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Abstract
Drought stress poses a severe threat to global wheat production, necessitating an in-depth exploration of the genetic basis 
for drought tolerance associated traits. This study employed a 90 K SNP array to conduct a genome-wide association analy-
sis, unravelling genetic determinants of key traits related to drought tolerance in wheat, namely plant height, root length, 
and root and shoot dry weight. Using the mixed linear model (MLM) method on 125 wheat accessions subjected to both 
well-watered and drought stress treatments, we identified 53 SNPs significantly associated with stress susceptibility (SSI) 
and tolerance indices (STI) for the targeted traits. Notably, chromosomes 2A and 3B stood out with ten and nine associated 
markers, respectively. Across 17 chromosomes, 44 unique candidate genes were pinpointed, predominantly located on the 
distal ends of 1A, 1B, 1D, 2A, 3A, 3B, 4A, 6A, 6B, 7A, 7B, and 7D chromosomes. These genes, implicated in diverse func-
tions related to plant growth, development, and stress responses, offer a rich resource for future investigation. A clustering 
pattern emerged, notably with seven genes associated with SSI for plant height and four genes linked to both STI of plant 
height and shoot dry weight, converging on specific regions of chromosome arms of 2AS and 3BL. Additionally, shared 
genes encoding polygalacturonase, auxilin-related protein 1, peptide deformylase, and receptor-like kinase underscored 
the interconnectedness between plant height and shoot dry weight. In conclusion, our findings provide insights into the 
molecular mechanisms governing wheat drought tolerance, identifying promising genomic loci for further exploration and 
crop improvement strategies.

Graphical Abstract
(1) A diverse panel of wheat genotypes was cultivated under both well-watered and drought stress conditions; (2) Phenotyp-
ing involved washing, scanning, drying and weighing plants to evaluate the stress susceptibility (SSI) and stress tolerance 
(STI) indices for four drought tolerance-related traits; (3) Genotyping was performed by extracting DNA and using the wheat 
90 K Illumina iSelect array; (4) Phenotypic and genotypic data were utilized in a genome-wide association analysis (GWAS) 
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using a mixed linear model (MLM); (5) Population structure assessment, principal component analysis (PCA), and kinship 
analysis were conducted; (6) Candidate genes were identified, and (7) their molecular functions were analysed and discussed.

Keywords  Association mapping · Genetic structure analysis · Linkage disequilibrium · Stress susceptibility index (SSI) · 
Stress tolerance index (STI)
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QTL	� Quantitative trait locus
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RDW	� Root dry weight
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SSI	� Stress susceptibility index
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TFs	� Transcription factors
TRs	� Transcriptional regulators
VLCFA	� Very long-chain fatty acids
WDR1	� WD repeat-containing protein 1
WW	� Well-watered
ZNF	� Zinc finger protein-like protein
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Introduction

Wheat (Triticum aestivum L.), in the family Poaceae, origi-
nated in West Asia and is cultivated throughout the world 
(Ahmed et al. 2022). It is an important source of carbo-
hydrates, proteins, and fiber for approximately one-third 
of the global population (Grote et al. 2021). Global food 
demand is growing rapidly and is expected to double by 
2050 (Tilman et al. 2011). Meanwhile, climate change-
induced drought and heat stresses are endangering global 
food productivity and food security (Hatfield and Dold 
2018). The projections show that feeding a world popula-
tion of 9.1 billion people will require raising overall wheat 
production by 60% by 2050 (Jaggard et al. 2010). To keep 
up with this demand, wheat cultivars with enhanced yield 
potential and improved tolerance to biotic and abiotic 
stresses need to be developed.

Drought stress is one of the major constraints of wheat 
production which can occur at any growth stage, depend-
ing on the geographical location (Sallam et al. 2019). The 
impact of drought on wheat can vary from 10 to 90% of its 
potential yield, depending on drought intensity, duration of 
drought, and growth stage of the plant (Farooq et al. 2014). 
The three stages of seedling establishment, booting and 
grain filling are the most sensitive growth phases for drought 
stress (Fischer and Turner 1978). Drought at the vegetative 
stage reduces plant height, leaf surface area, and root and 
shoot biomass production while causing pollen sterility and 
reducing grain number and weight at the reproductive stage 
(Hussain et al. 2008; Shokat et al. 2020). The study of termi-
nal drought tends to receive most attention in wheat, due to 
the high sensitivity of this stage. However, drought stress at 
the vegetative stage can also significantly affect the overall 
yield potential of plants (Sallam et al. 2018).

Some studies have investigated the impact of drought at 
an early growth stage on final plant performance. Drought 
at the vegetative stage can have a significant impact on the 
yield of wheat by reducing shoot biomass and the number 
of fertile spikes produced at the establishment and tiller-
ing stages (Ahmad et al. 2022). A close correlation between 
drought tolerance for seedling dry weight and grain yield 
has been reported in wheat, triticale, and maize (Grzesiak 
et al. 2012; Dodig et al. 2015). The root is also one of the 
components of wheat affected by drought stress along with 
soil conditions. Root biomass and length at the seedling 
stage are vital genetic traits for final plant performance under 
water-deficit condition. A high root length can improve the 
adaptation of genotypes to water stress by providing better 
access to moisture deep in the soil and result in more vigor-
ous seedling establishment (Ahmed et al. 2019).

Characterization of plant morphological and physiolog-
ical traits associated with drought tolerance is essential 

for evaluation and selection of desirable drought tolerant 
genotypes (Khan et al. 2016). However, the difficulty of 
direct selection for drought tolerance necessitates adop-
tion of indirect selection criteria to dissect the complex 
set of interrelated traits which make up drought tolerance. 
Stress tolerance index (STI) and stress susceptibility index 
(SSI) are two reliable indices that have been widely used 
for assessing plant performance under drought conditions 
(Khanzada et al. 2020). Each of these measures has a dis-
tinct perspective on drought tolerance and thus employ-
ing both indices should deliver an accurate evaluation of 
drought tolerance (Wu et al. 2022).

For breeding drought-tolerant genotypes, it is important 
to understand the mechanisms and responses of plant to 
water shortage. At a physiological level, wheat reduces water 
losses by stomatal closure which simultaneously reduces 
the rate of photosynthesis and leads to a decrease in CO2 
fixation and nicotinamide adenine dinucleotide phosphate 
(NADP +) as the final acceptor of the electron in electron 
transport chain (Camaille et al. 2021). The leaked electrons 
to O2 result in overproduction of reactive oxygen species 
(ROS) that induce oxidative damage in plant tissues (Cruz 
de Carvalho 2008). The molecular response of wheat to 
water shortage involves a series of pathways for signal recep-
tion, transduction, gene expression and production of stress 
metabolites (Wu et al. 2022). The genes that are induced by 
drought stress can be classified into two main groups. The 
first group includes genes whose products directly play role 
in stress tolerance, such as genes encoding late embryogene-
sis abundant proteins (LEA) and chaperones, osmolytes such 
as proline and glycine betaine, and detoxification enzymes 
like catalases, proteases, and peroxidases (Dash et al. 2014). 
The second group comprises genes that modulate the expres-
sion of stress responsive genes as well as playing a role in 
signal transduction, such as different transcription factors 
(TFs), transcriptional regulators (TRs) and protein kinases 
(PKs) (Lata et al. 2015).

