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Abstract Female eutherians silence one of their X chro-
mosomes to accomplish an equal dose of X-linked gene
expression compared with males. The mouse is the most
widely used animal model in XCI research and has proven
to be of great significance for understanding the complex
mechanism of X-linked dosage compensation. Although
the basic principles of XCI are similar in mouse and
humans, differences exist in the timing of XCI initiation,
the genetic elements involved in XCI regulation and the
form of XCI in specific tissues. Therefore, the mouse has its
limitations as a model to understand early human XCI and
analysis of human tissues is required. In this review, we
describe these differences with respect to initiation of XCI
in human and mouse preimplantation embryos, the extra-
embryonic tissues and the in vitro model of the epiblast: the
embryonic stem cells.

Introduction

This year, we celebrate the 50th anniversary of Mary
Lyon’s first publication on X chromosome inactivation.
Her first study hypothesized about the basic principle of X
chromosome inactivation (XCI) that would result in dos-
age compensation of X-linked gene expression between
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male and female mice. Brown et al. (1991) described a
gene that was exclusively expressed from the inactive X,
the Xi-specific transcripts (Xist), and it was proposed to
be involved in the process of XCI (reviewed in Plath et al.
2002). XCI has become a research field of its own, and
many genes have been discovered to be involved in the
process of sex-linked dosage compensation. The mechanism
of XCI comprises different aspects of molecular biology,
cell biology and epigenetics, and it combines many fields
of not only basic research, but also translational science.
Although the general outcome of the X-inactivation pro-
cess is similar in somatic cells of mice and men, resulting
in dosage compensation of X-linked genes, there are
important differences in the genes that take part in the ini-
tiation process of XCI, the extent of gene inactivation and
how XCI occurs in different tissues. This review focuses
on the similarities and the differences between mouse and
human tissues with respect to the timing of XCI initiation
at the earliest stages of development; namely (1) the pre-
implantation stage, (2) in extra-embryonic tissues and (3)
in ES cells.

Brief introduction on some key players of human
and mouse XCI

Excellent reviews exist that describe in detail the regula-
tory elements that are involved in X-inactivation process
(Barakat and Gribnau 2010; Chow and Heard 2009; Nav-
arro and Avner 2009; Starmer and Magnuson 2009; Thor-
valdsen et al. 2006). Most of these data are derived from
mouse ES cell differentiation experiments and mutant
mouse models. We briefly mention some of the genes here
to describe their basic function and describe other genes in
the ES cell section. Xist is the most important gene in XCI
that codes for Xist, a non-coding RNA transcript which
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wraps itself around the future inactive X chromosome
(Penny et al. 1996; Clemson et al. 1996). Human XIST
shows sequence similarity to mouse Xist, but has large
sequence divergence in the flanking regulatory regions
(Chang and Brown 2010; Chureau et al. 2002). This may
have consequences for the initiation and maintenance of
XCI. The Tsix transcript is a key regulator of Xist in mouse
tissues (Lee et al. 1999; Sado et al. 2001). It is expressed in
opposite direction of Xist and thereby represses Xist
expression. The balance between Xist and Tsix expression
ensures that only one X chromosome is inactivated in
females and none in males. The human TSIX region is not
well conserved, the transcript is truncated and does not
overlap the XIST promoter region and lacks other regula-
tory elements, such as DXPAS34, that are essential for
murine Tsix function (Chureau et al. 2002; Cohen et al.
2007; Debrand etal. 1999; Migeon et al. 2002). Other
murine genes that play a role in the XCI process in mouse
ES cells, such as Rnf12, Jpx, Yyl, CTCF and Eed (Chao
et al. 2002; Donohoe et al. 2007; Jonkers et al. 2009; Silva
etal. 2003; Tian et al. 2010) are conserved in humans
although differences exist between mice and humans in the
flanking regions of some of the genes (Chang and Brown
2010; Chureau et al. 2002).

XCI during preimplantation development, the first step
XCI kinetics in mouse embryos

The first initiation of XCI starts at the 2-cell stage of preim-
plantation development. Mouse cleavage stage embryos
have an imprinted form of XCI in which the inactivated
chromosome is always the paternal X chromosome (Kay
etal. 1993; Zuccotti et al. 2002). The second step com-
prises the reactivation of the paternal X in the inner cell
mass (ICM) and the maintenance of imprinted XCI in the
trophoectoderm (TE) and primitive endoderm (PrE) at day
4.5 (Mak etal. 2004; Okamoto etal. 2004; Silva et al.
2009; Sugawara et al. 1985). The third step is the initiation
of random XCI in cells of the epiblast between days 5.5 and
6.3 (Rastan 1982; Takagi et al. 1982), which is recapitu-
lated in in vitro ES cell differentiation experiments (Barakat
and Gribnau 2010).

