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Introduction

A human cell is defined by its components, such as the 
genome, epigenome, proteome, metabolome or transcrip-
tome, and their interactions. This results in a complex 
regulatory network that we just begin to understand and 
that poses a major challenge in finding the cellular cause 
of a given human disease. Even though a systems biologi-
cal approach integrating all aspects that define a cell type 
would be best suited to understand human development and 
disease, researchers only slowly start to leave the isolation 
of their own specialized -Omics domain.

The field of genomics is likely the most advanced in 
its global search for disease-associated alterations of the 
genome. Already for decades, inheritance studies based 
on genetic linkage in families have been used to map 
genomic loci that have an effect on disease or other phe-
notypic traits. Linkage analysis relies on the co-segregation 
of marker alleles, which are, for example, common single 
nucleotide polymorphisms (SNPs) with the unknown dis-
ease gene within pedigrees. While this approach has had 
great success for diseases and traits that are controlled by 
a single locus (Mendelian traits) (Botstein and Risch 2003), 
it has proven cumbersome for the analysis of common and 
complex diseases such as cancer (Altmuller et  al. 2001). 
Already in 1996, Risch and Merikangas proposed the per-
formance of an association scan that involves millions of 
common variants of the genome and a group of unrelated 
individuals that differ in a certain phenotype. In particular 
for complex traits this approach should yield much better 
results than a linkage analysis including only a few hun-
dred markers (Risch and Merikangas 1996). Based on this 
principle, the first genome-wide association study (GWAS) 
published in 2005 (Klein et al. 2005) marks the beginning 
of a whole new era of research counting 1,600 published 
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GWA reports and 10,088 disease-associated SNPs by May 
2013 (Hindorff LA 2013).

Even though bearing great promise, the success of 
GWAS for clinical benefits such as the discovery of new 
biomarkers that can be used for clinical decision support 
or disease prevention remains limited. There are two main 
reasons for this: First, the problem of missing heritability 
and second, the limited identification and functional char-
acterization of causal variants. Heritability is defined as 
the proportion of the phenotypic variance in a population 
that is due to genotypic differences among individuals 
(Gibson and Shepherd 2012). For example, human height 
has an estimated heritability of 80  %, meaning 80  % of 
height differences between individuals can be explained 
by genetic differences and 20  % are due to other influ-
ences such as  the environment. Even though 40 genomic 
loci have been identified to be associated with human 
height, they only explain 5 % of the phenotypic variance 
(Visscher 2008). Multiple reasons have been suggested 
to explain the missing heritability, one of them being the 
fact that GWA studies typically identify common vari-
ants (present in 5 % or more of the population) with small 
effects and miss out on rare variants (allele frequency 
<1 %) with potentially much larger effects. This topic is 
extensively reviewed in Manolio et al. (2006) and Gibson 
(2011).

In this review, we will focus on the second aspect: The 
identification and, in particular, the functional characteri-
zation of causal variants. Principles for the post-GWAS 
functional characterization of risk loci are also reviewed 
elsewhere (Freedman et  al. 2011); however, possibilities 
that mass spectrometry-based proteomics can offer are not 
discussed. We will summarize both (epi-)genomics and 
proteomics technology in light of post-GWAS, and thus 
hope to provide a basis for  an highly integrated, systems 
biological approach. As we cover multiple broad topics, we 
apologize that due to space restrictions we were not able to 
cite all relevant publications and would like to refer to other 
reviews cited in the text. Throughout the review, we mainly 
discuss SNPs or small genomic variants, but we recognize 
that other types of common genetic variation, such as larger 
insertions or deletions, may also influence risk.

Identification of all common and rare associated 
variants

If a certain combination of genomic loci in a population 
occurs more or less often than would be expected from a 
random formation, they are defined to be in linkage dis-
equilibrium (LD) with each other (reviewed in Slatkin 
2008). It is a second-order phenomenon derived from 
linkage, which is the presence of two or more loci on a 

chromosome with limited recombination between them. 
SNPs represented on a GWAS SNP array were chosen in 
a way that they capture the LD structure of the genome 
and thus allow the identification of associations between 
a common trait and a certain genomic region that is repre-
sented by one marker (tagSNP). Hence the associated SNP 
is not always the causal variant and any other SNP or a 
combination of SNPs that are in strong LD with the tag-
SNP can form the basis of functional consequences. For 
this reason, one of the major tasks of the HapMap project 
is to identify all common and rare variants to generate a 
comprehensive catalog of human genome variations (Alt-
shuler et al. 2010).