Molecular breeding for plant drought tolerance has 
become a hot research area in recent years. It is an effec-
tive and economic approach for coping with drought stress 
since the genes introduced into the breeding lines are herit-
able (Rauf 2008). Drought tolerance is a complex quanti-
tative trait controlled by many micro-effective genes and 
highly influenced by genotype by environment interactions 
(Khan et al. 2019). Many studies have been conducted to 
date for deciphering the molecular basis of drought tolerance 
in wheat at different growing stages (Kirigwi et al. 2007; 
Alexander et al. 2012; Tahmasebi et al. 2017; Zandipour 
et al. 2020). However, previous studies were mostly based 
on linkage analysis of recombinant inbred line populations 
(RILs) derived from crosses between two parents with sig-
nificantly different phenotypes. Bi-parental QTL mapping 
suffers from some limitations. First, a RIL population has 
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few recombination events and can only be used to detect 
genes that show a significant difference between parental 
lines (Korte and Farlow 2013). Second, a large proportion 
of the studies have been based on low-resolution molecu-
lar maps consisting of only 100–1000 SSRs, EST-STS, and 
DArT markers, insufficient to saturate the large 17 giga-
base-pair wheat genome (Rabbi et al. 2021).

Genome wide association study (GWAS) is a powerful 
method designed to identify genotype–phenotype asso-
ciations by evaluation of the genetic variants across the 
genomes of many individuals (Pu et al. 2022). Compared to 
linkage analysis, GWAS uses a natural population, thereby 
saving a lot of time by eliminating the needs for population 
construction (Alqudah et al. 2020). Additionally, by employ-
ing high resolution markers and natural populations with 
high diversity, GWAS can identify more loci responsible for 
the traits compared to bi-parental QTL mapping (Liu et al. 
2022). The diverse and unstructured natural populations 
used in GWAS have allowed the accumulation of a large 
amount of information on historical recombinations and 
thus deliver a relatively high mapping resolution (Alqudah 
et al. 2020). In recent years, association studies have been 
extensively used for the genetic dissection of drought toler-
ance in several crops, such as wheat (Qaseem et al. 2019), 
Arabidopsis (Bac-Molenaar et al. 2016), barley (Wehner 
et al. 2015), and rice (Ma et al. 2016). However, only a few 
genome-wide association studies have been conducted in 
wheat to genetically dissect mechanisms of drought toler-
ance at the seedling stage.

In this study, we evaluated 125 wheat accessions at the 
seedling stage under well-watered and drought-stress con-
ditions, employing a 90 K SNP array for GWAS on four 
drought tolerance-related traits, along with two stress indices 
(SSI and STI). Our objectives were to (1) investigate phe-
notypic variations among accessions under different water 
availabilities, (2) identify genomic regions associated with 
drought tolerance at the seedling stage based on important 
phenotypical traits, and (3) unveil key biological processes 
and pathways of genes associated with crucial drought-tol-
erance traits. This knowledge deepens our understanding of 
underlying molecular mechanisms and provides a roadmap 
for developing precise crop improvement strategies. The 
identified genes can offer targets for molecular breeding and 
biotechnological interventions aimed at developing drought-
tolerant wheat varieties.

Materials and methods

Plant materials

A panel of 125 accessions of wheat from 15 countries 
around the world was used for genome-wide association 

analysis (Supplementary Table S1). Seeds were sourced 
from the Australian Winter Cereals Collection and wheat 
breeding companies/institutions including InterGrain Pty 
Ltd., Australian Grain Technologies, LongReach Plant 
Breeders, Edstar Genetics Pty Ltd., Chinese Academy of 
Agriculture Sciences, Inner Mongolia Academy of Agricul-
ture and Animal Husbandry Science, and Gansu Academy of 
Agricultural Sciences. Some of the accessions in this panel 
were shown by Ayalew et al. (2015) to have a wide range of 
variability for early-stage water stress tolerance.

Experimental design and treatments

A randomized complete block design (RCBD) experiment 
with three biological replications was conducted in June 
2022 in a glasshouse facility at The University of Western 
Australia in Perth, Western Australia (31°59′S, 115°49′E). 
Square plastic pots 8 cm × 8 cm × 18 cm were filled with 
800 g air-dried potting mix containing brown river sand 
(60%) and fine cocopeat (40%). The pots were watered to 
100% pot capacity (PC) by watering until free draining and 
then allowing the pots to drain for 48 h before weighing 
the pots and sowing the seeds at 2 cm depth (Turner 2019). 
After emergence, two water treatments were imposed, (i) 
well-watered (WW) and (ii) drought stress (DS). In WW, the 
pots were kept between 80 and 100% PC by regular weigh-
ing and watering. In DS, pots were irrigated once after ger-
mination and then allowed to dry without any further water-
ing until the end of the experiment. Plants were harvested 
15 days after germination when the soil water content was 
on average 93% PC in WW and 26% PC in DS. The plants 
were gently removed from the pots before gently washing 
the roots with tap water to completely remove the remaining 
soil medium.

Phenotypic evaluation and statistical analysis

Plant height (PH), root length (RL), root dry weight (RDW), 
and shoot dry weight (SDW) were measured for each seed-
ling. PH was measured by ruler from the base of the stem 
to the tip of the longest leaf. For RL, the root sample was 
placed in a glass rectangular tray (20 cm × 15 cm) with a 
4–5 mm layer of water to untangle the roots and minimize 
root overlap, as previously described by Peng et al. (2010), 
and scanned by Epson V850 Pro Scanner (Epson, Tokyo, 
Japan). Epson scan software v3.9.3 (Epson, Tokyo, Japan) 
was used with a scanning setting of 8-bit grayscale and 400 
dots per inch (dpi) resolution. The root scan images were 
analysed in RhizoVision Explorer v2.0.3 (Seethepalli and 
York 2020) using algorithms described by Seethepalli et al. 
(2021) to obtain the total root length per seedling. For RDW 
and SDW, leaf and root samples were dried in a 60 ℃ oven 
for 72 h before being weighed with an analytical balance 
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accurate to 0.1 mg. To evaluate the stability of the pheno-
typic traits in response to drought stress compared to the 
WW treatment, the SSI and STI were calculated for each 
trait as follows:

where Ysi = performance of a genotype in the DS treatment; 
Ypi = performance of the same genotype in the WW treat-
ment; Y ̅si = mean Ysi of all genotypes, Y ̅pi = mean Ypi of 
all genotypes (Fischer and Maurer 1978). The genotypes 
with lower SSI and higher STI values for a trait, showed less 
reduction in that trait as a result of drought stress compar-
ing to the WW treatment (i.e., higher stability for that trait) 
(Wehner et al. 2015).

