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was strongly and persistently associated with low VL in 
women (frequency = 11.3 %, P < 0.0001) but not in men 
(frequency =  7.7  %, P =  0.66). This novel sex by HLA 
interaction (P = 0.003, q = 0.090) did not extend to other 
frequent HLA class I alleles (n  =  34), although HLA-
C*18:01 also showed a weak association with low VL in 
women only (frequency = 9.3 %, P = 0.042, q > 0.50). In 
a reduced multivariable model, age, sex, geography (clini-
cal sites), previously identified HLA factors (HLA-B*18, 
B*45, B*53, and B*57), and the interaction term for female 
sex and HLA-A*03:01 collectively explained 17.0 % of the 
overall variance in geometric mean VL over a 3-year fol-
low-up period (P  <  0.0001). Multiple sensitivity analyses 

Abstract R esearch in the past two decades has gener-
ated unequivocal evidence that host genetic variations 
substantially account for the heterogeneous outcomes fol-
lowing human immunodeficiency virus type 1 (HIV-1) 
infection. In particular, genes encoding human leukocyte 
antigens (HLA) have various alleles, haplotypes, or spe-
cific motifs that can dictate the set-point (a relatively steady 
state) of plasma viral load (VL), although rapid viral evo-
lution driven by innate and acquired immune responses 
can obscure the long-term relationships between HLA 
genotypes and HIV-1-related outcomes. In our analy-
ses of VL data from 521 recent HIV-1 seroconverters 
enrolled from eastern and southern Africa, HLA-A*03:01 
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of longitudinal and cross-sectional VL data yielded consist-
ent results. These findings can serve as a proof of principle 
that the gap of “missing heritability” in quantitative genet-
ics can be partially bridged by a systematic evaluation of 
sex-specific associations.

Introduction

In the era of genome-wide association studies (GWAS) 
on human traits and diseases, one overwhelming issue is 
“missing heritability,” as thousands of GWAS (http://www.
genome.gov/gwastudies/) have readily identified and con-
firmed quantitative trait loci (QTLs) based on statisti-
cal significance, but these QTLs typically explain little 
or rather limited phenotypic variance (Brookfield 2013). 
Proponents of quantitative genetics have called for close 
attention to study design (Putter et  al. 2011), phenotypic 
robustness (Queitsch et  al. 2012), and the effects of rare 
(including de novo) variants, haplotypes (combinations of 
variants that are inherited as a single unit), gene by gene 
interaction (epistasis), gene by environment interaction, as 
well as epigenetics (Eichler et al. 2010; Gianola et al. 2013; 
Keller et  al. 2012; Lee et  al. 2011; Mahachie John et  al. 
2011). For complex traits with evolving and multifactorial 
mechanisms, the journey ahead for finding the missing her-
itability can be long and bumpy.

During the natural course of human immunodeficiency 
virus type 1 (HIV-1) infection, viremia and time from 
infection to development of severe immunodeficiency or 
AIDS are often used as quantitative traits to gauge HIV-1 
pathogenesis and/or rates of disease progression. In partic-
ular, plasma viral load (VL) set-point during chronic HIV-1 
infection offers a relatively steady and widely available 
outcome measure with both clinical and epidemiological 
implications (Fideli et al. 2001; Lyles et al. 2000; Mellors 
et al. 1995; Quinn et al. 2000; Saag et al. 1996). Predictors 
of set-point VL range from viral characteristics (e.g., sub-
types and replicative capacity) (Prentice et al. 2014a; Prince 
et al. 2012; Yue et al. 2013) to host genotypes (QTLs) that 
govern innate and adaptive immune responses (Apps et al. 
2013; Fellay et  al. 2009; Leslie et  al. 2010; Prentice and 
Tang 2012). Depending on the study population and defi-
nition of set-point VL (single or multiple measurements), 
the proportion of VL variance explained by any single host 
or viral factor is often less than 4  % (Fellay et  al. 2007; 
Prentice et al. 2014a; Yue et al. 2013). The most promising 
model that incorporates genetic and non-genetic features of 
epidemiologically linked HIV-1 transmission pairs (source 
and recipient partners) can account for nearly 37 % of early 
set-point VL variance (Yue et al. 2013).