In 2012, the 1,000 genomes project consortium pub-
lished genomes of 1,092 individuals from diverse eth-
nic populations using a combination of low-coverage 
whole-genome and exome sequencing (Genomes Project 
Consortium 2012). This study captures up to 98  % of 
accessible SNPs that have a frequency of 1  % or higher 
in UK-sampled genomes and with 38 million SNPs and 
approximately 1.5 million other variants provides an 
extensive resource of common and rare variants. Trait-
associated SNPs that are in LD with a certain tagSNP can 
thus be imputed (Howie et al. 2012). While this approach 
shows great success for common variants (>5  % fre-
quency), rare variants are more recent and thus geographi-
cally restricted. For this reason, many more individuals 
from different populations around the globe need to be 
sequenced to provide good coverage. In addition, large 
efforts are currently taken to fine map regions that are 
associated with a certain disease phenotype by extensive 
targeted re-sequencing (Nejentsev et al. 2009; Rivas et al. 
2011).

Identification and characterization of the functional 
variants

Having successfully identified thousands of novel common 
and rare variants that are in LD with previously character-
ized GWAS tagSNPs, the next big challenge is to find the 
causal variants amongst those. Most methods that have 
been developed so far focus on SNPs that are located in the 
coding or transcribed region of a gene because these might 
influence the primary structure and thus the function of a 
protein (Ng and Henikoff 2003; Saccone et al. 2011; Cve-
jic et al. 2013). However, most of the associated common 
variants identified so far do not map within or in LD to a 
protein coding region (Easton et al. 2012) and thus might 
be rather linked to gene expression regulatory mechanisms. 
Their characterization remains difficult and requires the 
integration of data from related fields such as epigenetics 
or proteomics.
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Integration of GWAS with epigenetics information 
on regulatory elements

A SNP located in a non-coding region may, for example, 
disrupts or creates a transcription factor (TF)-binding 
site in an active regulatory element (Reddy et al. 2012). 
As a consequence, the regulatory activity and thus the 
expression of a gene that is controlled by this element 
can be altered (Kasowski et  al. 2010). A GWAS SNP 
that overlaps with an active regulatory region or an 
experimentally detected TF-binding site in a relevant 
cell type  therefore has a higher probability of being 
functionally relevant (Jia et al. 2009; Harismendy et al. 
2011; Paul et al. 2011).

In fact, a recent study involving genome-wide DNase 
I mapping in 349 cell and tissue samples showed that 
76.6  % of all non-coding GWAS SNPs either lie within 
a DNase I hypersensitive site (DHS) or are in complete 
LD with SNPs in a nearby DHS (Maurano et  al. 2012). 
Besides studying histone modifications and the binding 
pattern of TFs by chromatin immunoprecipitation followed 
by sequencing (ChIP-seq) (Johnson et al. 2007; Robertson 
et al. 2007), DNase I hypersensitive site identification by 
sequencing (DNase-seq) or digital genomic footprint-
ing (DGF) (Crawford et al. 2006; Boyle et al. 2008; Hes-
selberth et al. 2009) are major techniques to map regula-
tory elements (Visel et  al. 2009). We recently used the 
combination of these technologies to define binding sites 
and thus the regulatory impact of the oncofusion proteins 
PML-RARα and AML1-ETO in acute myeloid leukemia 
(Saeed et al. 2012).