The analysis of variance (ANOVA) was carried out for 
the phenotypic data to determine statistical differences 
among accessions in response to drought stress by the statis-
tical model∶ yij = � + �i + �j + εij , where yij is the observed 
value, μ is the overall mean, τi the effect of the ith geno-
type, βj the effect of the jth block, and εij is random error. 
Descriptive statistics of traits were calculated with SPSS v29 
(SPSS, Chicago, IL, USA). The Kolmogorov–Smirnov and 
Shapiro–Wilk tests were performed to validate the normality 
of the phenotypic data using SPSS software v29 (SPSS, Chi-
cago, IL, USA). The frequency distributions and Pearson’s 
correlation coefficients of the traits in individual environ-
ments were obtained using R package ggplot2 v3.4.1 (Wick-
ham 2016) and psych v2.2.9 (Revelle 2023) in R v4.2.2 soft-
ware (R Core Team 2020).

Wheat 90 K SNP Illumina iSelect genotyping

Leaves of seedlings were harvested at 3-leaf stage. DNA of 
each accession was extracted from the leaves using the cetyl 
trimethyl ammonium bromide (CTAB) method and stored 
in TE buffer (Wang et al. 2019b). The quantity, purity and 
integrity of the extracted DNA was checked by NanoDrop 
2000 (Thermo Fisher Scientific Inc., CA, USA) and aga-
rose gel electrophoresis. The accessions were genotyped 
using the wheat 90 K Illumina iSelect array and analysed 
by genome studio software v2.0 (Illumina Inc., CA, USA), 
following the protocol described by Wang et al. (2014), 
which generated 51,426 SNP markers. After filtering and 
excluding SNPs with > 0.25 heterozygous calls and minor 
allele frequency (MAF) ≤ 5%, and genotypes with missing 

SSI =

1 −
Ysi

Ypi

1 −
Ysi

Ypi

STI =
Ysi × Ypi

Ypi

2

data > 20%, a total of 36,586 SNPs were retained and used 
for the GWAS analysis.

Population structure and linkage disequilibrium 
analysis

The population structure was analysed in STRU​CTU​RE 
v2.3.4 based on the Bayesian clustering model (Falush 
et al. 2003). The number of subpopulation groups (K) was 
predefined from two to nine with five times iteration for 
each K value, which was run with 10,000 MCMC (Markov-
Chain Monte Carlo) replicates and 10,000 burn-in periods. 
The STRU​CTU​RE output was visualized in STRU​CTU​RE 
HARVESTER web-based program (http://​taylo​r0.​biolo​gy.​
ucla.​edu/​struc​tureH​arves​ter/) and the number of K groups 
that best fit the dataset was determined according to the ΔK 
calculated by the Evanno method (Evanno et al. 2005; Earl 
and vonHoldt 2012).

Linkage disequilibrium (LD) of individual chromosomes, 
three sub-genomes, and the whole genome was calculated 
by measuring the squared allele frequency correlations (r2) 
(VanLiere and Rosenberg 2008) between pairs of SNPs 
in TASSEL 5.2.86 software (Bradbury et al. 2007), with 
a sliding window of 50 markers. Using TASSEL output, 
the r2 values were plotted against the genetic distance and 
the locally-weighted polynomial regression (LOESS) curve 
was drawn to determine the LD decay by a custom R script 
in R v4.2.2 software (R Core Team 2020). LD decay was 
identified as the physical genomic distance at which the r2 
decreased to half of its maximum value, where r2 = 1 indi-
cating complete LD, and r2 = 0, indicating absence of LD.

GWAS analysis (association mapping)

A total of 125 genotypes and 36,586 SNPs were used for 
GWAS analysis in TASSEL 5.2.86 software (Bradbury et al. 
2007) to map associations between SSI and STI indices of 
phenotypic traits and SNP markers. Initially, the LD kNNi 
algorithm was implemented for imputation of the missing 
data in the genotypic file with default setting. Principle com-
ponents analysis (PCA) was carried out and a kinship matrix 
was created from the genotypic data in TASSEL. Phylo-
genetic trees were constructed using the neighbour-joining 
method in the iTOL server (https://​itol.​embl.​de/) (Letunic 
and Bork 2021). GWAS analysis was carried out using a 
mixed linear model (MLM) in TASSEL, and population 
structure and kinship coefficients were taken into account 
to avoid false associations. The Manhattan plot was used to 
demonstrate the correlation between SNP and phenotypic 
traits. The quantile–quantile (Q-Q) plot was used to show the 
level of difference between observed and predicted values. 
The Manhattan plots and Q-Q plots were constructed from 
TASSEL output using R package rMVP (Yin et al. 2021) 

http://taylor0.biology.ucla.edu/structureHarvester/
http://taylor0.biology.ucla.edu/structureHarvester/
https://itol.embl.de/
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in R v4.2.2 software (R Core Team 2020). The Bonferroni 
correction threshold − log10 (p) > 5.86 (p = 0.05/N; N = total 
markers used) was too stringent in this study. Therefore, 
less strict p-value thresholds of − log10 (p) > 4 and − log10 
(p) > 5 were set for the identification of true marker-trait 
association in the Manhattan plots (Chen et al. 2021c). The 
identified markers were mapped and visualised on an idi-
ogram using R package RIdeogram (Hao et al. 2020).

Identification of candidate genes

The SNP markers significantly associated with the traits 
were searched in JBrowser 1.16.3 (https://​urgi.​versa​illes.​
inra.​fr) against the wheat reference genome IWGSC Ref-
Seq v1.0 (The International Wheat Genome Sequencing 
et al. 2018) to find the physical position of the identified 
markers and flanking genes. A gene with a marker located 
within it or the closest high-confidence gene within 2 Mbp 
flanking of the SNP’s physical position was considered as 
the associated gene to that marker. Next, the gene ID was 
searched in Ensembl Plants database (https://​plants.​ensem​
bl.​org/​Triti​cum_​aesti​vum/​Info/​Index) to find the annotation 
of the genes. The complementary information on molecular 
function of the identified genes was extracted from UniProt 
(https://​www.​unipr​ot.​org), InterPro (https://​www.​ebi.​ac.​uk/​
inter​pro), and PANTHER databases (http://​www.​panth​erdb.​
org).

