420444-m1), and ARSJ (#Hs00539912-s1). 
The expression level of each gene was normalized with that 
of the GUSB gene, because we (Morihara et al. 2014) and 
others (Miyashita et al. 2014) tested several internal con-
trols and found that GUSB was most stable in human brain. 
Also, potential covariates were not different between AD 
and control groups [RIN mean ± SD: 7.88 ± 0.59 (AD) and 
8.20 ± 0.63 (control), p = 0.21; age mean ± SD: 87.4 ± 6.95 
(AD) and 88.7 ± 5.73 (control), p = 0.62; and gender (male/
female): 3/7 (AD) and 3/11 (control), p = 0.67]. Therefore, 
we applied Student’s t test (two-tailed test) with the analysis 
of difference in average expression levels between the AD 
and the control groups.

Results

Correlation of gene expression and Aβ accumulation 
level in candidate genes in AD‑resistant mouse 
strain

Using two sets of mouse transcriptome data, we identified 
373 candidate genes for regulation of Aβ accumulation 
in brain, and p values of correlation between the levels of 
expression for each gene and Aβ. Previously, we (Morihara 
et al. 2014), and others (Jackson et al. 2015; Ryman et al. 
2008; Sebastiani et al. 2006), have shown that Aβ accumula-
tion in APP Tg mice with DBA/2 genetic background was 
significantly lower than those with C57BL/6 and/or SJL. 

This fact clearly suggests that some genes in DBA/2 sup-
press Aβ accumulation. To identify these Aβ controlling 
genes in DBA/2, we first used non-Tg mice. Using non-Tg 
mice means that any change in gene expression is based on 
the genetic background and not secondary effects caused by 
Aβ accumulation. In this study, we selected 373 genes whose 
expression levels were significantly different (Student’s two-
tailed t test p < 0.001, FDR = 3.05%) in DBA/2 compared 
with SJL or C57BL/6 (“Materials and methods”) as potential 
candidate genes controlling Aβ accumulation.

In addition to these three non-Tg inbred mouse strains, we 
previously prepared APP Tg mice with mixed genetic back-
ground of DBA/2 (lower susceptibility to AD), C57BL/6 and 
SJL (Morihara et al. 2014). We measured the gene expres-
sion profile and levels of Aβ in their brains. In this study, 
we examined the correlation between the expression levels 
of these 373 genes and Aβ levels in these APP Tg mice. The 
p values of these correlations were used for the subsequent 
integrated analysis.

Gene‑based statistics

By the conventional approach of genome-wide association 
study (Hirano et al. 2015) (811 AD case individuals and 
7504 control individuals with 583,884 SNPs on autosomes), 
we observed six significant SNPs with genome-wide signifi-
cance (p < 5.0 × 10−8) on 19q13 including the APOE gene 
(Supplementary Fig. 1a), a well-known risk factor of AD 
(Saunders and Roses 1993; Saunders et al. 1993a, b), and 
several adjacent genes. In addition to this strong APOE sig-
nal of chromosome 19, there were also a substantial num-
ber of SNPs with moderate p values (512 SNPs, p < 0.001), 
which may include additional causative genes for AD.

To conduct gene-based integrated analysis with mouse 
data, we obtained gene-based statistics from SNP-based 
GWAS statistics by, first, using GATES method imple-
mented in KGG system (Li et al. 2011) (Table 1; “Materi-
als and methods”). With GWAS alone, we did not observe 
any significant gene other than APOE (2.71 × 10−19) and the 
surrounding genes (TOMM40 and PVRL2), under LD with 
APOE, although there were additional possible genetic sig-
nals of association. Among the 373 candidate genes express-
ing differently in AD-resistant mouse strain, ST6GALNAC4, 
ARRB1, KCNS1, TNNT1, EBNA1BP2, CSRNP3, and 
C5orf51 showed smallest p values (Table 1).

As another independent method of obtaining gene-based 
statistics from SNP-based GWAS, we also conducted SKAT 
(Ionita-Laza et al. 2013; Wu et al. 2011) with the option of 
combining common and low-frequency variants together. 
Among the 373 candidate genes expressing differently in 
AD-resistant mouse strain, BOK, ELOVL4, THAP4, ARRB1, 
ARSJ, TRIM3, and PTPN11 showed smallest p values (Sup-
plementary Table 2).
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We also used GWAS statistics from the International 
Genomics of Alzheimer’s Project (IGAP) (Lambert et al. 
2009) to evaluate the effectiveness of our approach. We 
selected 954 genes linked to top SNPs with p < 0.001 for 
examination, 11 of which were in common with the 373 
genes selected from the mouse expression experiment data 
(Supplementary Table 3).