Our recent data from a large cohort of HIV-1 serocon-
verters (SCs) suggest that host and viral factors associated 

with set-point VL can evolve as the infection progresses 
(Prentice et al. 2014a), even during the early chronic phase 
when complications by coinfections and comorbidities are 
infrequent. The correlates of longitudinal and cross-sec-
tional VL in this cohort include four HLA-B variants (B*18, 
B*45, B*53, and B*57) that encode polymorphic cell sur-
face glycoproteins specializing in antigen presentation 
(Prentice et al. 2014). While these observations are consist-
ent with the well-documented hypothesis that viral epitopes 
bound to HLA-B molecules can dominate the induction of 
HIV-1-specific, cytotoxic T-lymphocyte responses (Kie-
piela et al. 2004, 2007; Rajapaksa et al. 2012) and further 
dictate viral evolution or adaptation (Goulder and Walker 
2012; Kawashima et  al. 2009; Leslie et  al. 2004; Moore 
et al. 2002; Rolland et al. 2010), the VL variance explained 
by individual HLA-B variants is also limited (ranging from 
0.7 to 1.6  %). Our new objective is to refine the analyti-
cal approaches and to identify potential interaction terms 
between sex and HLA variants.

Subjects and methods

Study population

Recent HIV-1 seroconverters (SCs) were enrolled from 
Kenya, Rwanda, Uganda, and Zambia between 2005 and 
2011 (Table  1), under a uniform study protocol spon-
sored by the International AIDS Vaccine Initiative (IAVI) 
(Amornkul et al. 2013; Price et al. 2011). The procedures 
for written informed consent and multidisciplinary research 
activities were approved by institutional review boards at 
all clinical research centers and participating institutions.

Follow‑up strategies, genotyping, and outcome measures

SCs in this study were identified by frequent (monthly to 
quarterly) testing of HIV-1 seronegative subjects at high risk 
of HIV-1 infection through heterosexual and homosexual 
exposure, with the majority being seronegative partners 
in HIV-1 discordant couples and/or individuals reporting 
multiple heterosexual partners or diagnosed with sexually 
transmitted infections (85  % of the SC cohort). The sub-
jects included for this study were SCs with sufficient lon-
gitudinal data, and the visit intervals were expanded from 
3 to 24  months (Prentice et  al. 2014a) to 2 to 36  months 
beyond estimated dates of infection (EDI). All study visits 
considered were before the initiation of antiretroviral ther-
apy under national guidelines (Ngongo et  al. 2012). Viral 
sequencing, molecular HLA genotyping, and quantification 
of plasma VL followed procedures described in detail else-
where (Amornkul et  al. 2013; Prentice et  al. 2014a; Price 
et al. 2011; Tang et al. 2011). Identification of HLA-B*18 

http://www.genome.gov/gwastudies/
http://www.genome.gov/gwastudies/
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(unfavorable), B*45 (unfavorable), B*53 (unfavorable), and 
B*57 (favorable) as independent correlates of longitudinal 
or cross-sectional VL in this heterogeneous cohort (Prentice 
et al. 2014a) was highly consistent with results concerning 
Africans and African Americans (Apps et al. 2013; Lazar-
yan et al. 2011; Leslie et al. 2010; Tang et al. 2010).

Descriptive statistics

HIV-1-infected men and women were compared for their 
overall baseline characteristics, including (a) Wilcoxon’s 
rank-sum test for quantitative variables lacking a normal 
distribution, (b) t test for quantitative variables with a nor-
mal distribution, and (c) χ2 and Fisher exact tests for cat-
egorical variables (Table 1). These and other analytical pro-
cedures (summarized below) were done using SAS, version 
9.3 (SAS Institute, Cary, NC, USA).