In silico expression analysis of the identified genes

The wheat multi-omics database (WheatOmics, http://​202.​
194.​139.​32/​expre​ssion/​wheat.​html) was used to investigate 
the expression of the identified genes in previous studies 
(Ma et al. 2021b). The relative difference between gene 
expression in tolerant and susceptible genotypes was deter-
mined using the formula:

Here, A and B represent the two values being compared. 
The numerator of the formula represents the absolute dif-
ference between A and B, while the denominator takes into 
account their average. The resulting percentage provides a 
measure of how closely the two values are related. The aver-
age of the relative expression differences across all genes 
was calculated to illustrate the overall expression status of 
genes in tolerant and susceptible genotypes in the WW and 
DS treatments.

Results

Phenotypic response to drought stress

ANOVA analysis showed significant differences (p < 0.01) 
among genotypes for the phenotypic traits of PH, RL, RDW, 
and SDW in response to drought stress (Supplementary 
Tables S1 and S2). The descriptive statistics and frequency 
distribution of the traits measured from the population under 
WW and DS conditions are presented in Table 1 and Fig. 1, 
respectively. Large variation was observed in all phenotypic 
traits in both WW and DS treatments that make the measure-
ments suitable for GWAS analysis (Table 1).

The mean PH was 31.3 cm (ranging from 24.2 to 39.3 cm) 
in the WW treatment, whereas it was 20.6 cm (ranging from 
7.5 to 29.4 cm) in the DS treatment (Fig. 1A and Table 1). 
For RL, mean values were 102.9 and 58.3 cm, ranging from 
60.9 to 146.2 cm and from 23.0 to 108.8 cm, in the WW 
and DS treatments, respectively (Fig. 1B and Table 1). The 
mean RDW was 0.041 g (ranging from 0.029 to 0.056 g), 
whereas it was 0.02 g (ranging from 0.007 to 0.041 g) in the 
WW and DS treatments, respectively (Fig. 1C and Table 1). 
The mean SDW in the WW treatment was 0.067 g with a 

Relative Difference(%) =

|
|
|
|
|
|

A − B

A+B

2

|
|
|
|
|
|

× 100

Table 1   Descriptive statistics 
of seedling traits in 125 wheat 
genotypes in the well-watered 
and drought stressed treatments

“PH” is plant height; “RL” root length; “RDW” root dry weight; “SDW” shoot dry weight; “WW” well-
watered; “DS” drought stress; “Min.” minimum; “Max.” maximum; “SD” standard deviation; “CV” coef-
ficient of variation

Trait Unit Treatment Min Max Mean SD CV (%)

PH cm WW 24.2 39.30 31.27 3.17 10.14
DS 7.50 29.40 20.61 3.68 17.87

RL cm WW 60.91 146.21 102.91 18.30 17.78
DS 23.01 108.79 58.33 16.49 28.27

RDW g WW 0.029 0.056 0.041 0.006 14.63
DS 0.007 0.041 0.020 0.006 30.00

SDW g WW 0.043 0.101 0.067 0.011 16.42
DS 0.007 0.069 0.034 0.010 29.41

https://urgi.versailles.inra.fr
https://urgi.versailles.inra.fr
https://plants.ensembl.org/Triticum_aestivum/Info/Index
https://plants.ensembl.org/Triticum_aestivum/Info/Index
https://www.uniprot.org
https://www.ebi.ac.uk/interpro
https://www.ebi.ac.uk/interpro
http://www.pantherdb.org
http://www.pantherdb.org
http://202.194.139.32/expression/wheat.html
http://202.194.139.32/expression/wheat.html
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Fig. 1   Violin plots showing frequency distribution of (A) plant height, 
(B) root length, (C) root dry weight, and (D) shoot dry weight of 125 
wheat genotypes given two water treatments: drought stress (DS, red) 
and well-watered (WW, green). Pearson’s correlation analysis visualis-

ing correlations between the seedling traits in the (E) drought-stressed 
and (F)  well-watered treatments; PH, plant height; RL, root length; 
RDW, root dry weight; SDW, shoot dry weight. Significant levels are * 
p < 0.05, ** p < 0.01, and *** p < 0.001
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range from 0.043 to 0.101 g, while under DS the mean SDW 
was 0.034 g with a range from 0.007 to 0.069 g (Fig. 1D and 
Table 1). Overall, DS reduced PH, RL, RDW, and SDW by 
34, 43, 51, and 49%, respectively. The coefficient of varia-
tion (CV) was calculated to compare the extent of variability 
between traits. For all traits, the CV in the DS treatment was 
higher than in the WW treatment. In WW, the CV ranged 
from 10.1% (PH) to 17.8% (RL), whereas in DS, the CV 
ranged from 17.9% (PH) to 30.0% (RDW) (Table 1).

The Pearson’s correlation analysis showed significant 
positive correlation between all traits under stress and non-
stress conditions (Fig. 1E and F). The correlation coefficients 
between the four traits ranged from 0.43 to 0.76 in the DS 
treatment and from 0.23 to 0.66 in the WW treatment. In DS, 
the highest correlation (0.76) was between RDW and SDW 
following PH and SDW (0.74), while the lowest correlations 
were between PH and RDW (0.43) and between PH and RL 
(0.5) (Fig. 1E). In WW, the highest correlations were 0.66 
(RDW and SDW) and 0.63 (RL and RDW), while the lowest 
were 0.23 (PH and RDW) and 0.38 (PH and RL) (Fig. 1F).

Marker distribution, genetic diversity, and principal 
components analysis

After filtering, a total number of 36,586 SNP markers 
remained that were used for GWAS analysis. The distribu-
tion of these markers on the 21 chromosomes of a wheat is 
presented in Fig. 2 and Supplementary Table S3. Chromo-
some 2B and 1A with 3055 and 2311 SNPs and a density 
of 3.81 and 3.89 markers per mega-base pair had the high-
est number and density of markers, respectively. Chromo-
some 4D with 422 SNPs and a density of 0.83 markers per 
Mbp had the least number and density of markers. The sub-
genome B had the highest number of markers (15,273 SNPs) 

and density (2.95 marker per Mbp), followed by sub-genome 
A with 13,156 SNPs and density of 2.67 markers per Mbp. 
The sub-genome D with 7,897 SNPs had the lowest number 
of markers with the least density of 2 markers per Mbp (Sup-
plementary Table S3).

The Bayesian clustering analysis of population structure 
showed that the ΔK value reached its peak at K = 6 (Supple-
mentary Figure S1), suggesting the entire population could 
be grouped into six sub-populations (Fig. 3A). The phylo-
genetic tree also divided the accessions into six main clus-
ters highlighted in different colours in Fig. 3B. The kinship 
matrix accounts for relationships among individuals based 
on the degree of allele sharing. The pattern of blue shaded 
colour at the middle of the kinship matrix that corresponded 
to the degree of relatedness, indicated a stratified population 
structure as represented by the structure and phylogenetic 
analyses (Fig. 3C).