Integrated analysis

First, to evaluate the feasibility of our methodology, we ana-
lyzed IGAP data considering our mouse experiment data. 
We took the intersection of the two gene sets, 373 genes 
from the mouse expression analysis and 954 genes that are 
linked to top SNPs (p < 0.001) in the IGAP dataset (1st and 
2nd combined), and obtained 11 shared genes. For these 

genes, we looked at the results from our integrated analysis 
with GATES (Supplementary Table 3). By combining the 
mouse expression data, these genes which are top hits in 
IGAP, obtained much better results, and showed significant/
moderate p values in our results also. This result supports 
the validity of our approach. Therefore, we proceeded to the 
next analysis: integration of our human GWAS and mouse 
experiment data for the remaining genes.

Next, we took the results from our GATES analysis of the 
original GWAS (Hirano et al. 2015) dataset and the mouse 
expression data and obtained a combined p value for each 
gene from the two p values (mouse transcriptome analysis 
and human genetic association) through the inverse-normal 
method. Five genes showed significant combined p values 
with a significance level of p < 0.000067 (= 0.05/373/2): 
LBH (limb bud and heart development), ST6GALNAC4 

Table 1   Gene-based statistics 
from human AD GWAS for the 
373 genes

29 genes showing smaller p values (p < 0.1) are shown
*Gene-based statistics was calculated using GATES method (Li et al. 2011) implemented in KGG system 
(see “Materials and methods”)

Gene symbol Gene-based p 
value (GATES)*

Chrom Genomic start position Length (bp) No. of SNPs

ST6GALNAC4 0.01188 9 130,661,594 68,411 8
ARRB1 0.01375 11 74,891,656 183,314 42
KCNS1 0.01444 20 43,588,548 340,988 29
TNNT1 0.01498 19 55,620,901 123,172 11
EBNA1BP2 0.01776 1 43,497,528 212,692 23
CSRNP3 0.01805 2 166,423,989 177,254 54
C5orf51 0.01921 5 41,875,954 416,722 20
ALG14 0.04124 1 95,434,624 129,468 21
SLC8A1 0.04437 2 40,335,143 447,126 154
SHF 0.04483 15 45,429,200 135,704 12
ARSJ 0.04510 4 114,749,976 164,713 30
LBH 0.04624 2 30,430,441 102,618 30
HPS6 0.04785 10 103,426,179 438,324 6
CSRNP1 0.06052 3 39,149,345 54,295 10
CP110 0.06278 16 19,458,391 143,646 9
HLA-DMA 0.06749 6 32,901,162 67,186 59
PHGDH 0.06765 1 120,212,461 91,943 22
APPBP2 0.07607 17 58,313,733 324,939 5
CNIH4 0.08004 1 224,377,234 310,930 20
RSRC1 0.08348 3 157,649,272 670,528 47
ADORA1 0.08498 1 203,054,414 93,835 35
EML4 0.08908 2 42,370,747 325,180 51
ZNF585A 0.09224 19 37,405,387 265,466 17
GRIK4 0.09344 11 120,506,621 359,947 125
PTPRD 0.09439 9 8,267,310 2,350,878 1006
PTPN11 0.09587 12 111,840,106 1,199,711 34
RCBTB2 0.09609 13 48,818,436 312,206 9
RPS3A 0.09691 4 151,578,661 526,020 10
SERPINA3 0.09790 14 95,058,586 50,822 22
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(ST6-N-acetylgalactosaminide alpha-2,6-sialyltransferase 4), 
ARSJ (arylsulfatase family, member J), C5orf51, and SHF 
(Src homology 2 domain-containing F) (Table 2). These five 
genes had nominal p values through GWAS alone (gene-
based p values ranged from 0.011 to 0.046), and multiple 
SNPs whose p values were very different (Supplementary 
Table 4; Supplementary Fig. 2). However, they were the 
top significant genes when human genetic association and 
mouse transcriptome data were integrated. When we com-
pared our results to the GTEx data, we found that many 
SNPs, particularly those with p < 0.05 in our human GWAS, 
are eQTLs linked to LBH and SHF (Supplementary Table 5). 
Furthermore, they are more relevant in anterior cingulate 
cortex BA24, cortex, and frontal cortex BA9 tissues, where 
Aβ accumulation tends to be observed more frequently than 
in other tissues.