Most of our knowledge about XCI in preimplantation
embryos comes from the analysis of mouse embryos that
have imprinted XCI (reviewed in Okamoto and Heard
2006). Imprinted XCl is likely caused by opposite marks on
the parental X chromosomes in oocytes and spermatozoa
(Ariel et al. 1995; Norris et al. 1994; Tada et al. 2000; Zuc-
cotti and Monk 1995). Both maternal and paternal imprints
ensure the inactive status of Xp and the active status of Xm.
It has been hypothesized that the paternal X chromosome

@ Springer

enters the oocyte in a pre-inactivated state as a result from
the chromatin remodelling and silencing process during
spermatogenesis called meiotic sex chromosomes inactiva-
tion (MSCI) (Huynh and Lee 2003). However, several stud-
ies have shown that the paternal X is transcriptionally
active at the 2-cell stage (Kalantry et al. 2009; Namekawa
et al. 2010; Okamoto et al. 2004; Patrat et al. 2009). In
addition, in a mouse model in which the murine Xist gene
is translocated on an autosome, which is not subjected to
MSCI or meiotic silencing of unsynapsed chromosomes
(MSUC), Xist is still able to induce silencing of neighbour-
ing genes and epigenetic remodelling of the ectopically Xist
coated region (Okamoto et al. 2005). Thus, another feature
may be responsible for paternal X-inactivation, for exam-
ple, the presence of paternally specific histones or prota-
mines. Furthermore, as will be discussed below, recent data
suggest that initial silencing of X-linked genes may be Xist
independent.

In a 2-cell stage mouse embryo, only a single pinpoint
area of Xist RNA is present, but this pinpoint gradually
expands to a full cloud at the 4-8 cell stage. At the 4-cell
stage, the first signs of transcriptional repression of the Xi
appear, including the exclusion of RNA polymerase II and
the absence of transcription of Cot-1 repetitive elements
(Huynh and Lee 2003; Okamoto et al. 2004). From the
8-cell stage onwards, epigenetic marks appear, such as
hypoacetylation of H3K9 and H3K4 hypomethylation
(Okamoto et al. 2004). Morula and blastocyst embryos
show Eed/Ezh2 association on Xi (Erhardt et al. 2003;
Okamoto et al. 2004), the incorporation of the histone
variant macroH2A and the accumulation of H3K27 trime-
thylation, although individual embryos are variable in the
onset of these marks (Costanzi et al. 2000; Mak et al.
2004; Okamoto et al. 2004). This variability in chromatin
modifications might be the consequence of the different
levels of Xist RNA in the individual blastomeres (Harts-
horn et al. 2003) and may be related to the fate of each
cell in the 8-cell embryo. As the first cell differentiation
takes place at the compaction stage, with the inner cells
being predominantly future ICM cells and the outer cells
future TE (reviewed in (Johnson and McConnell 2004,
Zernicka-Goetz 2002), it is possible that this process of
cell allocation and specification causes the reactivation of
the paternal X in the ICM while the inactive state of Xp is
maintained in the TE.

Although the female mouse preimplantation embryo dis-
plays almost all characteristics of XCI, some of the final
features, such as DNA methylation of Xist on the Xa and
Barr body formation, are not established (Huynh and Lee
2003). The lack of final modifications indicates that XCI
during preimplantation development is not as complete as
in somatic cells, thereby allowing the reactivation of the Xi
in the ICM.
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XCTI kinetics in human embryos

Studies in human preimplantation embryos have been ham-
pered by difficulties in obtaining permission for research by
ethics committees and in recruiting patients willing to
donate their surplus embryos. Another difficulty is that sur-
plus embryos can only be donated after the clinical phase of
embryo transfer has been performed, and after the remain-
ing good quality embryos are cryopreserved for future clin-
ical use. Embryos of good quality at the earliest cleavage
stages are thus even more difficult to obtain. Therefore,
very few studies have used human embryos to examine
dosage compensation by X-inactivation (Daniels et al.
1997; Okamoto et al. 2011; Ray et al. 1997; van den Berg
et al. 2009).

Human embryos divide somewhat slower than mouse
embryos; they consist of eight cells at day 3 and become
morulas at day 4 and blastocysts at day 5, while mouse
embryos develop 1-2 days faster. In agreement with the
slower development is the later activation of the human
embryonic genome at the 4 to 8-cell stage, while mice acti-
vate their genome at the 1 to 2-cell stage (Schultz 1993;
Wells et al. 2005). This difference between mice and men
is also reflected by the observation that human 8-cell stage
embryos have a pinpoint expression of XIST, while mouse
8-cell stage embryos have already formed a full cloud of
Xist expression by that time (Huynh and Lee 2003;
Kalantry et al. 2009; Mak et al. 2004; Namekawa et al.
2010; Okamoto et al. 2004; van den Berg et al. 2009). Ini-
tial experiments with RT-PCR analysis showed that both
female and male embryos expressed XIST (Daniels et al.
1997; Ray et al. 1997), which at the time led to the conclu-
sion that XIST is not functional at these stages in human
development. Subsequent experiments challenged these
conclusions as single cell analysis of human embryos
showed single XIST clouds defined as confined areas of
XIST transcript accumulations in blastocysts (van den Berg
etal. 2009). However, often, loose XIST transcripts
throughout the nucleus are found which are not observed
in human somatic cells (van den Berg etal. 2009 and
unpublished observations). Unfortunately, it is not possi-
ble to identify the parental origin of the XIST cloud based
on a single nucleotide polymorphisms in XIST as both the
XIST cloud mRNA, as well as the loose XIST transcripts
will be amplified with an RT-PCR (unpublished observa-
tions). Importantly, many hallmarks indicative of XCI,
such as accumulation of H3K27me3 and macroH2a, hypo-
acetylation of H3K9, and the monoallelic silencing of a
gene adjacent to XIST have been observed in single cell
analysis of human female embryos (van den Berg et al.
2009), demonstrating that the process of XCI is initiated.
A recent paper on XCI in rabbit and human embryos
reported the presence of two XIST clouds in part of the

human embryonic cells (Okamoto et al. 2011). We suspect
that high XIST probe concentrations detect local accumu-
lations of XIST transcripts that are not indicative of an
inactivation process. It is clear that XCI in human embryos
basically follows the same cascade of events observed in
mouse embryos, although the timing differs (Fig. 1).
Whether human embryos also show imprinted Xi at the
preimplantation stage is not yet known, the predominantly
single XIST pinpoints in human embryos may suggest that
an imprinted mechanism of Xi takes place in human
embryos.