Large epigenetics consortia such as ENCODE (http://
genome.ucsc.edu/ENCODE/), Roadmap (http://www. 
roadmapepigenomics.org/), iHEC (http://www.ihec-
epigenomes.org/) or BLUEPRINT (http://www.blue-
print-epigenome.eu) utilize next-generation sequenc-
ing technology to characterize, amongst others, histone 
modifications, TF binding and chromatin accessibility in 
various cell types, human tissue and blood, respectively. 
This enormous resource can be used to characterize the 
regulatory landscape of susceptibility regions in relevant 
cell types and narrow down causal variants to those map-
ping to an active regulatory element. RegulomeDB is a 
database that combines data from ENCODE and other 
sources such as ChIP-seq data from the sequence read 
archive (SAR) (Leinonen et al. 2011) and data on expres-
sion quantitative trait loci (eQTL) with computational 
predictions to estimate the regulatory potential of a cer-
tain genomic locus (Boyle et al. 2012). A parallel publica-
tion of the same group shows that SNPs that are annotated 
with a high score are in most occasion SNPs that are in 
LD with a reported association rather than the tagSNP 
itself (Schaub et al. 2012b).

Identification of physiological relevant target genes

As mentioned above, one of the major mechanisms under-
lying susceptibility to complex trait or disease is probably 
the variation in gene expression caused by polymorphisms 
in regulatory elements. Consequently, transcript abundance 
can be analyzed with genetic approaches in the same way 
as any other quantitative trait phenotype, such as height or 
the body mass index and are commonly known as expres-
sion quantitative trait loci (eQTLs) (reviewed by Cookson 
et al. 2009). A SNP in a non-coding genomic region could 
thus be linked to a certain phenotypic trait in a GWA study 
and the same SNP or a SNP in strong LD could be linked 
to expression changes in an independent eQTL study, thus 
providing an important connection between a phenotypic 
trait and a physiological relevant target gene.

Mapping eQTL target gene associations in tumors is 
more challenging than for other human traits or disease. 
Tumors acquire frequent genetic and epigenetic altera-
tions, which can substantially affect gene expression (Raval 
et  al. 2007; Smith et  al. 2006) and consequently obscure 
the association between germline genetic polymorphisms 
and gene expression (Curtis et  al. 2012). For these rea-
sons, recent cancer studies also investigate the association 
between SNPs and an altered epigenetic landscape, such as 
promoter methylation, histone modifications or the expres-
sion of large intergenic non-coding RNAs (lincRNAs) that 
associate with chromatin-modifying complexes (Gibbs 
et  al. 2010; Bell et  al. 2011; Grossman et  al. 2013; Ernst 
et  al. 2011). A good example is the recent work from Li 
et al. (2013), which provides a more comprehensive picture 
of gene expression determinants in breast cancer and the 
underlying biology of breast cancer risk loci by the inte-
grated analysis of eQTLs, somatic copy number alteration 
and CpG methylation in 219 tumor samples and the healthy 
counterparts.

Even though quantitative trait loci analysis can indi-
cate an impact of a genomic region on the expression or 
the epigenetic regulation of certain genes, it is unclear if 
this influence is direct or indirect. Mammalian genomes 
are organized into higher-order conformational structures 
that allow physical interactions of regulatory elements that 
can be located in far distance on one chromosome or even 
on different chromosomes (reviewed in Cremer and Cre-
mer 2001). Chromosome Conformation Capture (3C) and 
similar techniques have been developed to identify these 
interactions and demonstrated their impact on the regula-
tion of transcriptional and epigenetic states (reviewed in 
de Wit and de Laat 2012). Hi-C, for example, allowed the 
investigation of the three-dimensional organization of the 
human and mouse genomes in embryonic stem cells and 
terminally differentiated cell types at unprecedented reso-
lution (Dixon et al. 2012). Chromatin Interaction Analysis 
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by Paired-End-Tag sequencing (ChIA-PET) is a comple-
mentary methodology that is used for the genome-wide 
mapping of chromatin interactions bound by specific pro-
teins (Fullwood et  al. 2009). Applying this technology to 
proteins generally bound by promoters or enhancers (e.g. 
PolII) allows the high-resolution mapping of enhancer-pro-
moter and promoter–promoter interactions (Li et al. 2012). 
Data on higher-order conformational structure of a relevant 
cell type can thus help to unambiguously identify direct 
physiological target genes of functional GWAS SNPs.

