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Abstract
Globally, over 2 billion people suffer from malnutrition due to inadequate intake of micronutrients. Genomic-assisted 
breeding is identified as a valuable method to facilitate developing new improved plant varieties targeting grain yield 
and micronutrient-related traits. In this study, a genome-wide association study (GWAS) and single- and multi-trait-based 
genomic prediction (GP) analysis was conducted using a set of 252 elite wheat genotypes from the International Center 
for Agricultural Research in Dry Areas (ICARDA). The objective was to identify linked SNP markers, putative candidate 
genes and to evaluate the genomic estimated breeding values (GEBVs) of grain yield and micronutrient-related traits.. For 
this purpose, a field trial was conducted at a drought-prone station, Merchouch, Morocco for 2 consecutive years (2018 and 
2019) followed by GWAS and genomic prediction analysis with 10,173 quality SNP markers. The studied genotypes exhib-
ited a significant genotypic variation in grain yield and micronutrient-related traits. The GWAS analysis identified highly 
significantly associated markers and linked putative genes on chromosomes 1B and 2B for zinc (Zn) and iron (Fe) contents, 
respectively. The genomic predictive ability of selenium (Se) and Fe traits with the multi-trait-based GP GBLUP model was 
0.161 and 0.259 improving by 6.62 and 4.44%, respectively, compared to the corresponding single-trait-based models. The 
identified significantly linked SNP markers, associated putative genes, and developed GP models could potentially facilitate 
breeding programs targeting to improve the overall genetic gain of wheat breeding for grain yield and biofortification of 
micronutrients via marker-assisted (MAS) and genomic selection (GS) methods.
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Introduction

Wheat is the world's leading food crop and the cradle of 
human civilization with an average annual production of 
770 million tons in about 220 million hectares (FAOSTAT 
2021). It has been playing a fundamental role in improving 

global food security by providing an average of 19% of calo-
ries and 21% of the protein needed for daily human diets 
(Shewry 2009). In addition to carbohydrates and proteins, 
wheat grains also contain several essential micronutrients, 
such as iron (Fe), zinc (Zn), and selenium (Se), which play a 
significant role in human growth and development, cognitive 
and immune function, and gene regulation. However, reports 
have shown that more than 2 billion people worldwide, 
mainly women and children in developing countries, suffer 
from Fe and Zn malnutrition (Lim et al. 2013). This leads 
to anemia, stunted physical growth, neuron motor retarda-
tion, fatigue, and reduced productivity (Umamaheswari et al. 
2011). At the global level, 43% of children, 38% of preg-
nant and 29% of non-pregnant women of reproductive ages 
are anemic (World Health Organization 2015). Although 
diversification of diets, provision of mineral supplements, 
and food fortification are potential solutions, none of these 
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approaches is sustainable for solving micronutrient mal-
nutrition (Gletsu-Miller and Wright 2013). Identification, 
development, and deployment of wheat varieties with high 
micronutrients content is the most economical, feasible, and 
sustainable approach to prevent malnutrition, especially in 
the developing world (Shewry 2009; Alomari et al. 2018; 
Rathan et al. 2022). Genomic-assisted breeding techniques 
including QTL mapping via GWAS and recently genomic 
prediction are widely applied methods to assist the develop-
ment of new crop varieties with an improved micronutrient 
content.