Does Xist/XIST coating induces dosage compensation?

Whether the typical hallmarks of XCI lead to actual gene
silencing and thus dosage compensation of X-linked coding
genes is not yet known. As introduced above, initial silenc-
ing of X-linked genes during the first cleavage stages may
occur independent of Xist expression and coating: a recent
study shows that a majority of the X-linked genes have vir-
tually wild-type expression rates in an Xist mutant back-
ground as no differences were found in the mono-allelic and
bi-allelic expression rates (Kalantry et al. 2009). Interesting
exceptions were the genes Rnfl2 and Atrx. These genes
were affected by the Xist deficiency and since they both
play a role in the XCI process this may suggest the presence
of feedback mechanisms. RnfI2 has recently been
described as an activator of Xist in mouse ES cells (Barakat
et al. 2011; Jonkers et al. 2009) and Atrx is essential for
imprinted XCI in the murine placenta (Baumann and De La
Fuente 2009; Garrick et al. 2006). These data suggest that
initial silencing of certain regions of the X chromosome is
Xist independent. Whether Xist independent silencing is in
fact due to remaining marks of MSCI or protamines
(Huynh and Lee 2003; Okamoto et al. 2004) is not yet
known. This form of silencing may be reminiscent of a
more ancient form of XCI, such as found in marsupials,
which is also Xist independent (Chaumeil et al. 2011). At
later stages, Xist is required to stabilize the imprinted XCI
during further embryonic development (Kalantry et al.
2009). It has been postulated that the coating with Xist
modified chromatin configuration creates a territory con-
taining repetitive sequences into which genes can be
recruited to be silenced (Chaumeil et al. 2006; Clemson
et al. 2006). In embryos as well as in ES cells, the actual
silencing of X-linked genes and thus dosage compensation
does not immediately follow the gradual coating by Xist
(Huynh and Lee 2003; Kalantry et al. 2009; Lin et al. 2007;
Mak et al. 2004; Namekawa et al. 2010). This indicates that
the Xist expression and cloud formation alone is not suffi-
cient for silencing (Namekawa etal. 2010). Instead, a
gradual conversion of bi-allelic to mono-allelic expres-
sion of X-linked genes is observed. These highly dynamic
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Fig. 1 Schematic overview of three different steps of XCI in mouse
and man. Mouse: in the mouse 2-cell stage embryo, imprinted XCI
begins with pinpoint Xist expression from the paternal X. At the 8-cell
stage, the Xp chromosome is remodelled (XCR, see text for details)
with COT-1 exclusion and epigenetic marks; this remodelled X chro-
mosome becomes inactivated (XCI) at the blastocyst stage. Mouse
blastocyst ICM cells reactivate the paternal X while the TE and PrE
retain the imprinted form of XCI (see text for more detailed descrip-
tion). The imprinted form of XCI is maintained during development of
the placenta, while the epiblast converts to a random XCI mechanism.
Human: no data are available for single human 2-cell stage embryos
regarding the level and location of XIST expression. At the 8-cell stage
most cells have a single pinpoint of XIST expression but whether this

processes are reflected by the variability in silencing of
genes along the X chromosome and the variability in
silencing between individual blastomeres of single mouse
and human embryos (Huynh and Lee 2003; Kalantry et al.
2009; Namekawa et al. 2010; Patrat et al. 2009; van den
Berg et al. 2009). It can be postulated that this form of XCI,
which starts with the remodelling of the future inactive X
by chromatin modifications, but does not include Xist DNA
methylation may allow for a more dynamic X-linked gene
silencing at these early stages.
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is an imprinted XCI is not yet known. Human blastocysts have a full
cloud of XIST, COT-1 exclusion, epigenetic marks and mono-allelic
expression of a gene adjacent to XIST in a portion of the cells, indica-
tive of XCR and the initiation of XCI (van den Berg et al. 2009). Data
on XCI in human placenta point towards a preferential silencing of the
paternal allele, although random XCI patterns are often observed. The
model hES cell lines to study random XCI are not as good in humans
as they are in mice: whereas undifferentiated mouse ES cells have two
active X chromosomes and upon differentiation randomly silence one
X chromosome, undifferentiated human ES cells are extremely vari-
able in XIST expression and so far three classes have been described
(see text). ICM Inner cell mass, TE trophoectoderm, PrE primitive
endoderm