Central hypothesis and analytical procedures

Our study aimed to test a central hypothesis that gene 
(HLA class I) by sex (viral microenvironment) interac-
tion can be uncovered by separate analyses of men and 
women, especially when longitudinal VL measurements 
(with log10-transformation) are evaluated in mixed mod-
els. Data analyses began with the screening of potential 
interaction terms, with a focus on common HLA variants 
(population frequencies ≥4  %). The timing and magni-
tude of sex-specific effects on VL were further assessed 
by local regression (LOESS) curves (longitudinal data) 
and generalized linear models for geometric mean (cross-
sectional) VL. Association signals with false discov-
ery rate (FDR) below 0.20 were entered into a series of 
sensitivity analyses using subsets of data corresponding 
to (1) the 3- to 24-month follow-up period with densely 

Table 1   Characteristics of 
HIV-1 seroconverters stratified 
by sex: demographic features, 
viral subtypes, outcome 
measures, and major HLA 
variants of interest

a N on-standard abbreviations: 
IQR interquartile range (25th to 
75 % percentile), SD standard 
deviation of the mean, NA not 
applicable
b T he P values >0.50 are 
omitted (−)
c  First eligible outcome beyond 
the acute phase of infection 
(>9 weeks after EDI)

Characteristicsa Men Women Pb

No. of subjects 327 194 NA

Age: mean ± SD (year) 32.5 ± 8.8 29.5 ± 7.3 <0.0001

Age ≥40: no. (%) 59 (18.0) 21 (10.8) 0.027

Enrolment site <0.0001

 Kenya 89 (27.2) 14 (7.2) <0.0001

 Rwanda 50 (15.3) 35 (18.0) 0.412

 Uganda 69 (21.1) 58 (29.9) 0.024

 Zambia 119 (36.4) 87 (44.9) 0.057

EDIs

 Earliest 3/15/2005 2/4/2005 NA

 Latest 10/12/2011 6/29/2011 NA

Length of follow-up (months): median (IQR) 29 (21–31) 29 (20–31) 0.376

Eligible visits per person: median (IQR) 10 (8–11) 9 (7–11)  0.370

HIV-1 subtypes 0.040

 Subtype A1 123 (37.6) 52 (26.8) 0.012

 Subtype C 118 (36.1) 80 (41.2) 0.242

 Others (B, D, recombinants, or unknown) 86 (26.3) 62 (32.0) 0.167

Person-visits with eligible viral load (2–36 months) 3,002 1,732 NA

Person-visits with eligible CD4+ T-cell counts 3,000 1,777 NA

First eligible viral load (log10)
c: mean ± SD 4.49 ± 1.03 4.30 ± 1.09 0.048

HLA-A*03: no. (%) 25 (7.7) 22 (11.3) 0.155

 Kenya 5 (5.6) 1 (7.1) –

 Rwanda 5 (10.0) 5 (14.3) –

 Uganda 5 (7.3) 9 (15.5) 0.140

 Zambia 10 (8.4) 7 (8.1) –

HLA-B*18: no. (%) 23 (7.0) 11 (5.7) –

HLA-B*45: no. (%) 58 (17.7) 25 (12.9) 0.144

HLA-B*53: no. (%) 60 (18.4) 41 (21.1) 0.437

HLA-B*57: no. (%) 30 (9.2) 18 (9.3) –

HLA-C*18: no. (%) 26 (8.0) 18 (9.3) –
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distributed visits (Prentice et  al. 2014a), (2) stepwise 
elimination of subjects representing individual coun-
tries or geographic regions (e.g., eastern versus southern 
Africa), and (3) elimination of subjects infected with rare 
or unknown HIV-1 subtypes. In the final multivariable 
models, age, sex, duration of infection (DOI, measured 
quarterly), and previously identified (generalizable) HLA 
variants (B*18, B*45, B*53, and B*57) (Prentice et  al. 
2014) were treated as covariates. The performance of 
individual statistical models was gauged by their overall 
R2 values (corresponding to variance explained by fac-
tors in the model), while the impact of individual fac-
tors was measured by the regression beta (adjusted mean 
beta difference, Δβ, and standard error, SE). Associa-
tions with borderline statistical significance (P ≤ 0.050, 
FDR = 0.20–0.50) were exempt from multivariable mod-
els or sensitivity analyses.