Prediction and validation of SNP‑dependent differential 
transcription factor binding

Integrated studies often use TF-binding motifs present 
in DHS or DNase I footprints and overlapping ChIP-seq 
peaks to predict differential TF binding caused by an SNP 
(Schaub et al. 2012a; Maurano et al. 2012). While this is a 
great approach to restrict the number of SNPs associated 
with a certain phenotype to those that might have a causal 
role, like any generic approach it can also reveal a num-
ber of false positives and negatives. False hits might be the 
result of using databases with data generated from multi-
ple, often for a disease or trait phenotype not relevant cell 
types. Many distal regulatory elements are cell type spe-
cific (Heintzman et  al. 2009; Dimas et  al. 2009) and thus 
a transcription factor that binds to a region with an SNP 
might not even be expressed in another cell type relevant 
for a certain trait or disease. Furthermore, the haplotype 
for the particular SNP of the cell lines used in the database 
is often not taken into account for these analyses. Despite 
huge efforts that have been taken to characterize TF-bind-
ing motifs (Badis et  al. 2009; Jolma et  al. 2013; Noyes 
et al. 2008), only for approximately half of the more than 
1,000 human TFs a corresponding DNA binding motif is 
known, thus introducing a bias towards those. Last but not 
least, most motif-based approaches consider TF-binding 
motifs in an isolated context. However, several TFs that are 
part of one TF family might compete for the same motif 
and TFs binding in close proximity might influence each 
other’s affinities. For these reasons, prediction-based meth-
ods cannot yet replace the biochemical characterization of 
differential TF binding and activity.

Electromobility shift assays (EMSAs) are the classi-
cal method to study the interaction between a certain pro-
tein or protein domain with a particular sequence of DNA 
(Fried and Crothers 1981; Garner and Revzin 1981). This 
in vitro method, however, requires pure or highly enriched 
protein and, in an ideal case, an antibody that is specific for 
the studied TF. Chromatin immunoprecipitation (ChIP) fol-
lowed by quantitative PCR of the region containing the SNP 
is probably the method of choice to validate the predicted 
differential TF binding in vivo (Stunnenberg and Vermeulen 

2011). However, two major requirements need to be met. 
First, sufficient amounts of two disease relevant cell or tis-
sue types that are homozygous for either variant of the SNP 
or alternatively a heterozygous cell type are needed. Second, 
a ChIP-grade antibody that recognizes the TF in question 
needs to be available. Furthermore, this method is a valida-
tion method that requires a priori knowledge of the binding 
TF. The predictions mentioned above might reveal multiple 
candidates each requiring a separate validation experiment. 
Last but not least, ChIP experiments cannot distinguish 
between directly and indirectly bound proteins, and without 
performing additional, hypothesis-driven experiments it will 
not reveal information about recruited co-factors and pro-
tein complexes, which would significantly contribute to our 
understanding of the underlying regulatory mechanism.

In the following, we will introduce recent developments 
in the field of mass spectrometry-based proteomics that, 
amongst others, will be able to overcome at least some of 
the obstacles mentioned above.

Mass spectrometric characterization of functional SNPs 
or variants

Due to numerous technical and computational developments 
during the last decade, the detection and quantification of 
proteins in complex mixtures by mass spectrometry have 
evolved to a standardized methodology (reviewed in Ahrens 
et  al. 2010). Besides the analysis of complete proteomes 
(de Godoy et al. 2008) and the quantification of post-trans-
lational modifications (reviewed in Choudhary and Mann 
2010), the technique has also been widely used to study 
protein interactions and complexes in an unbiased manner 
(reviewed in Vermeulen et al. 2008), thus offering an alter-
native to affinity purification followed by western blotting 
with specific antibodies. Here, we will review recent devel-
opments in the proteomics field that can be perfectly inte-
grated in post-GWAS studies and thus contribute signifi-
cantly to the identification and functional characterization of 
trait-associated SNPs or variants (Fig. 1).