Effects of in vitro development

Studies in bovine embryos have shown that in vitro culture
affects X-linked gene expression, including the levels of
Xist RNA (Nino-Soto etal. 2007; Peippo etal. 2002).
Unfortunately, no data exist on the parental origin of the
Xist-expressing alleles and on whether in vitro culture leads
to ectopic inactivation in preimplantation embryos. In addi-
tion, studies in mouse placentas have shown that in vitro
preimplantation development can alter the expression
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pattern of Xist and imprinted placental genes (Doherty et al.
2000; Mann et al. 2004; Market-Velker et al. 2010; Rivera
et al. 2008). Culture conditions, such as glucose levels that
have no impact on epiblast development, do affect TE
differentiation (Leunda-Casi et al. 2001). These findings
suggest that the extra-embryonic lineages may be different
from the epiblast with respect to epigenetic regulation. This
difference indicates that the manipulation of preimplanta-
tion embryos influences imprinted gene expression, and this
might be the case for human embryos from assisted repro-
ductive technology (ART) treatments as well. Several stud-
ies on children conceived with ART treatments have shown
a slightly higher incidence in imprinting disorders, an
altered sex ratio shifted towards males, altered birth weight
and even skewed XCI (Chang et al. 2009; Dumoulin et al.
2010; Halliday et al. 2004; Helmerhorst et al. 2004; King
etal. 2010). A number of other reasons may also explain
the differences between ART outcome and the general popu-
lation, such as the reason for infertility of the parents, the
ovarian stimulation procedure, the high amount of multiple
pregnancies and the extended time to pregnancy (Owen and
Segars 2009). Although the long-term effects are subtle,
influences of the in vitro environment must be considered
when studying human preimplantation development.

XCI in extra-embryonic tissues, the second step

Upon differentiation into blastocysts, the inactivation of the
paternal X is maintained in the mouse trophoectoderm and
will remain silenced all throughout placenta development.
The overexpression of X-linked genes due to a lack of dos-
age compensation is lethal, primarily due to placental defects
(Hemberger 2002). Whether a mouse embryo can survive
with an extra X chromosome depends on the parental origin
of the X chromosomes. Having two maternal X chromo-
somes is lethal (XmXmY), whereas a single Xp or two pater-
nal X chromosomes can be tolerated and corrected
(Burgoyne et al. 2002; Goto and Takagi 2000; Matsui et al.
2001). This distinction suggests that the paternal imprint is
much easier to reverse than a maternal imprint. In humans,
the difference in embryo lethality caused by the parental ori-
gin of the X chromosome aberration is less pronounced.
Whether a missing X chromosome or extra X chromosomes
are paternally or maternally derived does not seem to be of
great influence as both XmXmY and XmXpY Klinefelter
syndrome genotypes as well as triple X women (XmXmXp
or XmXpXp) are viable. Also in Turner patients (either XpO
or XmO) the parental origin of the X chromosomes does not
seem to influence the pregnancy outcome (Jacobs and Has-
sold 1995). However, up to 90% of the human embryos with
a single X chromosome die in utero due to the many pseud-
oautosomal and other escape genes on the human X chromo-

some that are normally not silenced and are thus required at
double dosage (Carrel and Willard 2005). These data suggest
that in human placental development, the parental origin is of
less importance in dosage compensation.

Maintenance of imprinting in mice

How the mouse paternal X retains the inactive mark is still
unclear, but knockout experiments have identified genes
that are essential for maintenance of imprinted XCI in the
mouse placenta, namely Eed and Tsix (Kalantry and Mag-
nuson 2006; Kalantry etal. 2006; Lee etal. 1999;
Luikenhuis et al. 2001; Wang et al. 2001). Tsix, the anti-
sense transcript of Xist, represses Xist expression on the
future active X. Tsix thereby ensures that only one X is
inactivated in random XCI and protects the maternal X
from inactivation in the placenta. The parental origin of the
mutated Tsix allele therefore has a strong effect on future
mouse placenta development. While the inheritance of a
maternal Tsix deletion results in embryonic lethality during
post-implantation development around d9.5, inheritance of
a paternal Tsix mutation has no effect in female embryos
(Lee 2000; Sado et al. 2001). In humans, TSIX does not
seem to play a role in the process of XClI, as the sequence is
truncated compared with its murine counterpart and is,
unexpectedly, transcribed from the same allele as XIST
(Migeon et al. 2001, 2002). Thus, it is not likely that human
XClI is regulated by TSIX expression, neither in the embryo
nor in the extra-embryonic lineages.

The polycomb protein Eed has been of interest, as it is
required to keep the paternal X chromosome inactive in the
extra-embryonic tissue (Kalantry et al. 2006). Other signals
that may be important for the maintenance of the imprinted
state in trophoblast cells could be present in the blastocoel
fluid, which has direct contact with both the trophoblast as
well as the primitive endoderm cells, the two cell types that
contain the imprinted XCI mark. A study on imprinted XCI
that used mouse ES cell differentiation towards the extra-
embryonic lineages found that imprinted XCI was not initi-
ated in this in vitro system. Subsequent cloning of the
nucleus of this ES cell line into an oocyte resulted in aber-
rant random XCI in the trophoectoderm of the resulting
blastocyst (Murakami et al. 2011). This study indicates that
ICM cells lose the memory of the X imprint during the
reactivation process and that TE cells can only maintain
and actively secure the inactive Xp when they directly orig-
inate from the preimplantation embryo.

Do humans prefer to inactivate the paternal X chromosome
during placenta development?