Refinement through evaluation of linkage disequilibrium 
(LD) profiles and extended haplotypes

Using SAS Genetics (SAS Institute, Cary, NC, USA), HLA 
genotyping data for eastern and southern African SCs were 
analyzed separately for LD and extended haplotypes, with 
additional reference to fully resolved haplotypes in other 
populations (Cao et  al. 2001). Association analyses based 
on 2- and 3-locus haplotypes were deemed informative if 
the adjusted effect sizes improved over those attributable to 
the component alleles.

Bioinformatics

Several public databases were surveyed for existing evi-
dence of function mechanisms pertinent to HLA/MHC 
gene expression and immune surveillance. First, HLA-
restricted HIV-1 epitopes were retrieved from the HIV 
Molecular Immunology Database (http://www.hiv.lanl.
gov/content/immunology/ctl_search, last accessed on 
May 18, 2014). Second, MHC SNPs known to tag-spe-
cific HLA class I alleles in Africans (de Bakker et  al. 
2006) were queried in HaploReg (Ward and Kellis 2012) 
for additional LD information uncovered by The 1000 
Genomes Project or functional properties annotated by 
the ENCODE project (Encode Project Consortium et  al. 
2012; Rosenbloom et  al. 2010). Third, previous asso-
ciations with immune disorders and/or gene expression 
QTLs (eQTLs) (Fairfax et al. 2012) were checked in the 
NCBI Global Cross-database (http://www.ncbi.nlm.nih.
gov/) and the SCAN database (http://www.scandb.org/ 
newinterface/index.html, last accessed on May 20, 2014), 
with close attention to cis- and trans-acting eQTLs (Nico-
lae et al. 2010).

Results

Characteristics of men and women in the study population

A total of 521 subjects had sufficient prospective data (three 
or more visits) during the 2- to 36-month interval after EDI 
(Table  1). The overall baseline data differed between 327 
men and 194 women in terms of (1) age (P  <  0.0001), 
country of origin (P < 0.0001), HIV-1 subtype (P = 0.040), 
and first available VL (P =  0.048). HLA alleles of inter-
est had similar distribution in men and women (P = 0.14–
0.97) (Table 1).

Screening for interaction terms between sex and HLA 
factors

When 35 common HLA variants (2- or 4-digit resolu-
tion levels, whenever possible) were screened in mixed 
models with adjustment for demographic factors (age and 
geography), only HLA-A*03:01 showed a clear interac-
tion with sex (P =  0.003, FDR =  0.09). LOESS curves 
supported this finding, as women with (+) and without 
(−) HLA-A*03:01 persistently differed in VL over the 
study intervals (1,732 person-visits, P < 0.0001) (Fig. 1). 
In contrast, HLA-A*03:01+ and A*03:01− men (3,002 
person-visits) had highly comparable VL trajectories 
(P = 0.66).

Multivariable models for longitudinal VL data

For the 2- to 36-month intervals, the interaction term 
between female sex and HLA-A*03:01 was independ-
ent of other known factors pertinent to the study popula-
tion (Table  2), with an adjusted P value of 0.005. On 
average, VL differed by −0.67 ± 0.24 log10 between HLA-
A*03:01+ and A*03:01− women after adjusting for other 
known factors. Analyses of data over the 3–24  months 
intervals yielded almost identical results (−0.71  ±  0.25 
log10, P = 0.005 for the interaction term) (Table 2).

Sensitivity analyses

In separate analyses of subjects representing individual 
countries or major geographic regions (eastern versus 
southern Africa), the interaction term for female sex and 
HLA-A*03:01 was persistently favorable, with adjusted 
effect sizes (Δβ) ranging from −0.30  ±  0.35 log10 
(P = 0.378) to −0.90 ± 0.32 log10 (P = 0.005) (Table 3), 
well within the 95  % confidence intervals established by 
the overall cohort. Data analyses restricted to subjects with 
different infecting HIV-1 subtypes led to similar observa-
tions as well (Table 3).

http://www.hiv.lanl.gov/content/immunology/ctl_search
http://www.hiv.lanl.gov/content/immunology/ctl_search
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.scandb.org/newinterface/index.html
http://www.scandb.org/newinterface/index.html
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Alternative multivariable models for cross‑sectional VL 
data