Climate change reduces rainfall, exacerbates water stress, 
and has a significant negative impact on wheat production. 
Drought induced by climate change affects wheat grain pro-
duction and quality at any growth stage and reduces wheat 
grain production up to 30% (Lesk et al. 2016). In addition 
to increasing yield and improve stress tolerance/ resistance, 
enhancing wheat quality under drought conditions has been 
identified as the key objective of wheat breeding programs 
(Suliman et al. 2021). Research findings have shown that 
wheat wild relatives are identified as an important source 
for micronutrients and tolerance/resistance for many biotic 
and abiotic stresses. Many efforts have been carried out to 
transfer these genes into adapted cultivars through the uti-
lization of synthetic hexaploid wheat through the hybridi-
zation of tetraploid wheat (2n = 4x = 28, AABB) with the 
diploid wild relative, Aegilops tauschii (2n = 2x = 14, DD) 
followed by chromosome doubling of the corresponding dip-
loids (Li et al. 2018). Synthetic hexaploids are great sources 
for improving wheat qualities including macronutrients 
and micronutrients and other economically relevant traits 
(Tadesse et al. 2015). According to recent reports, more than 
30% of the elite spring bread wheat genotypes in the CIM-
MYT and ICARDA breeding programs contain synthetic 
wheat of different percentages in their pedigrees (Tadesse 
et al. 2019). Understanding the genetic variation and dis-
secting the genetic basis of traits in these elite germplasms 
is very important to further improve wheat quality traits, 
especially Fe and Zn composition in breeding programs.

Previous studies using biparental populations have 
reported QTLs for Fe concentrations on wheat chromosomes 
6A, 3B, 7B, and 4D (Wang et al. 2021). Marker-trait associa-
tions (MTAs) linked to Fe and Zn concentrations in wheat 
grains have also been reported through GWAS analysis 
(Tadesse et al. 2019). In addition to GWAS, genomic predic-
tion (GP), also called genomic selection (GS) when applied 
in practical breeding to select individual plants, have been 
applied to determine the genome-estimated breeding values 
(GEBVs) of quantitatively inherited traits from the genomic 
data of selection candidates without undertaking field phe-
notyping or expensive quality analysis (Alemu et al. 2021; 
Alomari et al. 2018). The GEBVs of candidate or breeding 
individuals are determined using genomic prediction models 

developed from the genotypic and phenotypic data of the 
training population with several statistical models (Goiffon 
et al. 2017).

The current study was carried out using 252 elite spring 
bread wheat genotypes developed from ICARDA with the 
following objectives: (I) to evaluate the available genotypic 
variation in micronutrient content and grain yield; (II) to 
identify significantly linked MTAs with targeted traits via 
GWAS and localize putative candidate genes; and (IV) to 
estimate the GEBVs of target traits through single-trait- and 
multi-trait-based genomic prediction analysis. For this pur-
pose, the panel was evaluated for 2 consecutive years (2018 
and 20,219) under field condition and genotyped with 15 K 
SNP array.

Materials and methods

Plant material and field experimental conditions

The current study used a panel comprising 252 elite wheat 
genotypes developed from ICARDA (Supplementary 
Table S1). The field experiment was carried out at the 
ICARDA experimental station in Merchouch, Morocco 
(33°36′24.3"N 6°42′50.0"W, 430 masl) for two consecu-
tive cropping seasons (2017–2018 and 2028–2019). The 
field trial was conducted testing all genotypes in a 3  m2 plot 
size following an alpha lattice design with two replications. 
Planting was done on the first week of December during the 
two trial seasons similarly at a seeding rate of 100 kg per 
hectare. Merchouch station is characterized with a cambi-
sol soil and was received an annual precipitation of about 
320 mm over the two cropping seasons. Merchouch station 
has a moderate humidity with annual temperature ranging 
between 10 and 40 °C.

Phenotyping of grain yield and micronutrients

The currently used panel was phenotyped for four traits 
including grain yield (GY), iron (Fe), zinc (Zn), and sele-
nium (Se). The micronutrient content of 252 elite wheat 
samples was evaluated following the standard protocol 
explained by Pequerul et al. (1993). Briefly, a total of 0.5 g 
of whole grain flour sample was placed in a digestion tube 
(QBlock series, Horiba) and kept overnight after adding 8 ml 
of nitric acid (HNO3). Samples were exposed for heating at 
90 °C for 60 min followed by adding 3–4 ml of 30% hydro-
gen peroxide  (H2O2). Then samples were filtered followed 
by diluting with hydrochloric acid (HCl) after the digestion 
process was completed and the solution became colorless. 
The determination of micronutrient content was performed 
using a simultaneous multi-element inductively coupled 
plasma emission spectrometer (iCAP-7000Duo, Thermo 
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Fisher Scientific) at the Cereal and Legume Quality Labo-
ratory, ICARDA, Morocco. Grain yield was measured in kg/
plot after threshing the whole plot.