Many studies have analysed whether XCI is imprinted
in human extra-embryonic tissues similar to mouse
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trophectoderm, but the results have been contradictory.
Preferential imprinted XCI such as is found in mouse
embryos describes a situation in which part of the cells
show XCI and those always inactivate the paternal X,
whereas the other cells do not show signs of XCI. On the
other hand, a completely imprinted pattern describes the sit-
uation as found in the mouse trophectoderm in which all
cells showing paternal XCI. Skewing on the other hand is
defined as a bias of XCI towards the paternal or maternal
allele, usually of 70-75% instead of the normal 50:50 ratio.
About half of the human placental tissues and isolated tro-
phoblast and cytotrophoblast cells showed skewing towards
the paternal X chromosome, but the remainder of the sam-
ples showed no skewing or skewing towards the maternal
allele (Goto et al. 1997; Harrison 1989; Harrison and War-
burton 1986; Looijenga et al. 1999; Migeon and Do 1978;
Migeon et al. 1985; Moreira de Mello et al. 2010; Ropers
etal. 1978; Willemsen et al. 2002; Zeng and Yankowitz
2003). No consistency exists between studies that investi-
gated the same tissue or gene, and it is difficult to clarify the
discrepancies, as studies with different outcomes used
essentially the same methodology.

Two studies investigated XCI after in vitro differentia-
tion of trophoectoderm from ES cells. In one study using
human ES cells, it was suggested that imprinted XCI can be
recapitulated upon differentiation towards the extra-embry-
onic lineages (Dhara and Benvenisty 2004). However, as
the parental origin of the X chromosome was not deter-
mined, imprinted XCI of the paternal X in human TE cells
is not yet conclusive. In addition, whether ES cell lines are
an appropriate model to study in vitro trophoectoderm
differentiation is questionable based on the observations
from the recent publication discussed above: the initiation
of imprinted XCI was not possible in vitro, but required in
vivo differentiation (Murakami et al. 2011).

What is the underlying mechanism to explain the different
observations from placental studies? If preferential silencing
of the paternal allele occurs at the human blastocyst stage,
perhaps implied by the prevalence of single pinpoints at the
cleavage stage (van den Berg et al. 2009), it would explain
the skewing of XCI towards the paternal allele that has
mostly been found in human placental material (Goto et al.
1997; Harrison 1989; Migeon et al. 2005; Mohandas et al.
1989; Ropers et al. 1978). It could be hypothesized that dur-
ing human placental development an initial preferential
silencing of the paternal allele that is not as rigid and stable
as in the mouse, allows for the reactivation of the paternal X
followed by random XCI. Indeed, reactivation of the Xi has
been observed in human placental cells of spontaneous abor-
tion material (Migeon et al. 2005), and in somatic cells con-
taining a transgene of Xist, XCI can also be reversed in vitro
(Chow etal. 2007). Such mechanisms of reversible XCI
could explain the variable results of independent studies on
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human extra-embryonic tissues. A slightly different explana-
tion can be made from the observation that only a subset of
the cells in human blastocysts carries the visible epigenetic
mark of XCI (van den Berg et al. 2009). If these cells start
with a paternal XCI, and the other cells convert to random
XCI at a later time point, it will result in a mixture of skewed
XCI and random XCI within the studied placentas. It is clear
that the final choice of XCI in the placenta occurs fairly
early, as large patches of placental villi demonstrate the same
choice of XCI (Looijenga et al. 1999; Willemsen et al. 2002).

If, in contrast, there is no preferential imprinted XCI, but
random XCI in human blastocysts, it is not easy to explain
the predominance of the preferential silencing of the pater-
nal X found in human placentas. Perhaps, the skewed pat-
terns of XCI found at later stages of placental development
could be attributable to a selective advantage, only favour-
able in the placenta, of paternally silenced X-linked genes
(Hemberger 2002). Alternatively, the single gene analysis
used in most placental X-inactivation studies may have
inadvertently created a bias towards imprinted Xp results. If
this is true the actual random X-inactivation pattern may be
better represented by the analysis of more genes along the
X chromosome (Moreira de Mello et al. 2010).

Initiation of random XCI in the epiblast and embryonic
stem cells, the third step

The third step of XCI takes place in the ICM cells of the
blastocyst that will become epiblast cells. It follows the
reactivation of the paternal X chromosome and results in
random XCI in the epiblast (Mak et al. 2004; Okamoto
etal. 2004). Mouse embryos at day 3.5 have already
formed an ICM, but these cells still contain an inactive X as
shown by Xist clouds. These cells show high levels of pluri-
potency proteins, such as OCT4, SOX2 and NANOG. In
the mature blastocyst at day 4.5, only the ICM cells that are
NANOG positive will reactivate the paternal X chromo-
some. The other ICM cells that are expressing GATA4/
GATAG will maintain the silenced paternal X and differen-
tiate into PrE. Thus, both the TE and PrE maintain the same
imprinted form of XCI (Mak et al. 2004; Silva et al. 2009).
At day 5.5-6, epiblast cells will initiate random XCI (Mak
etal. 2004; Takagi etal. 1982), and this process can be
recapitulated in ES cells. Therefore, one of the main char-
acteristics of an undifferentiated state of female ES cell
lines is the active state of both X chromosomes (Barakat
and Gribnau 2010; Silva et al. 2008).