In a reduced multivariable model, age, sex, geography 
(clinical sites), previously identified HLA variants (HLA-
B*18, B*45, B*53, and B*57), and the interaction term 
for female sex and HLA-A*03:01 collectively explained 
17.0  % of the total variance in the overall geometric 
mean VL during the 2- to 36-month period (P  <  0.0001) 
(Table  4). Statistical adjustments for the number of eligi-
ble visits or the length of follow-up for each subject did 
affect the model (data not shown). The summary statistics 
remained unchanged in analysis of geometric mean VL 
during the 3- to 24-month period (Table 4). In this case, the 

joint model explained 16.2  % of the overall VL variance 
(Fig. 1).

Other HLA variants of interest

In addition to the main observations on HLA-A*03:01, 
HLA-C*18:01 showed a trend for favorable interac-
tion with female sex (P  =  0.042, FDR  >  0.50) (Fig.  2). 
Lack of LD between A*03:01 and C*18:01 (D′ = −0.06, 
r2  <  0.001, P =  0.90) ruled out the possibility of mutual 
tagging. Stratification by country did not reveal LD 
between A*03:01 and C*18:01 either (P  =  0.34–0.99). 
Meanwhile, a previously reported, sex-specific effect for 
HLA-A*74:01 and HIV-1 VL (Koehler et  al. 2010) could 
not be substantiated (P  >  0.50 for the interaction term), 
although HLA-A*74:01+ and A*74:01− men did differ 
slightly in longitudinal VL (Δβ = −0.22 ± 0.13 log10 for 
HLA-A*74:01+ men, P = 0.131).

HLA‑A*03:01‑related haplotypes

In contrast to earlier observations based on five North 
American populations (Cao et  al. 2001), HLA-A*03:01 
is not in strong LD with B*07:02-C*07:02 in our study 
cohort. The only statistically meaningful LD profiles for 
A*03:01 (P  ≤  0.02) involved two haplotypes (B*49:01-
C*07:01 and B*58-C*06) present in the eastern African 
SCs. Neither B*49:01-C*07:01 nor B*58-C*06 had differ-
ential impact on VL in women (adjusted P = 0.17 and 0.64, 
respectively). The observed 3-locus haplotypes containing 
A*03:01 were too diverse (9–11 per geographic region) to 
allow separate testing.

HLA‑A*03‑restricted HIV‑1 epitopes

In the context of antigen presentation and CTL responses, 
multiple studies have identified HLA-A*03-restricted HIV-1 
epitopes, especially a conserved epitope (KK9/RK9) in Gag 
(p17) (Balamurugan et al. 2010; Brumme et al. 2008; Dinges 
et  al. 2010; Goulder et  al. 1997; Heath et  al. 2011; Peretz 
et  al. 2011; Schneidewind et  al. 2009). Other HLA-A*03-
restricted CTL epitopes have been mapped to Env/gp120 
(TW9 and VE12) (McKinnon et al. 2007; Peretz et al. 2011; 
Schneidewind et  al. 2009), Nef (AK9, GL9, QK10, RK9, 
and RK10) (Almeida et al. 2011; Balamurugan et al. 2010; 
Brumme et al. 2008; Peretz et al. 2011; Schneidewind et al. 
2009), Pol (AK11, ATK9, DI11, KA9, and SK11) (Bala-
murugan et al. 2010; Brumme et al. 2008; Chen et al. 2009; 
Peretz et  al. 2011; Turnbull et  al. 2009), Rev (TY9) (Yang 
et  al. 2005), and a cryptic antigen (RR9) encoded by an 
alternative open reading frame (Berger et al. 2010). None of 
these existing immunologic data have been stratified by sex.