PCA was carried out to get more information about the 
principal structure and the first five PC scores were included 
as covariates for the GWAS analysis. PCA revealed that the 
first five principal components can explain 22.9% of the total 
variance among the accessions (Supplementary Table S4 
and Supplementary Figure S2). The PCA chart in Fig. 3D 
demonstrated the first three principal components of PC1, 
PC2 and PC3 explained 6.8%, 5.4%, and 4.3% of the vari-
ance, respectively.

Linkage disequilibrium (LD) and LD decay

Pair-wise LD analysis using the correlation coefficient (r2) 
for SNP markers showed that the rate of LD decay with 
genetic distance varied across different chromosomes as well 
as sub-genomes (Fig. 4 and Supplementary Figure S3). The 
LD decayed to its half at 2.43 Mb for whole genome, and 

Fig. 2   Distribution of filtered 
SNPs on the 21 chromosomes 
of wheat. The colours indicate 
the number of SNPs within a 
1 Mb interval



Molecular Genetics and Genomics          (2024) 299:22 	 Page 9 of 23     22 

2.11 Mb for A, 3.39 Mb for B and 1.51 Mb for the D sub-
genomes (Fig. 4). For individual chromosomes, chromo-
some 5A has the highest (4.73 Mb) and chromosome 3A had 
the lowest (1.07 Mb) LD decay in sub-genome A. In sub-
genome B, chromosome 1B and 7B with LD decay of 6.35 
and 1.64 Mb had the highest and lowest LD decay, respec-
tively. In sub-genome D, chromosome 1D with 8.44 Mb had 
the highest LD decay, while chromosome 7D with 0.31 Mb 
had the lowest LD decay (Supplementary Figure S3).

GWAS‑revealed marker‑trait associations

To find genomic regions significantly associated with 
drought tolerance, the two indices of SSI and STI were 
calculated for seedling traits and GWAS was performed 
separately for each of these indices. The Manhattan plots 
showing the distribution of significantly associated SNPs 

across the wheat genome and Q-Q plots are presented in 
Fig. 5A and B, respectively. Most p-values in the Q-Q plots 
were comparable to the anticipated diagonal line, suggesting 
that the employed GWAS model was suitable (Fig. 5B). A 
total of 53 SNP-trait associations were detected on 17 chro-
mosomes using the significance threshold value of − log10 
(p) > 4 (Supplementary Table S5). Of this number, 31 SNPs 
were identified for SSI and 22 were found for STI with no 
common SNP between the two indices. Chromosome 2A 
had the highest number of SNPs with 10, followed by 3B 
with nine SNPs. Chromosomes 1D, 5A, 6B, 7A, and 7D 
each had one SNP, representing the lowest number of asso-
ciated markers. The R2 values for the 53 significant SNPs 
explaining phenotypic variations range from 10.8 to 25.4% 
(Tables 2 and 3). Of all identified SNPs, BS00086777_51 
associated with RL_SSI and wsnp_BE426418A_Ta_2_1 
associated with SDW_SSI had − log10 (p) > 5.

Fig. 3   Genetic diversity of the 125 wheat accessions. (A) Population 
structure estimated by STRU​CTU​RE with optimum sub-population 
(K = 6), each colour represents one subpopulation. (B) Phyloge-
netic tree, each branch indicates an accession, and the length of the 
branches represent the genetic distance. (C) Heat map of relatedness 

(kinship), blue colour at the middle represents the degree of related-
ness. (D) Three-dimensional principal component analysis (PCA) plot 
illustrating the distribution of accessions based on the first three prin-
cipal components (PC)
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Regarding individual traits, 22 SNP markers on 10 chro-
mosomes were associated with PH; 15 of these were found 
for PH_SSI and 7 for PH_STI. Chromosome 2A, 3B, and 
3A had nine, four, and two SNPs respectively and chromo-
some 2B, 2D, 3D, 4A, 4D, 6A, and 7B had one SNP each 
(Fig. 5A and Tables 2 and 3). Six markers were found for 
RL, including two SNPs located on chromosome 4A and 6B 
for RL_SSI and four markers on 6A and 7B for RL_STI. Of 
the 11 SNPs associated with RDW, eight were identified for 
RDW_SSI and three were identified for RDW_STI by the 
GWAS analysis. Two of these SNPs were located on 1B, 
two on 7B, and one on each of 1A, 1D, 2A, 2B, 2D, 7A, and 
7D chromosomes. For SDW, 14 markers (six markers for 
SDW_SSI and eight for SDW_STI) were associated, includ-
ing five SNPs located on 3B, three on 3A, and one on each 
1A, 1B, 3D, 4D, 5A, and 6A (Fig. 5A and Tables 2 and 3).

Identified candidate genes

Forty-four unique candidate genes were identified for the 
four drought-tolerance related traits at the seeding stage 
based on the position of the associated SNP markers 

(Tables 2 and 3). Of this number, 30 unique genes were 
found for SSI and 14 for STI. For 36 of the identified genes, 
the SNP markers were located within the genes, while for 
eight of the genes, markers were 74 to 74,059 base pairs 
away from the gene. The length of the genes was different 
and ranged from 465 to 16,040 base pairs. Regarding the 
gene orientation, 21 of the genes were located on the for-
ward strand (+) whereas the rest of the 23 genes were on the 
complementary strand (−) (Tables 2 and 3).

Some of the genes were common between different 
traits. TraesCS7B02G452000 that encodes the Pm3-like 
disease-resistance protein was found for both RL_STI 
and RDW_STI. The highest number of common genes 
were shared between PH_STI and SDW_STI includ-
ing TraesCS3B02G258600, TraesCS3A02G226500, 
TraesCS3B02G258700, and TraesCS3B02G259100 that 
encoded polygalacturonase, auxilin-related protein 1, pep-
tide deformylase, and receptor-like kinase, respectively 
(Tables 2 and 3). The distribution of the 44 identified genes 
on the 17 chromosomes of wheat is illustrated in Fig. 6. 
All genes associated with RDW_SSI and RDW_STI were 
located at the very beginning of the short arms of 1D, 7A, 
and 7D or within 70 Mbp of the end of chromosomes 1A, 

Fig. 4   Scatter plot showing 
linkage disequilibrium (LD) 
decay in the three sub-genomes 
and the whole genome by plot-
ting (r2) against genetic distance 
(bp) in 125 wheat accessions. 
The point at which LD is 
reduced to 50% of its maximum 
value is indicated by the green 
vertical line. LD decay at cut off 
point is shown by green font on 
the X-axis and with bigger font 
in the plots
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1B, 2A, 2B, 2D, and 7B. Similarly, the genes for RL_SSI 
and RL_STI were located at very end of the chromosomes 
4A, 6A, 6B, and 7B. Most of the genes associated with 
PH_SSI were on the short arms of 2A, 2B, 2D, 3A, and 
3B chromosomes with a cluster of seven genes at 115–152 
Mbp of the 2AS. Four of the genes related to SDW_STI 
(three of them were common between PH_STI and SDW_
STI) tended to cluster together at 415–455 Mbp of the 3BL 
(Fig. 6).