The ANOVA, standard deviation as well as the coefficient 
of variation was determined using the RcmdrMisc package 
in R (Fox et al. 2022). The broad-sense heritability of traits 
was estimated using the formula:

where H2 represents the broad-sense heritability, Vg is the 
genotypic variance, and Vp is the phenotypic variance. The 
PCA and biplot analysis of phenotypic data for the four traits 
were conducted using the FactoMineR in R environment.

DNA extraction and genotyping

Genomic DNA was extracted from fresh leaf samples of 
2-week-old seedlings following the procedures described by 
Ogbonnaya et al. (2001). Genotyping was carried out using 
the 15 K SNP array at SGS Institute Fresenius GmbH, Trait 
Genetics in Gatersleben, Germany. A total of 10,173 SNP 
markers were applied for the current genomic prediction, 
linkage disequilibrium, population structure, and marker-
trait association analysis after filtering out below-standard-
quality SNP markers with less than 5% minor allelic fre-
quency (MAF) and above 20% missing values per individual.

Linkage disequilibrium and population structure 
analyses

The pairwise SNP markers linkage disequilibrium (LD) 
was calculated as r2 using Trait Analysis by Association, 
Evolution, and Linkage (TASSEL) software (Bradbury et al. 
2007) with a full size making a total of 786,219,856 marker 
comparisons. The LD decay trend through generations was 
estimated using the procedure developed by Remington 
et al. (2001) in R language following the nonlinear regres-
sion model developed by Hill and weir (Hill and Weir 1988) 
with the formula:

where E(r2) is the expected value of r2 under drift-recombi-
nation equilibrium; c is the recombination fraction between 
sites and n is the sample size.

Genome‑wide association analysis and gene 
annotation

Genome-wide association analysis of the current panel from 
the absolute mean values of grain yield and micronutrient 
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traits was performed using the mixed linear model (Q + K) 
in TASSEL including the kinship matrix (K) and principal 
components (Q) to control possible false-positive results 
raised from kinship and population structure, respectively. 
Manhattan plots were generated to display significant mark-
ers across chromosomes using CMplot package in the R 
environment using −log10(p) > 3.0 as exploratory threshold 
(LiLin-Yin 2018). The physical position of SNP markers was 
retrieved from the International Wheat Genome Sequence 
Consortium (IWGSC) v1.1 (IWGS 2018). The Ensemble 
Plants database (https:// plants. ensem bl. org/ Triti cum_ aesti 
vum/ Info/ Index) was explored to identify putative functional 
genes-associated SNP markers identified as MTAs with 
studied traits following the variant effect predictor method, 
and the UniProt (https:// www. unipr ot. org) database was used 
to determine associated protein functions.

Single‑ and multi‑trait genomic prediction 
and cross‑validation analysis

Both the single- and multi-trait genomic prediction analysis 
was conducted using the genomic best unbiased prediction 
(GBLUP) model. The single-trait GBLUP-based genomic 
prediction analysis was done following the mixed linear 
model formula:

where Y is the single-trait phenotypic observations of wheat 
genotypes for yield and micronutrient traits, β is the overall 
mean, Z is the design matrix for the random effects of SNP 
markers, u is the vector of additive effects derived from SNP 
markers following the multivariate normal μ∼MN (0, Gσ2

g), 
where G is the marker-based genomic relationship matrix 
calculated using the method developed by VanRaden (2008) 
as G =

ZZ�

p
 , where Z is the centered and standardized SNP 

marker matrix and p is the number of markers and σ2
g is the 

genetic variance, ε is the vector of the error term derived 
similarly following the multivariate normal (0, Iσ2

e), where 
I is the identity matrix and σ2

e is the residual variance.
The micronutrient-related traits genomic prediction anal-

ysis was further analyzed with multi-trait based genomic 
prediction models following the mixed model formula:

where Yij i = 1, 2, 3, and j = 1, …, n is a matrix of the 
response of the ith trait related to micronutrients in the jth 
wheat genotype, β1- β3 is a matrix from intercepts of each 
of the three micronutrient-related traits, Z1- Z3 the matri-
ces of random SNP markers effect, u 1—u 3 is a matrix of 
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vector derived from markers effect, and ε1 – ε3 is a matrix 
of the error terms from each traits.