Also, as another integrated analysis approach, we inte-
grated p values from our SKAT analysis of the same GWAS 
and the mouse gene expression analysis for each of the 373 
genes (Supplementary Table 6). Nine genes: ARSJ, ELOVL4, 
THAP4, EXOC2, KLK8, ATXN1, ARRB1, RPS3, and RPAIN 
had p < 0.000067 (= 0.05/373/2). Note that these genes have 
p < 0.05 for both the human GWAS SKAT and mouse gene 
expression results. Also, by checking GTEx, we found that 
most of these genes have multiple eQTLs within them (Sup-
plementary Table 7). Within and surrounding the ARSJ gene 
region, we found multiple promising eQTLs linked to these 
genes, although none were significant in the GWAS. Most 
SNPs within and surrounding the ELOVL4 gene region are, 
interestingly, promising eQTLs of this gene, although this 
gene itself does not have GWAS hit SNPs. All significant 
GWAS SNPs near THAP4 are also eQTLs of this gene. For 
EXOC2, all nearby significant GWAS SNPs are eQTLs, and 
most SNPs within and surrounding this gene are, interest-
ingly, very strong eQTLs of this gene. For KJK8, we did 
not observe eQTLs for GWAS hits or SNPs around this 
gene. The expression level of this gene might be irrelevant 

in human, or eQTLs might exist outside of the analyzed 
region. Although the ATXN1 gene had no significant GWAS 
SNPs, there are many eQTLs associated with this gene. 
The ARRB1 gene has a strong overlap between eQTLs and 
GWAS SNPs with p < 0.05, and RPS3 and RPAIN have sev-
eral very strong eQTLs, although they did not overlap with 
the GWAS results.

Gene expression level in human autopsy subjects

To validate biological roles of the five genes identified by 
our GATES–GWAS and mouse integrated analysis (LBH, 
ST6GALNAC4, ARSJ, C5orf51, and SHF) in human brain, 
we examined gene expression level of these genes in the 
hippocampus of AD patients and control autopsy individuals 
(sample sizes are 13 and 10, respectively), who were inde-
pendent of the GWAS subjects. Among the five genes tested, 
gene expression levels of LBH and SHF were significantly 
different (FDR < 0.05) (Fig. 2). In both LBH and SHF, gene 
expression levels were lower in AD patients than control 
individuals. This observation was in accordance with the 
expression levels of these genes, which were negatively cor-
related with the levels of Aβ accumulation in mouse.

Discussion

To identify genes that cause Aβ accumulation, we con-
ducted an integrated analysis of human genetic association 
and mouse transcriptome studies, and our results showed 
that two genes, LBH and SHF, are suggested to be novel 
AD-associated genes. Our results suggested that expression 
level in LBH and SHF are negatively associated with Aβ 
accumulation. Both of LBH and SHF showed lower expres-
sion levels in the human hippocampus of pathologically 
diagnosed AD patients with confirmed levels of excessive 

Table 2   Top genes in the 
integrated analysis

Data for five genes [p < 0.05/(373*2) in the integrated analysis] are shown
See Supplementary Table 4 for SNP-based statistics for the five top genes
*Correlation coefficient of Aβ accumulation and gene expression level
**Gene-based statistics was calculated using GATES method (Li et al. 2011) implemented in KGG system 
(see “Materials and methods”)

Mouse gene expression and Aβ accumulation Human GWAS gene-based 
statistics (GATES)

Combined p value

Gene Cor* Up/down p val (cor) Gene p value**

Lbh − 0.6941 Down 0.000042 LBH 0.046239 1.66E−05
St6galnac4 0.5970 Up 0.000797 ST6GALNAC4 0.011877 3.32E−05
Arsj 0.6609 Up 0.000129 ARSJ 0.045099 3.73E−05
AW549877 − 0.6009 Down 0.000722 C5orf51 0.019214 5.20E−05
Shf − 0.6455 Down 0.000208 SHF 0.044829 5.31E−05
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Aβ than those of control individuals (Fig. 2). Also, DBA 
mouse strain which suppresses Aβ accumulation (Jackson 
et al. 2015; Morihara et al. 2014; Sebastiani et al. 2006) had 
higher gene expression levels of both Lbh and Shf than the 
other strains. Gene expression levels of both genes in App 
Tg mice with mixed genetic backgrounds were negatively 
correlated with accumulation of Aβ (Table 2).

