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Abstract
This study aimed to investigate the effects of Ginsenoside Rh4 (Rh4) on inflammation-related hepatocellular carcinoma 
(HCC) progression and the underlying mechanism. HCC cells (HUH7 and LM3) were induced by lipopolysaccharide (LPS) 
to establish an inflammatory environment in the absence or presence of Rh4. CCK-8, wound healing and transwell assays 
were employed to analyze the viability, migration and invasion of HCC cells. Ki67 expression was detected by immuno-
fluorescence method. Besides, the levels of glucose and lactic acid were tested by kits. The expression of proteins related 
to migration, glycolysis and histone deacetylase 4 (HDAC4)/IL-6/STAT3 signaling was measured with western blot. The 
transplantation tumor model of HCC in mice was established to observe the impacts of Rh4 on the tumor growth. Results 
indicated that Rh4 restricted the viability and Ki67 expression in HCC cells exposed to LPS. The elevated migration and 
invasion of HCC cells triggered by LPS were reduced by Rh4. Additionally, Rh4 treatment remarkably decreased the con-
tents of glucose and lactic acid and downregulated LDHA and GLUT1 expression. The database predicated that Rh4 could 
target HDAC4, and our results revealed that Rh4 downregulated HDAC4, IL-6 and p-STAT3 expression. Furthermore, the 
enforced HDAC4 expression alleviated the effects of Rh4 on the proliferation, migration, invasion and glycolysis of HCC 
cells stimulated by LPS. Taken together, Rh4 could suppress inflammation-related HCC progression by targeting HDAC4/
IL-6/STAT3 signaling. These findings clarify a new anti-cancer mechanism of Rh4 on HCC and provide a promising agent 
to limit HCC development.
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Introduction

Primary liver cancer is the sixth most commonly diagnosed 
cancer and the third leading cause of cancer death world-
wide in 2020, with approximately 906,000 new cases and 
830,000 deaths (Sung et al. 2021). Hepatocellular carcinoma 
(HCC) accounts for 70–85% of primary liver cancers and 
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has poor prognosis and high invasiveness (Ghouri et al. 
2017; Bray et al. 2018; Villanueva 2019). Early diagnosis 
of HCC is very challenging, so most patients are diagnosed 
with advanced stage, when treatment options are limited and 
ineffective (Brown et al. 2023). Although great progress has 
been made in the diagnosis and therapies for HCC, the treat-
ment effect of patients with HCC is still unsatisfactory with 
the overall 5-year survival rate of 25–39%, and the recur-
rence rate of advanced HCC is about 80% (Llovet et al. 
2021). Therefore, an in-depth understanding of the potential 
mechanism involved in the occurrence and development of 
HCC is of crucial importance to the development of new 
therapeutic strategies.

Tumor-promoting inflammation and avoidance of the 
immune system functions have been reported as novel hall-
marks of cancers (Nigam et al. 2023). Chronic inflammation 
can create a favorable tumor microenvironment, which is 
conducive to tumor growth and metastasis, and it plays a 
crucial role in the carcinogenesis of organs (Grivennikov 
et al. 2010). In the study of liver cancer microenvironment, 
it has been found that an important feature of liver tumor 
microenvironment is the persistence of bacterial antigen 
components, such as lipopolysaccharide (LPS) (Gu et al. 
2015). Previous studies have shown that LPS can induce 
the proliferation, invasion and migration of HCC cells (Lu 
et al. 2018; Liu et al. 2021). Therefore, identification of LPS-
induced endogenous inflammatory molecules and effective 
pharmacological intervention may provide the possibility for 
the development of effective treatment methods for HCC.

Ginsenosides are the main active components of ginseng, 
a rare perennial herb widely used in traditional and modern 
medicine, which are responsible for the biological and phar-
macological activities, such as antitumor, anti-inflammatory 
and immune enhancement effects (Gao et al. 2022; Yao and 
Guan 2022; Zhang et al. 2022a). Ginsenoside Rh4 (Rh4), 
a kind of tetracyclic triterpene saponins, is known to be 
endowed with an inhibitory effect on the development of 
diverse cancers (Huang et al. 2023). For instance, Rh4 exhib-
its the anti-metastatic effect on the lung adenocarcinoma 
and gastric cancer by restraining the proliferation, migration 
and invasion of cancer cells (Jiang et al. 2022; Zhang et al. 
2022b). By inhibiting aerobic glycolysis, Rh4 plays anti-
esophageal cancer roles with few side effects (Deng et al. 
2020). Besides, the low toxic side effects and anti-inflamma-
tory effects of the Rh4 have also attracted extensive attention 
from researchers (Bai et al. 2021; To et al. 2022). However, 
the role of Rh4 in LPS-induced aggressive progression of 
HCC cells has not been reported.

This study was performed to investigate the impacts of 
Rh4 on the regulation of proliferation, migration, inva-
sion and glycolysis of HCC cell lines (HUH7 and LM3) 
and transplantation tumor model of HCC in mice. Further, 
the potential mechanisms related to histone deacetylase 4 

(HDAC4)/ interleukin (IL)-6/signal transducer and activator 
of transcription 3 (STAT3) signaling were explored.