A fivefold cross-validation analysis was employed to 
evaluate the single- and multi-trait genomic prediction 
models where 80% of the panel was used to develop the 
prediction model. The developed model was used to esti-
mate the genomic breeding values (GEBVs) of the remain-
ing 20% individuals. The prediction accuracy was derived 
from the correlation between the GEBVs with recorded 
phenotypic values of yield and micronutrient-related traits. 
The cross-validation analysis was done for 100 iterations.

All the single- and multi-trait genomic prediction 
analysis was done in BGLR software package (Pérez and 
Los 2014) computed with Markov Chains Monte Carlo 
(MCMC) sampler with chain length of 12,000 iterations 
and 10 thinning intervals with the first 2000 was used as 
burn-in.

Results

Phenotypic analysis

The highly performed elite genotypes for grain yield can 
be found in Supplementary Table S1 with their pedigree 
information. The two genotypes G-163 and G-233 showed 
the highest grain yield scoring with 6.13 and 4.85 t/ha, 
respectively. A normal frequency distribution was observed 
from the phenotypic values for all four studied traits (Fig. 1). 
Elite lines showed a significant genotypic variation with a 
wide range from 1.82 to 6.13 t/ha with an average 3.16 t/ha 
while the broad-sense heritability was 0.42 (Table 1). All the 
micronutrient-related traits showed a significant variation 
among genotypes. Elite genotypes exhibited a wide range of 
variation for Zn, Fe, and Se with a score ranging from 15.33 
to 45.62, 15.68 to 56.06, and 0.08 to 0.39 and with average 
values of 26.04, 45.62, and 0.22 mg/kg, respectively. The 

Fig. 1  Frequency distribution for grain yield and micronutrient-related traits recorded from the 252 elite wheat genotypes tested for 2 years in 
Merchouch, Morocco

Table 1  Analysis of variance for 
grain yield and micronutrient-
related traits from 252 elite 
wheat genotypes recorded from 
2 years field trials in Merchouch

H2 broad-sense heritability, Sd standard error, CV coefficient of variation

Trait Min Max Mean Sd CV H2

Fe 15.68 56.06 32.95 7.44 22.7 0.64
Zn 15.33 45.62 26.13 6.5 24.8 0.47
Se 0.08 0.39 0.22 0.05 23.7 0.68
GY 1.82 6.13 3.16 0.54 17.2 0.39
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Se trait exhibited the highest broad-sense heritability with 
0.68 followed by Fe and Zn contents with 0.64 and 0.47, 
respectively, while GY had showed only 0.39.

Pearson correlation and principal component 
analyses

Principal component analysis (PCA) with phenotypic scorings 
clustered the 252 genotypes into 4 distinct groups (Fig. 2). The 

first and second principal components accounted for 34.9% 
and 28.1% of the total phenotypic variation observed in grain 
yield and micronutrient-related traits, respectively. Eigenvalue 
for cluster one was trended to the right while clusters two, 
three, and four were located to the left, top, and bottom side 
from the biplot origin, respectively. The vectors of the biplot 
analysis for Fe and Zn were moved on the positive direction 
above the origin. In contrast, the vector value for grain yield 
was above the origin but in the left direction, while the vector 