Fig. 1   Longitudinal viral loads in HIV-1-infected men and women 
stratified by HLA-A*03:01. Viral load measurements at various inter-
vals (2 to 36  months after infection) are plotted for HLA-A*03:01-
positive and HLA-A*03:01-negative subjects. The thick and thin lines 
correspond to the expected mean value and 95 % confidence intervals 
for each stratum (see Table 2 for summary statistics based on mixed 
models). Arrows indicate plasma viral load measurements that are 
<400 RNA copies/ml (routinely transformed to 1.30 log10)
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Further findings from bioinformatics

In populations of African ancestry (e.g., Yoruba), HLA-
A*03:01 is tagged by one intergenic SNP (rs2524024), 
which is in strong LD (r2 = 0.81–1.0) with 63 other inter-
genic SNPs distributed along a 45.1 kb region (5.9–51 kb 
upstream of HLA-A). The rs2524024 SNP is also a known 
eQTL for the integral membrane protein 2A gene (ITM2A) 
at Xq13.3-Xq21.2. When ranked by P values, rs2524024 
(8.0 ×  10−6) falls out of the top 20 eQTLs (SNPs) asso-
ciated with ITM2A gene expression in lymphoblastoid cell 
lines (Nicolae et al. 2010).

Discussion

By focusing on generalizable findings that are applicable to 
eastern and southern Africa with multiple circulating HIV-1 
subtypes, our analyses yielded clear evidence that female 
sex can be an important environmental factor to facilitate 
HLA class I-mediated immune control of HIV-1 infec-
tion. Because women typically have lower VL than men 
after acquiring HIV-1 (Fideli et al. 2001; Prentice and Tang 
2012; Tang et al. 2002), our hypothesis about gene by sex 
interaction may offer some explanation.

In the context of HIV-1 infection, at least two earlier 
studies have alluded to sex-specific findings with HLA-
A*74:01 and HLA-DRB1*11 (Hendel et  al. 1999; Koe-
hler et  al. 2010). In our analysis, HLA-A*74:01 (a fre-
quent allele) was weakly associated with relatively low 
VL in men. However, there was no evidence for interaction 

Table 2   Multivariable models for longitudinal viral load (VL) at two overlapping intervals of early HIV-1 infection

a R epeated measurements, with log10-transformation before analysis. Summary statistics: Δβ regression beta (mean deviation, Δ, from the ref-
erence group), SE standard error of the mean Δβ
b A s part of the sensitivity analyses (see text)
c  For consistency with earlier work, age is retained as a covariate regardless of its statistical significance

Factors in model Analyses of VLa in the 2–36 months interval Analyses of VLa in the 3–24 months intervalb

n Δβ SE Adjusted P n Δβ SE Adjusted P

Age (if >40)c 80 −0.06 0.10 0.536 75 −0.10 0.10 0.309

Region (if Zambia) 206 0.36 0.07 <0.0001 199 0.38 0.07 <0.0001

DOI (every 3 months) 521 −0.02 0.01 <0.0001 503 −0.02 0.01 0.007

HLA-B*18 34 0.34 0.14 0.015 34 0.33 0.14 0.023

HLA-B*45 83 0.25 0.09 0.009 82 0.22 0.10 0.027

HLA-B*53 101 0.22 0.09 0.013 93 0.19 0.09 0.047

HLA-B*57 48 −0.48 0.12 <0.0001 46 −0.48 0.12 0.0001

Female sex 194 −0.27 0.07 <0.001 187 −0.29 0.08 <0.001

Female sex × HLA-A*03 22 −0.67 0.24 0.005 22 −0.71 0.25 0.005

Table 3   Alternative models for evaluating the interaction term 
between female sex and HLA-A*03

a  Part of the sensitivity analyses
b R epeated measurements in the 2–36  months interval, with log10-
transformation before analysis. The summary statistics are adjustment 
for other factors shown in Table 2. β regression beta (mean deviation, 
Δ, from the reference group), SE standard error of the mean (Δ)
c T he remaining subjects correspond to eastern Africans
d  Corresponding to southern Africans
e  Defined as others (not A1 and not C) in Table 1