Expression of the candidate genes in tolerant 
and susceptible genotypes

The expression of the 44 identified candidate genes in 
the leaves and roots of drought tolerant (Zubkov) and 
susceptible (Atay85) wheat cultivars are presented in 
Supplementary Figure S4 and S5. In the leaves in the 
WW treatment, there were minimal differences in the 
expression of nearly all candidate genes between tolerant 
and susceptible genotypes (average relative expression 
difference of 0.32 for all genes) (Supplementary Figure 
S4A). However, in the DS treatment, the majority of 
genes exhibited increased expression in the leaves of the 
tolerant genotype and decreased expression in the suscep-
tible genotype. The average relative expression difference 
between tolerant and susceptible genotypes increased to 
0.67 in the DS treatment, with 35 genes up-regulated 
and 3 down-regulated in the tolerant genotype relative to 
the susceptible genotype (Supplementary Figure S4B). 
Among the genes, TraesCS4A02G485400, encoding 
acid invertase 1, showed the highest relative increase in 
expression in the tolerant genotype compared to the sus-
ceptible genotype in the DS treatment. This was followed 
by TraesCS2A02G188200 and TraesCS2A02G181800, 
which encode α-1,6-mannosyl-glycoprotein 2-β-N-
acetylglucosaminyltransferase and S phase cyclin A-asso-
ciated protein, respectively.

In roots in the WW treatment, the candidate genes, on 
average, exhibited higher expression levels in the susceptible 
genotype compared to the tolerant genotype (33 genes down-
regulated and 6 up-regulated in the tolerant genotype relative 
to the susceptible genotype in the WW treatment) (Supplemen-
tary Figure S5A). Conversely in the DS treatment, the greater 
increase in gene expression in the tolerant genotype led to more 
comparable expression levels between the tolerant and suscep-
tible genotypes during stress. The average relative expression 
difference between the tolerant and susceptible genotypes 
decreased from 0.43 in the WW to 0.19 in the DS treatment 
(Supplementary Figure S5B).

Discussion

In this study we evaluated four phenotypic traits among 
125 accessions under WW and DS conditions. In the acces-
sion panel used in this study, significant phenotypic vari-
ation was observed among lines for all seedling drought 
tolerance-related traits in both the WW and DS treatments 
(Table 1 and Supplementary Table S1). This suggests that 
the genotypes used in this study were a good genetic source 
for drought tolerance research. This result agreed with a 
previous study by Liu et al. (2022) who found abundant 
phenotypic variation for wheat yield traits through evalu-
ation of the same panel in six rainfed environments. In this 
study, the CV for all four traits was higher in the DS com-
pared to the WW treatment (Table 1). Similarly, the higher 
variation for phenotypic traits has previously been reported 
under drought stress conditions in wheat and cotton (Hou 
et al. 2018; Grzesiak et al. 2019). In comparison with WW 
plants, drought stress significantly reduced the average of all 
four PH, RL, RDW, and SDW traits. It is well known that 
drought stress at the vegetative stage can negatively impact 
morphological, physiological, and biochemical dynamics in 
plants and reduce phenotypic traits such as shoot length, 
shoot dry weight, root volume, root length, and root dry 
weight (Seleiman et al. 2021).

Correlation analysis showed that all the traits were posi-
tively co-related with each other (Fig. 1E and F). The sig-
nificant highly positive correlations between RDW_SDW, 
PH_SDW, and RL_RDW in both the WW and DS treatments 
indicated the possibility of simultaneous improvement of 
these traits. This finding was in line with a previous report 
on a diverse panel of wheat genotypes that was studied 
in order to improve drought tolerance (Danakumara et al. 
2021). The SDW is an easily measurable trait and its high 
correlation with RDW suggests that it should be valuable in 
providing a general idea about the development of the root 
system at the seedling stage. The strong correlation between 
RDW_SDW might be due to the importance of roots in sup-
plying water and nutrients to the shoots (Zhao et al. 2019).

The LD decay was used to determine the density of 
marker coverage required for GWAS analysis. For faster LD 
decay, a higher density of markers is needed to capture the 
markers close enough to the causal loci (Flint-Garcia et al. 
2003). In this study the LD decay was 2.43 for the whole 
genome, 2.11 for A, 3.39 for B, and 1.51 for D sub-genomes 
(Fig. 4). A similar LD pattern for the whole genome, sub-
genomes A, B, and D has been reported for the same popu-
lation in a previous study (Kurya et al. 2022). A faster LD 
decay in the D genome, comparable to A and B genomes 
was also observed in wheat pre-breeding lines (Ledesma-
Ramírez et al. 2019). In agreement with our result, an aver-
age of ~ 2 Mb was observed for whole genome LD decay in 
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a set of CIMMYT spring bread wheat lines (Sehgal et al. 
2020). However, in contrast, the slowest LD decay in the D 
genome, compared to A and B genomes, has been reported 
in previous studies (Chao et al. 2007; Liu et al. 2017). Con-
trary to the fast LD decay that was witnessed in this study 
for the whole genome, the slower LD decay distances have 
been observed in a set of hexaploid wheat collections from 
Kazakhstan (22 Mb) and Mexican bread wheat landraces 
(23 Mb) (Kokhmetova et al. 2021; Vikram et al. 2021). The 
variation in the LD decay among various GWAS populations 
may be due to different factors including mutation, selection, 
size of the population, recombination frequency, genetic 
drift, admixtures, pollination behaviour and non-random 
mating (Vos et al. 2017). The faster LD decay suggests high 
levels of genetic diversity in the mapping population used in 
this study, which consists of lines selected from a wide range 
of genetic backgrounds. The high diversity of this panel has 
also been observed in previous studies (Kurya et al. 2022; 
Liu et al. 2022).

STI and SSI are two widely employed criteria for evalua-
tion of accessions in plant abiotic stress studies. It has been 
reported that STI has greater efficiency in identifying toler-
ant genotypes, while SSI is more effective for selection of 
sensitive genotypes under drought stress conditions (Ghaf-
fari et al. 2012). Using both indices at the same time for a 
panel can deliver a more accurate assessment of drought 
tolerance (Wu et al. 2022). The genotypes with high STI 
and low SSI values are considered drought tolerant in wheat 
(Ayed et al. 2021). A total of 53 SNP markers were identified 
associated with the four phenotypic traits, 31 of them were 
found using SSI, and 22 were detected using STI, with no 
common SNP between the two indices.