Integration of comprehensive protein expression data

In contrast to transcriptomics, proteomics for long had the 
disadvantage of not being comprehensive and requiring sub-
stantial amounts of material. The limited sequencing speed 
of mass spectrometers as well as the immense dynamic 
range of the human proteome made it difficult to identify 
all proteins in a reasonable time frame and with reasonable 
effort. Recent developments of novel methods, software 
and instrumentation now allow the identification of com-
prehensive proteomes as demonstrated for yeast a couple 
of years ago (de Godoy et  al. 2008). In minimal amounts 
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of human cells or tissue more than 10,000 proteins can be 
detected, presumably covering most of the expressed pro-
teins (Wisniewski et al. 2013; Munoz et al. 2011). In con-
trast to next-generation sequencing, in which the number of 
reads for a certain genomic region is directly proportional 
to the amount of DNA or RNA present in the sample, mass 
spectrometry is not inherently quantitative. As a result, the 
detected peptide and consequently protein intensities do not 
represent the absolute abundance of proteins in a cell. Inter-
nal standards and computational normalization can solve 
this issue (Schwanhäusser et  al. 2011; Picotti et  al. 2009; 
Zeiler et al. 2012). In summary, it is now possible to obtain 
comprehensive proteomes with copy number information 
for each protein from a minimal amount of material.

As described above, approaches such as the one used 
in RegulomeDB integrate published epigenomic datasets 
from multiple cell lines to indicate which SNPs are likely 
to have a functional influence. In an ideal case scenario, 
this analysis would be done on data generated in a disease 
or trait relevant tissue. While large efforts are being under-
taken to map epigenetic marks and DNA hypersensitivity in 
most human tissues (Adams et al. 2012; Chadwick 2012), 

ChIP-seq profiles of all TFs in all tissues are unlikely to 
be available in the near future. Comprehensive proteomes 
provide information about the presence and abundance of 
TFs in a certain cell type. Therefore, proteomic profiles of 
all tissues can serve as a filter for TF-binding predictions 
based on DNA motifs or ChIP-seq profiles in common cell 
lines. We thus strongly propose to include comprehensive 
and quantitative proteome mapping into large-scale epig-
enome mapping efforts.

Protein quantitative trait locus analysis

It is known for more than a decade that global mRNA and 
protein levels do not correlate well (Gygi et  al. 1999b). 
Reasons for this are various layers of post-translational 
regulation that buffer changes in transcript abundance or 
lead to alterations in protein abundance despite a constant 
transcript level. This raises the question whether polymor-
phisms in eQTLs have a comparable effect on transcript 
and protein levels.

Already in 2007, the first protein quantitative trait locus 
(pQTL) study was performed, analyzing the proteomes of 

Fig. 1   Flow-chart representing 
the integration of genomics and 
proteomics technologies for the 
functional characterization of 
common disease or phenotypic 
trait-associated genome vari-
ations
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two laboratory yeast strains and 98 segregants (Foss et al. 
2007). All of these strains had also been genotyped and 
studied with regard to the genetic basis of variation in tran-
script levels (Brem et al. 2005). From this study, it became 
clear that loci that influence protein levels differ from those 
that influence transcript abundance. This emphasizes the 
importance of the direct analysis of the proteome. However, 
the proteomics technology at that time yielded limited pro-
teome coverage. Furthermore, a very small set of proteins 
was quantified across all samples resulting in a strong bias 
towards high abundant proteins. Targeted mass spectrom-
etry now allows the reliable quantification of a selected set 
of approximately 50 proteins across a broad abundance 
range and a large number of samples (Picotti et al. 2009). 
On this basis, the study of 2007 was repeated, resulting in a 
much more complete dataset while at the same time requir-
ing less measurement time (Picotti et  al. 2013). Novel 
pQTLs as well as epistatic interactions were detected. Fur-
thermore, the authors identified two cases of co-inheritance 
of several independent genetic variations that influence 
the abundance of related proteins in a biologically coher-
ent manner. Recently, the first human pQTL study com-
paring the proteome of lymphoblastoid cell lines from 95 
individuals that were genotyped in the HapMap Project 
(www.hapmap.org) was published (Wu et al. 2013). Simi-
lar to the yeast study mentioned above, the authors stressed 
the limited overlap between eQTLs and pQTLs, indicating 
that distinct and diverse genetic mechanisms control gene 
expression at many different levels.