LBH (limb bud and heart development) is a homolog of 
mouse Lbh, which is a transcription factor and is involved in 
development of limb bud and heart (Ai et al. 2008; Briegel 
and Joyner 2001). LBH was reported as a direct target of 

the Wnt signaling pathway (Rieger et al. 2010). Though 
the mechanisms are still unclear, cross-talk between the 
Wnt pathway and Alzheimer’s disease has been reported 
(Inestrosa and Arenas 2010). The levels of Wnt signaling in 
AD patients are low, suggesting that reduced Wnt signaling 
could be the triggering factor for Aβ production (Inestrosa 
and Arenas 2010). From a previous GWAS, human LBH 
has been reported to be associated with autoimmune disease 
such as rheumatoid arthritis (Okada et al. 2014). A recent 
study (Ekwall et al. 2015) showed that LBH is involved in 
synovial pathology of rheumatoid arthritis. Interestingly, 

Fig. 2   Comparison of gene 
expression levels in human hip-
pocampus. Gene expression lev-
els for the five significant genes 
were examined in postmortem 
human subjects (10 AD patients 
and 13 control individuals), who 
were not included in the AD 
GWAS. Difference in average 
expression levels between the 
AD group and the control group 
was tested with the Student’s t 
test (two-tailed test)
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previously reported AD-associated loci include genes 
involved in immune systems (Bettens et al. 2013; Gjoneska 
et al. 2015; Lambert et al. 2013). As LBH is also involved in 
the autoimmune system, there is a possibility that LBH has a 
role in preventing Aβ accumulation through recognition and 
interaction with other molecules. Furthermore, data of tem-
poral changes of gene expression may also support that LBH 
is associated with AD pathology. By referring to the Human 
Brain Transcriptome data (Kang et al. 2011), we confirmed 
a relatively higher LBH expression in the fetal stage which 
gradually decreases with age. Age-related expression change 
was also observed in blood (Peters et al. 2015), with older 
individuals showing decreased expression.

SHF (SH2 domain-containing adapter protein F) is sus-
pected to play a role in regulating apoptosis in response 
to PDGF (platelet-derived growth factor) (Lindholm et al. 
2000). It is also known that its gene product interacts with 
anaplastic lymphoma kinase and negatively regulates its 
downstream signals in neuroblastoma (Takagi et al. 2013). 
There is a possibility that SHF can act in preventing accu-
mulation of Aβ through its ability to regulate phospho-trans-
duction signals. Although there exists an alternative expla-
nation that the lower expression levels of LBH and SHF are 
consequences of AD pathogenesis, we think that the former 
explanation is more likely because the higher expression 
levels of LBH and SHF in mouse DBA strain (vs. C57BL/6 
and SLJ strains) were not affected by AD pathogenesis. It 
is still unclear how LBH and SHF are related to accumula-
tion of Aβ, and further functional studies would clarify the 
roles of these two genes in regulating Aβ accumulation and 
pathogenesis of AD.

Furthermore, using SKAT, another way to obtain gene-
based statistics, and integration with mouse transcriptome 
data, we observed several strong candidate genes: ELOVL4 
(elongation of very long chain fatty acids-like 4) was impli-
cated for the biosynthesis of fatty acids in the pathogen-
esis of inherited macular degeneration (Zhang et al. 2001), 
severe neurodevelopmental disorder characterized by ich-
thyosis, spastic quadriplegia, mental retardation (Aldahmesh 
et al. 2011), spinocerebellar ataxia-34 (SCA34) and eryth-
rokeratodermia (Giroux and Barbeau 1972). THAP4 (thap 
domain-containing protein 4) was listed as one of the poten-
tial candidates associated with brain voxel through neuro-
imaging (Stein et al. 2010). EXOC2 (exocyst complex com-
ponent 2) was reported for nominal association with AD 
age of onset modifier genes through a whole-exome study 
(Velez et al. 2016). For KLK8 (kallikrein-related peptidase 
8), it was previously shown that its mRNA levels in AD 
hippocampus were significantly higher than in controls 
(Shimizu-Okabe et al. 2001), and its protease was recently 
reported as a suggestive factor for increasing the risk for 
AD specifically in females (Keyvani et al. 2018). ATXN1 
(ataxin 1) was screened for one of the candidates associated 

with AD through a GWAS and functionally validated its loss 
of function of increased Aβ-protein levels by potentiating 
beta-secretase processing of beta-amyloid precursor protein 
(Zhang et al. 2010). ARRB1 (arrestin beta 1) was implicated 
for negative correlation with the apoptosis of neurons during 
AD development and progression (Guo et al. 2017). Further 
study would be required to validate these associations.