In this study, the − log10 (p) > 4 was used to indicate 
significant marker-trait association because the Bonferroni 
threshold (− log10 (p) > 5.86) was too strict. The complex 
and polygenic nature of the traits, where weaker genetic 
signals may collectively contribute to variation, provides a 
potential explanation (Liu et al. 2022). Additionally, limita-
tions stemming from the size and highly structured nature of 
our population may contribute to detecting weaker signals 
(Wang and Xu 2019). Navigating the trade-off between sen-
sitivity and specificity, we selected a less strict threshold to 
enhance sensitivity while mitigating the risk of false nega-
tives. This choice aligns with practices in comparable studies 
and is further supported by the consideration of biological 
plausibility (Kurya et al. 2022; Liu et al. 2022). Associations 

identified using less stringent thresholds are considered 
preliminary, so we recommend rigorous follow-up analyses 
and validation steps, including assessments in independent 
datasets and functional studies, to ensure a comprehensive 
validation process for the identified candidate markers.

The significant SNPs identified in this investigation 
explained between 10.8% and 25.4% of the phenotypic vari-
ation and are considered major QTLs (Elattar et al. 2021). 
Many of these loci are located towards the telomere ends 
of chromosomes (Fig. 6) that are known to be gene-rich 
regions (See et al. 2006). In support of our findings, the 
genetic dissection of the seedling root system of wheat for 
improved drought tolerance has revealed associated mark-
ers on 558 Mb of chromosome 1A for average root diam-
eter; 10 Mb of 1D for root number and root length; 725 Mb 
of 4A for root length, root volume, average root diameter, 
and lateral root density; 599, 600, and 611 Mb of 6A for 
lateral root number, lateral root size, average diameter, 
seminal root number, and root volume; 710 Mb of 6B for 
root length and root volume; 591, 674, and 675 Mb of 7B 
for shoot dry weight, lateral root density, and root length 
(Danakumara et al. 2021). A QTL meta-analysis to discover 
consensus genomic regions in wheat for root-related traits 
reported seven QTLs on approximately 583 Mb of 1A, two 
on ~ 661 Mb of 1B, three on ~ 19 Mb of 1D, 17 on ~ 627 Mb 
of 2B, seven on ~ 570 Mb of 2D, five on ~ 702 Mb of 4A, 
six on ~ 613 Mb of 6A, four on ~ 673 Mb of 6B, and 18 
on ~ 728 Mb of 7B (Soriano and Alvaro 2019).

In this study, twenty candidate genes were found to be 
related with plant height, including 14 genes related to 
PH_SSI and 6 to PH_STI (Tables 2 and 3). For PH_SSI, S 
phase cyclin A-associated protein in the endoplasmic reticu-
lum (SCAPER) explained the highest variation (R2 = 20.5) 
followed by Histone-lysine N-methyltransferase ASHH2 
(R2 = 19.4) (Table 2). SCAPER is an ER-localised protein 
that is involved in the regulation of cell cycle proliferation 
and cell expansion (controls the S-to-M phase) by generat-
ing cyclin A2 in the cytoplasm (Tsang et al. 2007). Histone 
methylation, which is mediated by histone lysine methyl-
transferases, is a mechanism associated with gene expres-
sion regulation and has been reported to be involved in plant 
stress memory under drought, heat, cold, salinity, and dark 
(Zhou et al. 2020). WD repeat-containing protein 1 (WDR1) 
plays an important role in plant development by dynamic 
reorganization of the actin cytoskeleton (Ono 2018). In rice, 
overexpression or RNA interference of WDR1 reduced the 
size of plants (Shi et al. 2013). Plant U-box (PUB) proteins 
are ubiquitin ligases (E3) involved in different functions in 
plant development and stress responses including hormone 
signalling [e.g., abscisic acid (ABA)], cell death, senes-
cence, and plant survival following stress or pathogen attack 
(Vogelmann et al. 2014). The pentatricopeptide repeat (PPR) 
proteins play roles in plant growth and development as well 

Fig. 5   (A) Manhattan and (B) Q-Q plots of the genome-wide asso-
ciation (GWAS) results for stress susceptibility index (SSI, charts 
on left) and stress tolerance index (STI, charts on right) of seedling 
traits. The markers above the significant threshold value of − log10 
(p) > 4 (red dotted line) are shown in red colour. PH, plant height; RL, 
root length; RDW, root dry weight; SDW, shoot dry weight

◂
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as various biotic and abiotic stresses (Xing et al. 2018). In 
Arabidopsis, the mutant for PPR proteins known as Slow 
Growth 1 (slg1) and slo2 affected shoot growth, ABA signal-
ling, and drought stress tolerance (Yuan and Liu 2012; Lv 
et al. 2014). The serine/arginine-rich splicing factors (SRs) 
that generate proteome diversity through the splicing pro-
cess of the precursor RNA, provides a key mechanism in 
regulating gene expression during development and stress 
responses (Duque 2011). Calmodulin-binding transcrip-
tion activator (CAMTA) and zinc finger protein-like pro-
tein (ZNF) as members of TFs are associated with plant 
growth, development, and response to stresses (Han et al. 
2020; Yang et al. 2022). Alpha-1,6-mannosyl-glycoprotein 
2-β-N-acetylglucosaminyltransferase has a critical role in 
protein N-glycosylation and has been reported to be involved 
in plant growth and development under stress conditions 
(Yoo et al. 2021). Under metabolic stress conditions, amino 
acid catabolism which is conducted by 3-hydroxyisobutyrate 
dehydrogenase can be an alternative substrate for produc-
tion of adenosine triphosphate (ATP) by respiration (Schertl 
et al. 2017).

Regarding PH_STI (Table 3), the B3 domain-containing 
protein is a TF responsive to ABA and auxin phytohormones 
that engage in developmental processes such as plant growth 
(Waltner et al. 2005). Polygalacturonase (PG) is a hydrolase 
enzyme that degrades cell wall pectin that plays a role in 
plant organ senescence and abiotic stress responses (Yang 
et al. 2018). Liu et al. (2014) have shown that the over-
expression of the β subunit of PG1 in rice reduced pectin 

content and cell adhesion and increased abiotic stress sensi-
tivity. Peptide deformylase is an important enzyme required 
for the removal of the N-formyl group from newly translated 
proteins and is necessary for N-terminal protein process-
ing (Hou et al. 2007). Receptor-like kinases (RLKs) are 
the largest gene family in plants and play a role in plant 
development and abiotic stress responses to drought, cold, 
and salt (Ye et al. 2017). From different genes on different 
chromosomes, methyltransferase-like (METTL) protein was 
shown to be important for both PH_SSI and PH_STI. The 
methylation of DNA, RNA, and proteins by METTL leads 
to epigenetic and epitranscriptomic regulation of numerous 
biological processes as well as regulation of gene expres-
sion (Wong and Eirin-Lopez 2021). Functional analysis of 
the protein arginine methyltransferase (ZmPRMT1) showed 
it has critical roles in abiotic stress tolerance in Arabidopsis 
(Ling et al. 2022).