A big bottleneck in these studies, however, is the limited 
throughput. As the samples were measured consecutively, a 
still substantial amount of measurement time was required. 
Recent developments on the basis of isotope labels, intro-
duced either metabolically in cell culture and/or chemically 
on peptide level (for detailed review, see Nikolov et  al. 
2012), allowed the measurement of up to 54 samples in a 
single experiment (Everley et al. 2013; Hebert et al. 2013). 
While metabolic labeling such as stable isotope labeling 
by amino acids in cell culture (SILAC) (Ong et  al. 2002) 
is a very elegant, highly accurate method, it is only appli-
cable to cells dividing in culture and thus cannot be used 
for the multiplexed analysis of human tissue samples. The 
development of multiplexing approaches such as the ones 
mentioned above that solely rely on chemical labeling 
(Boersema et  al. 2009; Ross et  al. 2004; Thompson et  al. 
2003; Gygi et al. 1999a) would therefore immensely ben-
efit the feasibility of human pQTL studies.

Integrating large‑scale data on protein–protein interactions 
to interpret GWAS

In recent years multiple efforts, mainly employing yeast 
two-hybrid screens or affinity purification followed by 

mass spectrometry (AP-MS) have been undertaken to 
construct high confidence interaction networks of human 
proteins (Venkatesan et al. 2009; Glatter et al. 2009; Kris-
tensen et al. 2012; Hubner et al. 2010; Mellacheruvu et al. 
2013; Sowa et  al. 2009). Most AP-MS approaches are 
based on cell lines that express tagged versions of the pro-
teins of interest and employ quantitative methods, such 
as the ones described in the  following section for DNA-
pulldowns, to ensure high specificity (Fig.  2). Significant 
efforts and resources are required to reach large-scale inter-
action networks including a large number of proteins. For 
this reason, a comprehensive interaction network including 
all proteins that are expressed in a certain cell of interest 
has still not been published.

Based on published protein–protein interaction data, 
there have been successful attempts to integrate these net-
works with GWAS or traditional linkage studies to assist 
the prioritization of candidates genes as well as to provide 
a possible functional background (Califano et  al. 2012). 
For example, Lage and co-workers created a phenome–
interactome network of protein complexes implicated in 
genetic disorders. Based on this, they provide numerous 
novel disease-causing candidate genes implicated in vari-
ous diseases such as inflammatory bowel disease or Alz-
heimer (Lage et al. 2007). Another group developed a high 
confidence algorithm to in silico predict protein–protein 
interactions that are not yet covered by the experimental 
procedures mentioned above (Elefsinioti et al. 2011). Sub-
sequently, this ‘comprehensive’ protein–protein interaction 
network was applied to study molecular mechanisms of 
neurodegenerative diseases by integrating it with relevant 
GWAS. This analysis provided evidence of the involvement 
of TOMM40 in Alzheimer’s diseases.

DNA‑pulldowns to identify and study dynamic  
DNA–protein interactions

Quantitative proteomics allows the study of dynamic 
interactions of proteins or entire protein complexes with 
a certain DNA sequence (Fig. 2) (Ranish et al. 2003; Mit-
tler et  al. 2009). A biotinylated, double-stranded oligonu-
cleotide of approximately 30 base pair length containing a 
TF-binding motif of interest is immobilized on streptavi-
din beads. In parallel, the same oligonucleotide containing 
a point mutation in the motif is immobilized on a second 
set of beads serving as a control. Both DNA fragments are 
incubated with differentially SILAC labeled nuclear extract 
from a cell line of interest. In several, low stringent wash 
steps, unbound proteins are removed and the experiments 
are merged into a single tube. The DNA and the bound pro-
teins are released from the beads by cleaving with a restric-
tion enzyme specific for a recognition sequence included 
into the bait oligo sequence. Alternatively, oligonucleotides 