The result from the integration of IGAP GWAS and 
mouse experiment data shows the effectiveness of our 
methodology, i.e., integrating omics data, for prioritizing 
candidates of disease-related genes. We think that the ana-
lyzed common genes with smaller p values in the integrated 
analysis are worth considering for further investigation (e.g., 
ACP2, EXOC2, and EML4; Supplementary Table 3). These 
results would be the first step after obtaining human GWAS 
results towards clarification of disease mechanisms through 
combination with mouse experiment results. However, we 
observed some discrepancy between the results of IGAP 
and our GWAS. One of the reasons for this may be that our 
human GWAS appears to have been underpowered, as the 
study size was relatively small. The results from the IGAP 
analysis suggest that, if the study size is large enough, more 
significant genes would show up as candidates through inte-
gration with the mouse transcriptome data. In addition, one 
of the possible reasons for the difference with the IGAP 
results may be due to inter-ethnic genetic differences. Fur-
thermore, there is a possibility that the differences in the top 
genes by our approach and that of IGAP are because we uti-
lized mouse transcriptomic data. A large portion of the her-
itability of AD has not been identified. Human GWAS and 
mouse transcriptomics could be very different approaches 
to AD genes. An estimation showed that GWAS, includ-
ing APOE ε4, explains only 28.57% of the heritability of 
liability (Cuyvers and Sleegers 2016). Moreover, APOE ε4, 
which cannot be involved in mice as all mice have APOE ε4, 
accounts for the large portion of the GWAS heritability. The 
APOE ε3 and ε2 alleles are unique to human.

Our study shows that combining human genetic asso-
ciation study and mouse transcriptome analysis is feasible 
and can take advantage of the both approaches. In fact, two 
genes, among five significant genes in the integrated analy-
sis, were significantly supported by experimental study in 
independent human subjects. This means that this integrated 
analysis is effective to find disease-associated genes that 
were not detected in conventional GWAS. Furthermore, a 
mouse-to-human translational approach, like our study, can 
identify novel disease-related genes and give insight into 
their functional roles. Generally, functional role is usually 
unknown for the associated genes identified solely by con-
ventional GWAS, because complex diseases may have phe-
notypic variations, and several biological pathways may be 
involved in the pathogenesis. As we focused on accumula-
tion of Aβ, which is one of the various phenotypes of AD, 
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the identified genes are suspected to be involved in the accu-
mulation mechanism. Our results also showed that genetic 
signals of association may be localized to regions within a 
gene [as seen in LBH gene, approximate genomic region 
(GRCh37/hg19) = Chr2:30,500,000, supplementary table 4]. 
Grouping SNPs based on functional units, or domains, 
within a gene may be an alternative way for obtaining sta-
tistics for each functional unit of a gene.

At present, the strategies and methods of integrated analy-
sis and translational approaches to find genes for complex 
diseases are not well established, and there are several limi-
tations to this study. The first thing is the use of statistics 
for integration. Our approach of combining p values from 
mouse gene expression data and human GWAS statistics is 
simple, and it would be better to consider effect size (with 
confidence interval) even if the p value is marginal. This is 
important because low-frequency variants with strong effect 
sizes are not likely to show significant p values. We tried the 
sequence kernel association test (SKAT) to overcome this 
point. However, we used p values for integration of the gene-
based results from the human GWAS and the mouse expres-
sion experiment, and further improvement in methodology 
is desired. Second, there are other limitations that arise from 
combining human and mouse data. For example, the location 
and order of genes may differ between human and mouse 
genomes, except for in well-conserved syntenic genomic 
regions. Therefore, effects of genetic variants in cis or trans 
might also differ between the two species. Our approach, 
based on integration of gene-based statistics from GWAS 
and gene-expression levels, aims to detect relationships 
between the gene itself and phenotype, and is not suitable for 
detecting possible effects on adjacent genes. Furthermore, 
regulatory variants, which could be located adjacent/distant 
to a gene, may be hard to be detected by this gene-based 
approach. Including eQTLs in the integrated analysis would 
be quite useful to resolve these issues if the sample size of 
the eQTL data was much larger. Lastly, we conducted this 
integrated analysis assuming orthologous genes in human 
and mouse have similar functions. However, interpretation 
of results may be complicated or difficult for genes with 
paralogues, like multigene families. Although both strategy 
and data type may vary among projects, appropriate design 
of integration and data evaluation and additional experimen-
tal evidence would help clarify how the genes affect complex 
diseases.

As we showed in this study, a gene-based approach is 
feasible and powerful to integrate various kinds of data. 
Further improvements to the methodology would contrib-
ute to finding additional disease-causing genes not detected 
by conventional GWAS. Integration of omics data such as 
metabolome data (Koshiba et al. 2018), biological pathways 
and epigenetic data (Gjoneska et al. 2015) would be useful 
for prioritizing disease-related genes. Then, detected genes 

would have functional insights that are important for devel-
oping therapeutic targets.
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