Fig. 2  Cluster and principal 
component biplot analysis of 
tested bread wheat genotypes in 
Merchouch (Morocco). Biplot 
analysis of genotypes according 
to their phenotypic performance 
(A), principal component (B) 
and neighbor_joining tree (NJ) 
analysis (C) of the 252 geno-
types with their SNP marker 
profile
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for Se was below the origin and in the right direction. Fe 
and Zn contents were grouped in cluster 1, Se in cluster 2, 
and grain yield grouped in cluster 3. The SNP markers files 
with the neighbor-joining (NL) tree and principal component 
algorithms grouped elite lines with their respective pedigree 
similarity (Fig. 2b and c). For instance, the genotypes G-1, 
G-2, and G-3 clustered together on the NJ tree are linked to 
each other as sister lines with the same pedigree (CROC-1/
AE.SQUARROSA(224)//OPATA/4/SERI.1B*2/3/KAUZ*2/
BOW//KAUZ) while the G-142 (SERI.1B*2/3/KAUZ*2/
BOW//KAUZ/4/ATTILA/3*BCN) and G-143 (SERI.1B*2/3/
KAUZ*2/BOW//KAUZ/4/TRAP#1/BOW//PFAU/3/MILAN) 
are sharing the same node in their pedigree information (Sup-
plementary Table S1). Furthermore, Fe showed a significant 
and positive correlation with Zn and Se with Pearson’s cor-
relation coefficients  r2) 0.23 and 0.26, respectively (Fig. 3).

Linkage disequilibrium, marker‑trait association, 
and gene annotation

The linkage disequilibrium analysis exhibited the D sub-
genome with the highest linkage disequilibrium having an 

Fig. 2  (continued)

Fig. 3  Pearson’s correlation between grain yield and the three micro-
nutrient-related traits. **Significant at p < 0.01
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average r2 value of 0.21 followed by the sub-genomes B and 
A with 0.20 and 0.19, respectively. The genome-wide link-
age disequilibrium revealed the LD decay started at r2 value 
of 0.46. The half-LD decay (r2 = 0.23) intersected with the 
LD decay trend at 8.77 Mbp (Fig. 4).

A total of 19 marker-trait associations (MTAs) was 
identified significantly (P < 0.001) linked to the 4 tested 
traits (Table 2). Six MTAs were identified as significantly 
linked to grain yield under drought condition. The marker 
IAAV2271 located on chromosome 4B was particularly 
highly significantly (P < 0.000001) linked with grain 
yield with −log10

P value of 6.06 followed by the markers 

BobWhite_c4502_252 and RAC875_c46194_201 which are 
both located on chromosome 3B with −log10

P value of 4.8 
and 3.6, respectively. Other six MTAs were identified for Fe 
located on chromosomes 3A, 4A, 7A, 2B, and 1D (Table 2, 
Fig. 5). BS00049927_51 located on chromosome 1B was 
the SNP marker identified as highly significantly linked 
with Fe with −log10

P value of 3.58. For zinc content, four 
significantly linked MTAs were identified on chromosomes 
3A, 7A, 1B, and 5B. Marker RAC875_c66649_186 located 
on chromosome 1B was identified as significantly linked 
with Fe with −log10

P value of 5.0. The marker Excalibur_
c10046_579 on chromosome 5D was detected to be linked 
with selenium content.

A total of 16 putative candidate genes were discovered 
from the 19 identified SNP markers significantly associated 
to Fe, Zn, Se, and GY traits (Table 3). The marker RAC875_
c66649_186 highly significantly associated with Zn was 
linked with TraesCS1B02G395000 gene which encodes for 
the zinc finger protein BRUTUS and is involved in zinc ion 
binding. The SNP marker wsnp_Ku_c4299_7814936 identi-
fied on chromosome 7A had a significant association with 
Fe and is linked with the gene TraesCS7A02G024800. This 
gene encodes for the WAT1-related protein involved in trans-
membrane transporter activity. The SNP Kukri_c33670_506 
having a MTA with Se content from GWAS analysis is 
linked with the gene TraesCS1D02G041400 which encodes 
for the Protein gar2 involved in RNA binding. For grain 
yield, the marker BobWhite_c4502_252 was linked to the 
gene TraesCS3B02G086400, which encodes for the E3 

Fig. 4  Scatter plot for the pairwise  SNPs genome-wide  linkage dis-
equilibrium  (LD) decay measured for 252 elite wheat genotypes in 
ICARDA. Genetic distance in Mbp is plotted against pairwise LD 
 r2 values. The red solid curve represents the genome-wide LD decay 
generated from the smoothing spline regression model. The horizon-
tal blue line represents the half-LD decay e (r2 = 0.23), and the verti-
cal black solid line represents the genetic distance (8.77) at which the 
half-LD decay intersects with the LD decay curve