http://www.hapmap.org
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Fig. 2   Illustration of different DNA-pulldown workflows. General 
workflows for the identification of SNP-dependent, dynamic DNA–
protein interactions using DNA-pulldowns based on metabolic isotope 
labeling (a), chemical labeling (b) or label-free protein quantifica-
tion (c). a A cell line of interest is cultured in medium containing light 
(C12N14) or heavy (C13N15) arginine and lysine. After full incorpo-
ration of amino acids into the proteome, nuclear extracts are prepared. 
Biotinylated oligonucleotides containing either variant of the SNP are 
immobilized on streptavidin beads and incubated with the light and 
heavy nuclear extract. Unbound proteins are removed by several wash 
steps. Subsequently, proteins are eluted and differentially labeled eluates 
are mixed prior to tryptic digestion. Peptides are separated and identified 
using reversed phase liquid chromatography coupled online to a mass 
spectrometer (LC–MS/MS). SILAC ratios from two replicate experi-

ments are plotted against each other. Dynamic SNP interacting proteins 
(large or small ratio) can thus be distinguished from unspecific back-
ground binders or proteins that bind to other parts of the oligonucleo-
tides (log2(ratio) = 0) (Mittler et al. 2009). b In contrast to the workflow 
described in a, a normal, unlabeled nuclear extract from cells or tissue 
can be used. After the pulldown, proteins are eluted and digested sepa-
rately. Subsequently, peptides from both pulldowns are differentially 
labeled by chemically introducing isotopes at the N-termini and the 
arginine and lysine side chains (Ranish et al. 2003). c In the label-free 
approach, all steps, including the LC–MS/MS acquisition, are carried 
out separately. Peptide intensities between all runs are compared using 
advanced label-free quantification algorithms. Dynamic SNP interact-
ing proteins can be identified by their differential peptide intensities and 
their p value in a t test based on triplicates (Hubner et al. 2010)
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can be tagged with desthiobiotin and eluted with biotin 
(Butter et al. 2012). Eluates are digested and analyzed by 
mass spectrometry. The SILAC ratios will allow the dis-
crimination of proteins that have a higher affinity to one of 
the oligonucleotides and thus to one of the SNP alleles. As 
mentioned above, SILAC labeling is only applicable when 
using extract from cells that can be grown in culture. Alter-
natively, chemical labeling of peptides or label-free pro-
tein quantification can be used (Hubner and Mann 2011). 
Recently, this method allowed the identification dynamic 
readers for 5-(hydroxy)methylcytosine and its oxidized 
derivatives, an important resource for the field of epig-
enomics (Spruijt et al. 2013; Bartels et al. 2011). Further-
more, a variation of this approach was developed to identify 
proteins that specifically interact with an RNA stem-loop 
of interest (Scheibe et  al. 2012). In addition, complemen-
tary techniques allow the identification of proteins that are 
associated with a single, in vivo crosslinked and purified 
genomic locus (Dejardin and Kingston 2009; Byrum et al. 
2012). However, due to the enormous amounts of cell mate-
rial that is required for these methods it remains extremely 
difficult and thus is not discussed here any further.

Even though DNA-pulldowns could significantly con-
tribute to our understanding of the molecular consequences 
underlying human genetic variability, to our knowledge this 
has so far only been shown by two studies. First, DNA-
pulldowns were used to identify a repressor protein, mus-
cle growth regulator (MGR), that specifically binds to an 
SNP in the intron of IGF2 and leads to enhanced muscle 
growth in European pigs (Butter et  al. 2010). Recently, a 
second study that applies DNA-pulldowns to study allele-
specific TF binding to SNPs that are highly associated with 
type 1 diabetes has been published (Butter et al. 2012). The 
authors could reduce the initial set of 12 associated SNPs at 
the IL2RA locus to four that showed differential binding of 
TFs and thus might have a functional impact on the disease. 
The limited interaction between the GWAS and the prot-
eomics community might be the major reason for the mini-
mal employment of this approach in post-GWA studies.