Mouse models of random XClI initiation

Because ES cell lines were first derived from mice, initia-
tion of random XCI has been extensively studied in this in
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vitro model. Upon differentiation, both X chromosomes
begin to express Xist at a low level, but only one X chromo-
some will upregulate Xist expression. At day 7 of ES cell
differentiation, 80% of the cells will have formed a single
Xist cloud (Monkhorst et al. 2008). The random choice of
the X chromosome that becomes inactivated has been a
subject of study ever since Mary Lyon’s first paper and
different theories have been postulated as to how this ran-
dom inactivation is regulated (Starmer and Magnuson
2009). Although studies using mouse ES cells have pro-
vided key insights in the process, important questions still
remain, and novel genes are continuously being discovered
(reviewed in Barakat et al. 2010; Chaumeil et al. 2002;
Navarro and Avner 2009, 2010).

Xist regulatory sequences contain binding sites for
NANOG, OCT4 and SOX2 (Navarro et al. 2008). Further-
more, downregulation of Nanog expression results in upregu-
lation of Xist, independent of Tsix (Navarro etal. 2010).
Several candidate genes for Xist regulation have been
described in mouse ES cells, for example, Rnf12 and Jpx.
Both are X-linked genes and located distal from Xist. Rnf12
is implied to function as an activator of Xist in both
imprinted and random XCI although observations and con-
clusions do not completely agree (Barakat et al. 2011; Jon-
kers etal. 2009; Shin etal. 2010). Homozygous mutant
Rnfl2 female ES cells do not upregulate Xist expression
upon differentiation and only sporadic XCI occurs. However,
in heterozygous mutant female ES cells, that have the same
protein level as male ES cells, XCI occurs in a delayed fash-
ion upon differentiation indicating that there are more Xist-
activating factors involved that either operate at different
time points or in different doses. Ectopic expression of addi-
tional copies of human RNF12 in mES cells has the same
effect indicating that the function of RNFI12 is likely con-
served (Barakat et al. 2011; Jonkers et al. 2009); however,
experiments in hES cells are needed to support this.

The Jpx gene is a likely candidate co-activator of Xist.
Deletion of Jpx has no effect in male ES cells, heterozygous
female mutant cells, however, showed impaired EB forma-
tion after differentiation and whereas wild-type female ES
cells contained a single cloud of Xist in 75% of the cells at
day 8, heterozygous AJpx mutant cells only had a single cloud
of Xist in 6.35% of the cells. The effect of AJpx/+ was rescued
by placing it into a Tsix mutant background indicating the
opposite action of both genes (Tian et al. 2010). Although
mostly conserved, human JPX differs from murine Jpx as the
distance between the JPX CpG island and the first exon 9 is
times larger and no sequence conservation of this region has
been found (Chang and Brown 2010). More research is
needed to find out if human XCI is under the same genetic
regulation as mouse XClI in ES cell differentiation.

As has been mentioned before, TSIX structure and func-
tion are not conserved in humans (Chureau et al. 2002;

Cohen et al. 2007; Migeon et al. 2002), therefore, other fac-
tors are expected to negatively regulate XIST expression
from the future active X. Candidate genes for this function
are the members of the polycomb repressive complex 2
(PRC2) namely Eed, EZH2 and Suz12 as they are responsi-
ble for the recruitment of repressive histone modifications,
such as H3K9 and H3K27 methylation (Silva et al. 2003).
Especially Eed has been of interest as it is needed to keep
the paternal X chromosome inactive in the extra-embryonic
tissue (Kalantry et al. 2006; Wang et al. 2001) and lack of
Eed in the absence of Tsix results in elevated levels of Xist
in differentiated male ES cells (Shibata et al. 2008). This
resulted in partial XCI and retarded outgrowth of embry-
onic bodies (EB). Even at the undifferentiated state higher
expression levels in the double mutant ES cells were found.
However, this aberrant expression of Xist was rescued by
ectopic expression of Eed. Thus, either Eed or Tsix is suffi-
cient to repress Xist during random XCI. As humans lack a
functional 7SIX, EED might be the negative regulator of
Xist in human cells. Indeed, PRC2 expression has been
found in human preimplantation embryos at the 4-cell stage
(Hinkins et al. 2005). However, functional data on human
PRC?2 proteins in human preimplantation embryos and hES
cells are lacking.

The specific epigenetic hallmarks that are found on the
inactive X in somatic cells (Chadwick and Willard 2003)
which are used to prove the initiation of XCI in preimplan-
tation embryos are thought to silence the transcription
machinery by recruiting specific silencing factors and form-
ing a heterochromatic region. Candidate genes for recruit-
ing modifying complexes or incorporating histone
modifications on the Xi are the genes CTCF, YY1 and
members of the polycomb repressive complexes 1 and 2
(PRC1 and PRC2) which are known to function as histone
modifiers (Hernandez-Munoz et al. 2005; Schoeftner et al.
2006). CTCF and YY1 affect Xist expression (Donohoe
et al. 2007) by changing the epigenetic status of the pro-
moter. The human XIST promoter contains a much smaller
CTCF binding site as compared to the mouse Xist pro-
moter. It is however still functional as a single nucleotide
polymorphism (SNP) in this site can cause skewing of XCI
(Pugacheva etal. 2005). Nevertheless, the effect of the
polymorphism is moderate as males do not seem to be
affected.