Table 2  List of identified 
marker-trait associations 
significantly linked with 
Fe, Zn, Se, and grain yield 
identified through genome-wide 
association analysis

Trait Marker Chromosome Position (bp) R2  –log10(p)

Fe BS00049927_51 1B 108,837,029 0.06 3.58
Fe wsnp_Ku_c4299_7814936 7A 9,753,520 0.06 3.38
Fe BS00077914_51 2B 42,281,519 0.06 3.22
Fe Kukri_rep_c92967_369 2B 15,882,612 0.05 3.05
Fe wsnp_Ex_c13031_20625900 4A 604,209,019 0.04 3.01
Fe wsnp_Ex_c45877_51547406 3A 743,190,499 0.05 3.00
Zn RAC875_c66649_186 1B 626,707,491 0.09 5
Zn RAC875_c36922_829 3A 9,852,634 0.04 3.19
Zn BS00079237_51 7A 3,906,831 0.04 3.11
Zn Kukri_c41408_233 5B 684,612,171 0.04 3.02
Se Excalibur_c10046_579 5D 160,064,658 0.06 3.51
Se RAC875_rep_c70595_321 5D 154,539,742 0.05 3.13
Se Kukri_c33670_506 1D 20,056,459 0.04 3.09
Yield IAAV2271 4B 17,469,995 0.11 6.06
Yield BobWhite_c4502_252 3B 54,752,111 0.09 4.8
Yield RAC875_c46194_201 3B 59,064,804 0.06 3.60
Yield wsnp_Ra_c26091_35652620 5B 483,000,113 0.05 3.57
Yield RAC875_c12959_869 4B 17,469,492 0.06 3.19
Yield Ra_c6065_1145 6A 9,327,369 0.05 3.09
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Fig. 5  Manhattan (left) and Q–Q (right) plots for grain yield (A), Fe (B), Zn (C), and Se (D) traits identified through GWAS analysis. The hori-
zontal solid line indicates the exploratory significant threshold applied at P of 0.001 or −logP < 3 to identify MTAs
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ubiquitin-protein ligase involved in the regulation of gene 
expression and ubiquitin-protein ligase activity.

Genomic prediction and cross‑validation 
analysis

The single-trait-based genomic prediction analysis of grain 
yield with the GBLUP model estimated an average predic-
tive ability of 0.32 ranging from 0.186 to 0.502 (Table 4, 
Fig. 6). The genomic prediction for the other three micro-
nutrient-related traits was explored with both single- and 
multi-trait-based genomic prediction methods in GBLUP 
model. The predictive ability of Se and Fe traits with multi-
trait-based genomic prediction GBLUP model was 0.161 and 
0.259 improving by 6.62 and 4.44%, respectively, compared 

to the single-trait-based models. However, the predictive 
ability of Zn remained constant in both methods (Table 4).

Discussion

Grain yield and quality-related traits of crops are quantita-
tively inherited and are governed by many genes (polygenes). 
Environment, management, and the interaction between gen-
otypes with these factors further affect the performance of 
wheat genotypes for these traits. The current study assessed 
the genotypic variation of 252 elite bread wheat genotypes 
for yield and micronutrients under rainfed conditions fol-
lowed by GWAS and genomic prediction analysis. A sig-
nificant variation was observed among evaluated genotypes 
for grain yield and micronutrient-related traits agreeing 
with several previous studies (Arora et al. 2019; Rathan 

Table 3  List of putative genes and their function identified from marker-trait associations for Fe, Zn, Se, and grain yield with the genome-wide 
association analysis

Trait Gene Protein name Molecular function Biological process

Fe TraesCS2B02G033000 Tyrosine N-monooxygenase-like Iron ion binding, monooxygenase 
activity