An intrinsic problem is the throughput of DNA-pull-
downs. As mentioned above, each GWA study might 
reveal hundreds of rare or common SNPs that are in LD 
with an SNP that is linked to a certain disease. The method 
described above, however, is only capable of profiling 5 
SNPs per day and mass spectrometer. Furthermore, at least 
800  µg of nuclear extract is needed for each experiment. 
These experiments should ideally be performed using suit-
able (i.e. diseased) primary material to make sure that rel-
evant proteins are expressed at correct levels and in the 
correct state (splice isoforms, post-translational modifica-
tions). However, for most primary cells and tissues it will 
not be possible to provide the large amount of material that 
would be necessary for a larger screen. We are convinced, 

however, that the recent development of integrated com-
putational approaches, that limit the possible functional 
candidates in a set of associated SNPs, as well as efforts in 
downscaling and potentially multiplexing DNA-pulldowns 
will close the gap in near future.

While DNA-pulldowns so far have only been described 
to map differential binding of TFs to a specific sequence 
containing one or multiple nucleic acid variants, it can 
in theory also be used to identify the sum of TFs and co-
factors that bind to a specific locus of interest. This could 
be achieved by quantitatively comparing the protein abun-
dance across pulldown experiments from different genomic 
regions. This concept was recently used in a targeted 
approach to identify proteins binding to the FLO11 pro-
moter region (Mirzaei et al. 2013). An alternative could be 
a discovery-based mass spectrometric acquisition method 
combined with a label-free quantification algorithm. We 
and others have already shown this concept for protein–
protein interactions (Sowa et al. 2009; Hubner et al. 2010).

Concluding remarks

GWA studies provide important information about associa-
tions between phenotypic traits and genomic loci. Now, in 
the post-GWAS era, a major task is to decipher the biologi-
cal processes and functional mechanisms underlying these 
associations. This requires the rigorous integration of large-
scale, multi-dimensional data and expertise from various 
fields. Numerous, fruitful collaborations have already been 
established between researchers in genetics, genomics and 
epigenomics. These integrated analyses are ‘straightfor-
ward’ as they rely mainly on a similar technology platform 
and data output from next-generation sequencing. Other 
fields studying the proteome or the metabolome rely on 
mass spectrometric measurements and thus completely 
different experimental set-ups and analysis pipelines. This 
might be the major reason why the possibilities that pro-
teomics research offers are so far hardly recognized and 
integrated in post-GWA studies.

In this review, we summarized the current ‘post-GWAS 
workflow’ involving the identification of variants that are 
in linkage disequilibrium with a GWAS variant, the iden-
tification of the functional variant among those, the iden-
tification of physiological target genes as well as the char-
acterization of the biological mechanism underlying the 
functional variant. Previous studies that showed the limited 
correlation of mRNA and protein levels in a cell (Gygi 
et al. 1999b) as well as the incomplete overlap of expres-
sion and protein quantitative trait loci (Foss et al. 2007; Wu 
et al. 2013) stress the importance of expanding the portfolio 
of resources that are currently used for GWAS follow-up. 
Therefore, we introduced recent developments in the field 
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of proteomics and suggested how those can be efficiently 
integrated in the workflow outlined in Fig. 1. For example, 
DNA-pulldowns followed by mass spectrometry allow the 
unbiased characterization of SNP-dependent protein-DNA 
interaction dynamics such as the altered recruitment of 
transcription factor complexes (Butter et al. 2012).

Clearly, the road towards fully integrative, quantita-
tive biology to study the functional mechanisms of GWAS 
SNPs does not end with the integration of proteomics. 
The system-wide profiling of protein post-translational 
modifications, for example phosphorylation, glycosyla-
tion or acetylation, as well as the influence of thousands of 
metabolites on the phenotypic appearance of a cell provide 
additional, very powerful datasets that could be integrated 
in current post-GWAS workflows. In addition, the results 
obtained by the approaches described in this review will 
need to be followed up by extensive, more detailed func-
tional studies involving cell and tissue models to further 
unravel the pathogenesis underlying a certain disease trait. 
Taken together, GWAS could be the basis for so far unseen 
collaborative efforts that provide new directions for the pre-
vention and treatment of common diseases.
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