Six alternative modelsa n Impact on longitudinal VLb

Δβ ± SE Adjusted P

a) Removing Kenyan subjects

 Female sex 180 −0.29 ± 0.08 <0.001

 Female sex × HLA-A*03 21 −0.79 ± 0.25 0.002

b) Removing Ugandan subjects

 Female sex 136 −0.31 ± 0.09 <0.001

 Female sex × HLA-A*03 13 −0.39 ± 0.28 0.175

c) Removing Zambian subjectsc

 Female sex 107 −0.22 ± 0.10 0.039

 Female sex × HLA-A*03 15 −0.90 ± 0.32 0.005

d) Zambian subjects onlyd

 Female sex 87 −0.34 ± 0.10 0.001

 Female sex × HLA-A*03 7 −0.30 ± 0.35 0.378

e) Removing rare HIV-1 subtypese

 Female sex 132 −0.27 ± 0.08 0.001

 Female sex × HLA-A*03 13 −0.76 ± 0.28 0.006

f) Removing HIV-1 subtype A1

 Female sex 142 −0.33 ± 0.09 0.0001

 Female sex × HLA-A*03 15 −0.53 ± 0.29 0.064
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between HLA-A*74:01 and sex. The second hypothesis 
about HLA-DRB1*11 being unfavorable in women was 
derived from a French cohort (Hendel et  al. 1999), but 
analyses of HIV-1-infected Zambians did not replicate that 
finding (Tang et  al. 2010). Unlike earlier studies that did 
not account for potential false discoveries from random, 
multiple testing, the interaction term seen here for female 
sex and HLA-A*03:01 was accompanied by a low FDR 
(<0.10). A series of sensitivity analyses established that 
other potential confounders, including age, geography, and 
viral subtypes, did not obscure or compromise our analyti-
cal approaches. Data from the Multicenter AIDS Cohort 
Study may provide anecdotal evidence to support our key 
findings, as analyses of viral load and disease progression 
have never detected differential effects for HLA-A*03 in 
HIV-1-infected men (Kaslow et al. 1996; Mann et al. 1998).

Statistical significance aside, the threshold for a bio-
logically significant difference in HIV-1 VL is around 0.30 
log10 after accounting for intra- and inter-assay variability 
(Modjarrad et al. 2008; Saag et al. 1996). By our estimates, 
female sex by HLA-A*03:01 interaction was independently 
associated with ~0.70 log10 reduction in VL (Tables  2, 3, 
4), which should impact disease progression and vertical or 
horizontal HIV-1 transmission.

The condition for analyzing gene by sex interactions in our 
study population was somewhat suboptimal. First, men and 
women eligible for analyses differed in several non-genetic 
(and potentially confounding) features (Table 1), which man-
dates the application of multivariable models and sensitivity 
analyses. As such, the effect sizes (regression beta and R2 val-
ues) attributable to specific interaction terms often differed by 
statistical models and complicated the interpretation process. 
Second, HLA profile and genetic backgrounds can differ by 
country and geographic region, suggesting that our emphasis 

on generalizable findings might have come at the expense 
of country-specific phenomena. Third, sample size was not 
equal between men and women, so the statistical power was 
somewhat compromised in analyses of female-specific asso-
ciations. As such, the modest trend seen with HLA-C*18:01 
in women (Fig. 2) is still worth noting. In the long term, sta-
tistical models for gene by sex interactions should continue to 
improve when homogeneous cohorts with unbiased sex ratios 
are available for follow-up studies.

HLA alleles that have early influences on HIV-1 viral 
load tend to impose a strong selection pressure for viral 
immune escape mutations, as often seen in individuals with 
HLA-B*57 and related alleles (Bansal et  al. 2007; Craw-
ford et  al. 2009; Leslie et  al. 2004; Novitsky et  al. 2010; 
Wang et  al. 2009). In HIV-1-infected African women, the 
VL trajectory associated with HLA-A*03:01 was relatively 
steady in the first 3 years of follow-up (Fig.  1). Further 
evaluation of immune responses and HIV-1 immune escape 
mutations in HIV-1-infected women with HLA-A*03:01 
may provide new insights about durable immune protection 
against a broad spectrum of HIV-1 subtypes.