–

Fe TraesCS3A02G530000 AP-3 complex subunit beta – Intracellular protein transport
Fe TraesCS4A02G313900 Protein kinase domain-containing 

protein
Protein kinase activity Protein phosphorylation

Fe TraesCS7A02G024800 WAT1-related protein Transmembrane transporter activity –
Zn TraesCS1B02G395000 Zinc finger protein BRUTUS Zinc ion binding Protein ubiquitination
Zn TraesCS3A02G013800 Fatty acyl-CoA reductase Alcohol-forming fatty acyl-CoA 

reductase activity
Long-chain fatty-acyl-CoA metabolic 

process
Zn TraesCS5B02G523800 AAA domain-containing protein Metalloendopeptidase activity Proteolysis
Zn TraesCS7A02G008900 Monocopper oxidase-like protein 

SKU5
Copper ion binding –

Se TraesCS1D02G041300 Mitoc_mL59 domain-containing 
protei

– –

Se TraesCS1D02G041400 Protein gar2 RNA binding –
Se TraesCS5D02G118000 HECT-type E3 ubiquitin transferase Ubiquitin protein ligase activity Protein ubiquitination
GY TraesCS3B02G086400 E3 ubiquitin-protein ligase Ubiquitin protein ligase activity Regulation of gene expression
GY TraesCS3B02G089200 F-box domain-containing protein – –
GY TraesCS4B02G024500 Dirigent protein Carbohydrate binding Phenylpropanoid biosynthetic 

process
GY TraesCS5B02G299400 Transcription factor 25 – –
GY TraesCS6A02G019400 Protein transport protein sec16 – Golgi organization

Table 4  Single- and multi-
trait-based genomic prediction 
analysis for grain yield and 
micronutrient-related traits

Trait Single-trait Multi-trait

Minimum Maximum Average Minimum Maximum Average

GY 0.186 0.502 0.32 – – –
Fe 0.216 0.301 0.248 0.243 0.35 0.259
Zn 0.28 0.379 0.341 0.278 0.378 0.34
Se 0.11 0.183 0.151 0.11 0.248 0.161
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et al. 2022; Gupta et al. 2022). According to Tadesse et al. 
(2015), the performance of yield and yield-related traits 
decreases under drought conditions while quality traits such 
as grain protein content and gluten content show significant 
increments. Agreed with previous studies, grain yield dem-
onstrated a negative correlation with the currently studied 
quality traits (Kaya and Akcura 2014). In the current study, 
Fe exhibited a slightly significant positive correlation with 
Zn and Se inconsistent with previous reports (Bhatta et al. 
2018). However, it is noteworthy to know that environmental 
factors play an important role in the performance of these 
traits and is important to consider both genotype and envi-
ronment when making breeding decisions. The significant 
genotype x environment interaction further emphasizes the 
need to evaluate genotypes in multiple environments to iden-
tify those with broad adaptation.

GWAS has been used to identify unique MTAs and QTLs 
associated with valuable traits in different crops. In this 
study, we found a total of 19 significant markers associated 
with micronutrient-related traits and grain yield across dif-
ferent wheat chromosomes. Similarly, a higher number of 
MTAs was previously reported for grain yield, yield-related 
traits, and quality traits on the A and B genomes while the 
D genome relatively contributed less (Wang et al. 2021). 
We identified a highly significant marker for Fe content on 
chromosome 1B with −log10

P = 3.58 located at 108.8 Mbp. 
Several studies have detected many MTAs and QTLs for Fe 
content on the same chromosomes (Tong et al. 2022; Devate 
et al. 2022), but slightly on different positions indicating that 
these MTA could possibly be a novel marker discovered in 
our germplasm.