For root length, two candidate genes were identified 
for RL_SSI and two for RL_STI (Tables 2 and 3). Acid 
invertase 1 catalyses the hydrolysis of sucrose into fructose 
and glucose which can enhance plant tolerance against abi-
otic stresses such as drought, salt, heat and cold through 
osmotic regulation, regulation of stomatal conductance, and 
maintenance of energy homoeostasis (Ruan et al. 2010). 
Kim et al. (2000) showed that enhanced unloading and vas-
cular accumulation of glucose and fructose due to a stronger 
induction of vacuolar acid invertase activity in primary roots 
compared to young leaves, can be a reason for the higher 
root-to-shoot dry weight ratio under water stress in maize. 

Fig. 6   The distribution of the 
identified candidate genes of 
stress susceptibility index (SSI) 
and stress tolerance index (STI) 
for plant height (PH), root 
length (RL), root dry weight 
(RDW), and shoot dry weight 
(SDW) on 17 wheat chromo-
somes. Numbers indicate the 
physical positions (Mb) of the 
genes on the chromosomes
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PKs catalyse the reversible transfer of the γ-phosphate of 
ATP to phosphorylate serine, threonine, or tyrosine residues 
in protein and modify their activity. PKs by stress sensing 
and signal transduction have a key role in plant responses to 
different stresses such as drought, salt, and cold (Chen et al. 
2021b). The regulation of root growth through the interac-
tion of ABA with various PKs such as SnRK1, SnRK2.2 
and SnRK2.3 have been reported in other studies (Fujii et al. 
2007; Belda-Palazón et al. 2022).

Nine different candidate genes were identified for RDW_
SSI and RDW_STI (Tables 2 and 3). It has been reported that 
a Ras-related small GTP-binding protein (RabE1c) by medi-
ating the interaction with ABA receptors, adjusts stomatal 
movements and drought tolerance (Chen et al. 2021a). Per-
oxins such as PEX14 play an important role in the biogenesis 
of peroxisomes by participating in the import machinery for 
peroxisomal membrane proteins (PMPs) and matrix proteins 
into the organelles (Wang  et al. 2019a). It is evident that 
very long-chain fatty acids (VLCFA) that are catalysed by 
a 3-ketoacyl-CoA synthase 4 (KCS4) are essential for root 
and pollen tube growth (Kim et al. 2021). Sulfate transport-
ers manage the transport of SO4

−2 as an essential factor for 
drought stress responses in plants. Sulfate is required for the 
synthesis of cysteine, which is essential for ABA synthesis 
(Gallardo et al. 2014). Ubiquitin-small subunit ribosomal 
protein S27Ae and RING/U-box superfamily protein both 
belong to the ubiquitin system. The U-box proteins function 
as E3 ligases that engaged in various biological processes, 
such as plant stress response through protein degradation 
and post-translational modification (Wang et al. 2020b). 
Some disease resistance proteins such as NBS-LRR and 
Pm3-like disease resistance proteins have been identified for 
RDW_SSI and RDW_STI. The interaction between drought 
stress and powdery mildew infection has been reported in 
tomato (Sunarti et al. 2022). The improved drought toler-
ance by increased expression of the CC–NBS–LRR protein 
encoding gene (ADR1) in Arabidopsis suggested possible 
overlap between disease resistance and drought tolerance 
signalling networks (Chini et al. 2004).

For SDW, six different candidate genes were identified 
for SDW_SSI (Table 2) and seven for SDW_STI (Table 3). 
Ribulose-1,5-bisphosphate carboxylase (RuBisCO) and 
phosphoribulokinase (PRK), two key enzymes of the pho-
tosynthetic Calvin cycle, play essential roles in regulation 
of photosynthesis in plants (Kono et al. 2017). The chloro-
plast NAD(P)H dehydrogenase complex is essential for plant 
growth and development during stress periods by facilitating 
cyclic electron transport in the thylakoid membranes (Ma 
et al. 2021a). Cytochrome P450 (CYP88A) plays a key role 
in gibberellin synthesis that is involved in stem elongation 
and other plant development (Helliwell et al. 2001). OBF 
binding protein 1 is a plant TF that plays a role in the regula-
tion of gene expression in response to various environmental 

stressors, such as light, temperature, and drought (Samtani 
et al. 2022). Photosystem I P700 chlorophyll a apoprotein 
A1 is a molecule that is bound to chlorophyll a and plays 
a crucial role in the stability and regulation of the photo-
synthetic light reactions in plants (Eichacker et al. 1996). 
F-box proteins helps the cell to keep its protein homeosta-
sis under stress conditions by targeting specific proteins for 
degradation (Hong et al. 2021). Elongation factors are pro-
teins involved in the process of protein synthesis in cells 
also known as translation (Xu et al. 2022). Vps4 is involved 
in the final stages of MVB formation, a type of endosome 
that contains intraluminal vesicles and is involved in deg-
radation of damaged proteins and lipids, which helps to 
maintain cellular homeostasis and prevent cellular damage 
(Wang et al. 2020a). Auxilin-related protein 1, peptide defor-
mylase, a receptor-like kinase, and polygalacturonase were 
shown to control SDW_STI and were also found to control 
PH_STI (Table 3). The role of Auxilin-related protein 1 in 
plant stress responses is not well understood, but likely to be 
involved in the regulation of clathrin-mediated endocytosis 
and actin dynamics, which are both important for plant stress 
responses (Schwihla and Korbei 2020).

Conclusion

This study has improved our understanding of the genetic 
basis for drought tolerance traits in wheat seedlings, shed-
ding light on key traits such as plant height, root length, and 
root and shoot dry weight. The identification of 53 SNPs 
associated with stress susceptibility and tolerance indices for 
these traits, particularly on chromosomes 2A and 3B, opens 
new avenues for targeted genetic improvement strategies. 
The 44 unique candidate genes unveiled, with their diverse 
roles in plant growth, development, and stress responses, 
present a valuable resource for future investigations and 
breeding programs. The clustering pattern observed, espe-
cially regarding genes associated with SSI of plant height 
and STI of plant height and shoot dry weight, offers spe-
cific genomic regions worthy of further exploration. Look-
ing ahead, our focus will shift towards functional valida-
tion studies and the integration of these candidate genes 
into breeding programs aimed at enhancing wheat drought 
tolerance. This research not only contributes to our funda-
mental knowledge of wheat biology but also holds practical 
implications for crop improvement in the face of increasing 
climate challenges, marking a crucial step towards sustain-
able agriculture.
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