The current challenge is to embed all these proteins in a
complete network that integrates time and space during epi-
blast and extra-embryonic development.

Why we know little about human ES cells
The regulation of TE and ICM differentiation in human blas-

tocysts has not been well studied. This lack of research is sur-
prising, because many hES cell lines have been characterised
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without the knowledge of the ground state of pluripotency in
human ICM cells. For instance, it is unknown whether
human ICM have the same expression profile of pluripotency
genes and epigenetic make-up as mouse ICM cells. This lack
of knowledge hampers the proper evaluation of the quality of
existing human ES cell lines. A reason for this lack of knowl-
edge may be the ethical issues and scarcity of surplus human
embryos. More research on human ICM cells would contrib-
ute to establishing high quality hES and iPS cell lines both
for basic research on XCI kinetics as well as regenerative
medicine.

Human models of random XClI initiation

How the process of XCI initiation is regulated in human
ES cells is much less understood, and how it is regulated in
vivo is not possible to investigate. A number of studies
have investigated the XCI state in different hES cell lines
and it is clear that human ES cells are quite different in sev-
eral aspects, including XCI, from mouse ES cells (Dhara
and Benvenisty 2004; Dvash et al. 2010; Enver et al. 2005;
Hall et al. 2008; Hoffman et al. 2005; Liu and Sun 2009;
Shen et al. 2008; Silva et al. 2008; Tanasijevic et al. 2009).
Human ES cell lines that are characterised as being
undifferentiated based on morphologic features and the
presence of pluripotency markers show a highly variable
pattern of XCI. In general, three patterns of XCI have been
observed in hES cell lines: (a) cell lines that showed no
signs of XCI, but initiate XCI upon differentiation, (b) cell
lines in which 20-80% of the cells have an XIST cloud or
an epigenetic hallmark of XCI, such as H3K27me3,
macroH2A or H4K20mel, indicative of precocious XCI at
dO of differentiation and (c) cell lines without XIST either
at dO or upon differentiation (Hall et al. 2008). It has been
postulated that the long-term culture and frequent passag-
ing of the cell lines may introduce artefacts, such as loss of
XIST and expression of the Xi. This may be possible but
precocious XCI is also already present in very early pas-
sages of some newly established cell lines (Dvash et al.
2010) and has further been observed in human iPS cells
(Tchieu et al. 2010). Further, it is possible that human ES
cells are derived from ICM cells that have not yet reacti-
vated their Xi and that the observed XCI in the hES cell
lines is in fact a remnant from the XCI at the preimplanta-
tion stage. Indeed, some hES cell lines have a non-random
precocious XCI and reversal to a random pattern of X-
linked gene silencing has been observed (Dvash et al.
2010; Shen et al. 2008). It has also been proposed that the
hES cell lines currently available are actually epiblast stem
cells lines and thus one step further differentiated than cells
from the ICM (Brons etal. 2007; Lovell-Badge 2007;
Tesar et al. 2007). Lastly, it has been proposed that specific
culture conditions during the derivation process may influ-
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ence the pluripotency state of human ES cells (Hanna et al.
2010), and these conditions may also have consequences
for XCI regulation. Indeed, a recent study showed that
human ES cells, when cultured under physiological low
O,-tension, reactivate the Xi and more closely resemble
mES cells than cells that were cultured under atmospheric
conditions (Lengner et al. 2010). Still, this finding indi-
cates that the process of XCI is differently regulated in
human compared with mouse ES cells. The reason for this
difference in sensitivity between human and mouse may
originate in the genetic elements that are involved in XCI
(Chang and Brown 2010; Chureau et al. 2002). Impor-
tantly, only a few mouse strains allow the derivation of
pluripotent ES cell lines using conventional culture condi-
tions (Gardner and Brook 1997), indicating that genetic
variations such as SNPs and CNVs are of influence on the
successful isolation of undifferentiated ES cell lines. As
human embryos are far more genetically diverse than most
commonly used mouse strains, the derivation of human ES
and iPS cell lines may require embryo tailored culture con-
ditions. Recent progression in ES cell derivation using
small molecule inhibitors allow the derivation of ES cells
from virtual all mouse strains (Blair et al. 2011) and possi-
bly from humans as well.