In this study, we identified four MTAs for Zn content 
located on chromosomes 1B, 3A, 5B, and 7A. The most sig-
nificant marker was RAC875_c66649_186 located on chro-
mosome 1B. A previous study found the same marker on 

chromosome 1B linked to the grain filling rate (Yang et al. 
2020), indicating that this marker is effective across different 
sets of materials tested in various environments and could 
be used for germplasm screening via MAS in breeding pro-
grams. In addition, we identified a marker highly associated 
with Se content on chromosome 5D with −log10

P = 3.51. 
Several MTAs and QTLs on chromosome 5D have been 
identified previously linked to Se under dry conditions (Ma 
et al. 2022). In this study, we found a total of six signifi-
cant MTAs on chromosomes 3B, 4B, 5B, and 6A associated 
with grain yield. Previous studies have also reported MTAs 
linked to grain yield on the same chromosomes (Maphosa 
et al. 2014; Lesk et al. 2016; Li et al. 2018). Using a popula-
tion of 127 RILs derived from the cross Ning7840 X Clark, 
Li et al. (2016) discovered the QTL QGpc.hwwgr-5BL on 
chromosome 5B.

Candidate genes linked to the MTAs with studied grain 
yield and micronutrient-related traits were mapped using 
the bread wheat genome reference database at Ensem-
ble plant and UniProt. Previous studies have identified 
16 genes involved in relevant biosynthetic pathways, 
including pathways related to zinc ion binding, Fe ion 
binding, ATP binding, monooxygenase activity, pro-
tein kinase activity, and ubiquitin-protein ligase activity 
(Raza et al. 2014; Michaletti et al. 2018). The candidate 
gene TraesCS2B02G033000 located close to the marker 
BS00077914_51, which is associated with the Fe con-
tent, encodes for the Tyrosine N-monooxygenase-like 
enzyme which is involved in Fe ion binding and monoox-
ygenase activity (Robertson and Biaggioni 2012). The 
marker RAC875_c66649_186 located close to the gene 
TraesCS1B02G395000 encodes for zinc finger protein 
BRUTUS and this protein is involved in zinc ion binding 
and protein ubiquitination (Rodríguez-Celma et al. 2019). 
TraesCS4B02G024500 closely found with the SNP marker 

Fig. 6  Predictive ability results from the single- and multi-trait-based 
genomic prediction analysis using the GBLUP model. The predic-
tive ability for grain yield (A) was measured on a single-trait-based 

GBLUP model while the micronutrient-related traits were tested with 
both single-trait (B) and multi-trait (C) GBLUP models
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RAC875_c12959_869 is one of the five identified putative 
genes linked to grain yield. This gene encodes for Dirigent 
protein which is involved in carbohydrate binding and phe-
nylpropanoid biosynthetic process (Li et al. 2019).

Genomic prediction can be a powerful tool for plant 
breeding and has the potential to significantly accelerate 
the development of new improved crop varieties (Alemu 
et al. 2023). The use of genomic prediction, genomic selec-
tion when the method applied practically in breeding, has 
been identified as the best strategy to increase the breeding 
efficiency of genetically complicated low-heritable traits 
in breeding (Alomari et al. 2018). Our genomic prediction 
results showed moderate prediction accuracies of mineral 
traits, which is consistent with previous studies that found 
low to moderate genomic predictability values of micronu-
trient-related traits (Kristensen et al. 2018; Mérida-García 
et al. 2019). The multi-trait-based genomic prediction 
methods could improve the accuracy of genomic selec-
tion, especially highly correlated traits, such as several 
micronutrient-related traits in crops (Atanda et al. 2022). 
Comparing the previous genomic prediction studies of 
micronutrient-related traits in wheat to other crops, rice 
shows a low to moderate prediction accuracy values (0.21 
to 0.52) (Muvunyi et al. 2022) while a moderate predic-
tion accuracy in maze (0.34 to 0.47) (Mageto et al. 2020). 
A previous genomic prediction study in pea quality traits 
shows low to moderate prediction accuracy (Atanda et al. 
2022).

To conclude, the current study investigated the potential 
of ICARDA’s elite wheat genotypes for grain yield and 
three micronutrient-related traits followed by identification 
of MTAs and estimating the GEBVs of individual geno-
types via GWAS and genomic prediction studies, respec-
tively. Nineteen MTAs and sixteen associated putative 
genes were identified with the potential to facilitate the 
MAS process in the search for developing new improved 
varieties. The multi-trait-based genomic prediction analy-
sis leads to an improved prediction accuracy for highly 
correlated micronutrient-related traits.
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