Although HLA-A*03:01 itself can play an important role 
in inducing immune responses to a variety of CTL epitopes, 
it is also possible that the interaction term seen with 
A*03:01 actually reflects the function of other variants that 
operate in a sex-specific fashion. Such genetic variations can 
be either upstream (telomeric) or downstream (centromeric) 
from the HLA-A locus (Vandiedonck and Knight 2009). 
The LD profiles in our study cohort strongly suggested that 
genes downstream from the HLA-A locus, including HLA-C 
and HLA-B, could not explain the A*03:01 effect. Two alter-
native hypotheses can relate to other genomic regions. First, 
through strong LD with rs2524024, a trans-acting eQTLs 
for the ITM2A gene at Xq13.3-Xq21.2, HLA-A*03:01 can 

Table 4   Multivariable models for geometric mean viral load (VL) at two overlapping intervals of early HIV-1 infection

a  With log10-transformation before analysis. Summary statistics: β regression beta (mean deviation, Δ, from the reference group), SE standard 
error of the mean (Δ); R2 proportion of VL variance attributable to each factor
b A s part of the sensitivity analyses
c  For consistency with earlier work, age is retained as a covariate regardless of its statistical significance

Factors in model Analyses of VLa in the 2–36 months interval Analyses of VLa in the 3–24 months intervalb

n Δβ SE Adjusted P R2 n Δβ SE Adjusted P R2

Age (if >40)c 80 −0.05 0.10 0.585 0.000 75 −0.11 0.10 0.276 0.002

Southern Africa (Zambia) 206 0.35 0.07 <0.0001 0.038 199 0.36 0.08 <0.0001 0.040

HLA-B*18 34 0.35 0.14 0.015 0.010 34 0.35 0.15 0.018 0.010

HLA-B*45 83 0.29 0.10 <0.001 0.014 82 0.27 0.10 0.008 0.012

HLA-B*53 101 0.27 0.09 0.003 0.014 93 0.22 0.10 0.021 0.009

HLA-B*57 48 −0.49 0.12 <0.0001 0.026 46 −0.46 0.13 <0.001 0.022

Female sex 194 −0.28 0.08 <0.001 NA 187 −0.29 0.08 <0.001 NA

Female sex × HLA-A*03 22 −0.72 0.25 0.004 0.014 22 −0.77 0.26 0.003 0.016

Overall 521 NA NA <0.0001 0.170 503 NA NA <0.0001 0.162
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tag various functionally relevant SNPs. The ITM2A product 
has been shown to regulate CD8 T-cell selection and acti-
vation in mice (Kirchner and Bevan 1999). This biological 
connection can offer a probable mechanism for the observed 
interaction between HLA-A*03:01 and female sex. The 
other alternative hypothesis points to a long-range (~4 Mb) 
LD between A*03 and the C282Y mutation in HFE, which 
is a recessive causal variant for hereditary haemochroma-
tosis (iron overload) in Caucasians (Cardoso and de Sousa 
2003; de Bakker et al. 2006; Hanson et al. 2001). However, 
this is an unlikely explanation as fine mapping using the 
ImmunoChip array (Illumina, San Diego, CA, USA) has 
confirmed that haplotype blocks in the MHC region are rel-
atively short in Africans (Prentice et al. 2014b).

Potential interactions between HLA alleles and sex have 
been reported for several autoimmune disorders and human 

malignancies (Davis and Dorak 2010; Dorak et  al. 1999; 
Morrison et al. 2010). For HLA-A variants alone, evidence 
of sex-specific effect further points to a short sequence 
motif corresponding to polymorphic amino acid residues 
161, 163, and 165 of the HLA-A protein product (Song 
et al. 2009). This particular sequence motif does not match 
the ones highlighted in a recent fine-mapping of HLA class 
I amino acid sequences in HIV-1-infected African Ameri-
cans (in the absence of stratification by sex) (McLaren 
et  al. 2012). Nonetheless, the HLA-A locus is often over-
shadowed by HLA-B and HLA-C in studies of HIV/AIDS 
(Apps et  al. 2013; Fellay et  al. 2009; Leslie et  al. 2010; 
Prentice and Tang 2012). If environmental factors indeed 
dictate how HLA-A alleles are expressed or regulated, close 
attention to gene × environment or gene × sex interaction 
should provide a deeper understanding of “missing herit-
ability” in quantitative genetics.
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