Discussion

In the past 50 years, much research has been carried out to
unravel the phenomenon of mammalian X-linked dosage
compensation. Although we now understand the basic prin-
ciples of X chromosome inactivation, it is still remarkable
that two chromosomes that are genetically the same are epi-
genetically complete opposites. Monotremes and marsupi-
als have solved the dosage compensation problem by
always inactivating the paternal allele. This imprinted form
of XCI is also present in the preimplantation embryo and
extra-embryonic tissues of the mouse. Whether human pre-
implantation embryos and early placenta also prefer to
inactive the paternal X has yet to be determined. Human
cleavage stage embryos have 26.5% cells with double stain-
ing for XIST signals (van den Berg et al. 2009) that may be
reminiscent of a counting and choice mechanism such as
found in differentiating ES cells. However, the predominant
single XIST pinpoints in 68% of the cells at this stage (van
den Berg et al. 2009) more resemble the single Xist pin-
points in imprinted XCI in mouse embryos. Up till now, the
placenta data are variable, but most evidence points
towards an initial preference for a paternal Xi (Goto et al.
1997; Harrison 1989; Harrison and Warburton 1986; Looij-
enga et al. 1999; Migeon and Do 1978; Migeon et al. 1985;
Moreira de Mello et al. 2010; Ropers et al. 1978; Willem-
sen et al. 2002; Zeng and Yankowitz 2003). As mentioned
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before, two pathways could explain the observed preferen-
tial silencing of the paternal X in human placentas. Either a
paternal imprint in the trophectoderm is diluted or reversed
with random XCI during further development. However, an
argument against an imprinted form of XCI is the equal
birth rate of children with an extra maternal or paternal X
chromosomes such as in Klinefelter (XXY) syndrome
(Jacobs et al. 1988; Lorda-Sanchez et al. 1992) or the rela-
tively healthy status of triple X females (XXX). There are
no indications that embryos with extra maternal chromo-
somes (XmXmXp or XmXmY) have more in utero demise
than embryos with an extra paternal X chromosome (XmX-
pXp or XmXpY) (Jacobs and Hassold 1995). Thus, in con-
trast to female mice where an extra maternal X is lethal for
placenta development, the equal birth rates of children with
an extra Xm or an extra Xp in humans suggests that the
parental origin of the sex chromosome aberration is of less
importance for embryonic survival. How can these clinical
data pointing at random XCI correspond to the molecular
data from preimplantation embryos and placental tissues
that more resemble an imprinted XCI mechanism?

Difference between X-linked remodelling and X-linked
inactivation?

Although various hallmarks of somatic XCI are found in
the mouse preimplantation embryo, a disturbance of the
process, such as a mutation in an XCI essential gene, does
not immediately interfere with mouse development at the
preimplantation stage; rather, such a disturbance only
affects post-implantation development from d6 onwards
leading to death at day 7.5-9. In embryos that carry a dele-
tion of the paternal Xist gene or parthenogenetic embryos,
which do not have a paternal genome, imprinted XCI is
recued by maternal Xist expression in a subset of the cells.
However, these embryos arrest during post-implantation
most likely due to poor development of the extra-embry-
onic tissues (Lee 2000; Marahrens et al. 1997; Nesterova
et al. 2001). This late death suggests that dosage compensa-
tion is not immediately necessary, and that there is a win-
dow to establish silencing.

Both mouse embryos as well as ES cell differentiation
experiments have shown that hallmarks for X-inactivation,
such as the presence of clouds of Xist, exclusion of RNA
pol II and several epigenetic remodelling characteristics
does not necessarily indicate that the X chromosome is
completely silenced (Kalantry et al. 2009; Namekawa et al.
2010; Patrat et al. 2009). Thus, Xist clouds and epigenetic
remodelling in preimplantation embryos may suggest the
initiation of a dosage compensation mechanism, but do not
tell us to what extent the X chromosome is actually silenced
at this stage. This epigenetic X chromosome remodelling
(XCR) modifies the X chromosome into a repressive state

that allows future XCI. XCR only creates the possibility for
individual genes recruited to be silenced (Chaumeil et al.
2006; Clemson et al. 2006) rather than that it automatically
leads to complete dosage compensation. It is thus possible
that only in the extra-embryonic trophoectoderm the chro-
mosome wide XCI with definite silencing is completed.

Necessity of dosage compensation

It may be that early remodelling of the Xp in mouse
embryos, 3 days before implantation, is not essential for
the early embryo itself, but prepares for immediate dosage
compensation in the extra-embryonic tissues from the
moment of implantation onwards. If dosage compensation
is only necessary from this point onwards, the late lethal-
ity of mouse embryos that carry XCI knockout genes can
be better understood. Thus, also in human embryos, the
initiation of XCI in blastocysts may not indicate actual
inactivation and a widespread dosage compensation
mechanism, but only remodelling of the X chromosome.
So far, only one gene shows mono-allelic expression in
human blastocysts (van den Berg et al. 2009). A possible
effect of the process of XCI in human preimplantation
embryos may be the observed retarded growth of female
blastocysts (Alfarawati et al. 2011; Chang et al. 2009);
however, it is not known whether this is linked to X-inac-
tivation, imprinted genes on the X or an effect of the Y
chromosome.

The necessity for immediate dosage compensation in the
placenta could be more acute in mice than in humans. Two
reasons may account for the divergence between mouse and
men: first, the mouse has a large amount of X-linked pla-
cental genes that are essential for proper placental develop-
ment (Hemberger 2002). Second, as human embryos
develop along a different, slower time line than mouse
embryos, the lack of dosage compensation may be tolerated
for a longer period. However, actual data on this are not
known and many embryos may be lost as most studies on
human birth rates do not include the possible death of an
embryo before a recognised pregnancy (Macklon et al.
2002). Whether failures in X-inactivation play a role in
these first trimester deaths is not known.

As science progresses to unravel the mechanism of
mammalian dosage compensation, it has become clear that
with the in-depth knowledge gained of this process in the
mouse, the challenge remains to extrapolate these findings
to the human. The differences in preimplantation and post-
implantation development, in the genetic elements of the
XIC and the heterogeneity amongst humans require that
human XCI should be studied from its own point of view.
With this review on the three steps of XCI initiation, we
hope to provide novel insight regarding the differences that
exist between humans and mice.
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