Materials and methods

Cell culture and treatment

Human HCC cell lines HUH7 and LM3 cells procured 
from Cell Bank of Shanghai Institutes of Biological Sci-
ences, Chinese Academy of Sciences (Shanghai, China) 
were cultivated in Dulbecco’s modified Eagle’s medium 
(DMEM; Lonza, Basal, Switzerland) containing 10% fetal 
bovine serum (FBS; Gibco, LifeTech, USA) in a humidified 
incubator with 37 °C and 5%  CO2. Cells were cultured 48 h 
after treatment with 1 µg/ml LPS (Sigma-Aldrich; Merck 
KGaA, Darmstadt, Germany) in the presence or absence 
of pretreatment with different concentrations of Rh4 (40, 
60 and 80 µM) for 30 min (Dong et al. 2015; Deng et al. 
2020; Wang et al. 2021). Rh4 (purity ≥ 99%) was purchased 
from Puruifa Technology Development Co., Ltd. (Chengdu, 
China).

Cell transfection

For transfection, the HDAC4 overexpression plasmid (Ov-
HDAC4) and the empty vector plasmid (Ov-NC) were syn-
thesized by GenePharma (Shanghai, China). HUH7 and 
LM3 cells at the logarithmic phase were seeded in a 6-well 
plate with the density of 1 ×  105 cells per well and incubated 
at 37 °C. Cell transfection was performed at 80% confluence 
with the application of Lipofectamine 2000 (Invitrogen) 
according to the manufacture’s protocol. Following trans-
fection for 48 h, the transfected cells were induced by Rh4 
and LPS as described above.

Cell viability assay

Cell viability was assessed using the (CCK-8) kit obtained 
from Beyotime (Shanghai, China). After transfection and the 
indicated treatment with LPS and Rh4, cells were incubated 
with CCK-8 solution for 2 h at 37 °C. The absorbance was 
recorded at 450 nm by using a microplate reader (Rayto, 
Ltd., China).

Immunofluorescence staining

After the indicated treatment, HUH7 and LM3 cells were 
fixed with 4% paraformaldehyde for 15 min at 37 °C, fol-
lowed by permeabilization with 0.1% Triton X-100 for 
20 min. After blocking with 4% bovine serum albumin 
(BSA), cells were incubated with primary antibody against 
Ki67 (cat. no. ab16667; Abcam Company, Cambridge, UK) 
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overnight at 4 °C. PBS was used to wash the slides for three 
times, and then secondary antibody was added for 1 h incu-
bation at room temperature. The cell nuclei were stained 
by DAPI. Cells was observed and imaged by an inverted 
fluorescence microscope (Olympus, Tokyo, Japan).

Wound healing assay

HUH7 and LM3 cells were inoculated into six-well plates at 
the density of 1 ×  105 cells/well. A pipette was used to make 
a straight line in the center of the plate. After rinsed with 
PBS buffer, the cells were cultured in a serum-free medium 
for 48 h. The width of the scratch was observed with a 
microscope and measured by ImageJ software (National 
Institutes of Health, Bethesda, MD, USA).

Transwell assay

Cell invasion assay was performed using transwell chambers 
which were coated with Matrigel (BD Biosciences, USA). 
Following transfection, HUH7 and LM3 cells were col-
lected and 5 ×  104 cells were added to the 200 μl serum-free 
medium in the upper chambers. The bottom chamber was 
supplemented with 800 μl DMEM containing 10% FBS as 
chemo-attractant. After incubation for 48 h, the cells in the 
upper chamber were removed and the obtained cells were 
fixed with paraformaldehyde and stained with 0.1% crystal 
violet for 10 min. The invasive cells were observed by an 
inverted microscope (Olympus, Tokyo, Japan).

Detection of glucose and lactic acid

Following the indicated treatment, HUH7 and LM3 cells 
were collected and lysed in RIPA lysis buffer (Beyotime; 
Shanghai, China), followed by centrifugation to obtain 
the supernatant. The levels of glucose and lactic acid were 
detected with the application of the corresponding assay 
kits provided by Nanjing Jiancheng Bioengineering Insti-
tute (Nanjing, China).

Human HCC xenograft nude mouse model

The total 15 male BALB/c nude mice (5 weeks old, weighing 
about 21 g) were purchased from GemPharmatech (Jiangsu, 
China). The tumors were xenografted into the left flank of 
nude mice through subcutaneous injection of 2 ×  106 cells 
in 50 μl of PBS. The mice were intratumorally injected with 
LPS (400 μg/kg) or the same volume of DMSO every other 
day. The tumor growth in the different groups was observed 
every two days. After 3 weeks, all mice were sacrificed, and 
the tumors were dissected. Tumor size was measured and 
calculated using the equation (length ×  width2)/2. All animal 
studies were approved by the Animal Ethics Committee of 

Guangxi University of Chinese Medicine and experiments 
were conducted according to the Animal Management Rules 
of the Chinese Ministry of Health.

Molecular docking

The 3D structure of HDAC4 was downloaded from the PDB 
website (http:// www. rcsb. org/) and saved in PDB format. 
The files were converted by AutoDockTools 1.5.6 into the 
“pdbqt” format. Finally, Autodock (version 4.2) was used 
for molecular docking, and the results were visualized using 
Pymol 2.5.2 (https:// pymol. org/2/).

Western blot

Proteins in cells and tumor tissues were lysed with RIPA 
lysis buffer (Beyotime; Shanghai, China). A BCA protein 
assay kit was used to detect protein concentrations (Beyo-
time; Shanghai, China). Protein samples were loaded onto 
10% SDS-PAGE and transferred to a polyvinylidene fluo-
ride (PVDF) membrane (Merck Millipore, Darmstadt, Ger-
many). After blocking in 5% nonfat milk for 1 h, the protein 
bands were incubated overnight with primary antibodies at 
4 °C. On the second day, the second antibodies (cat. no. 
7074P2; 1:5000; Cell Signaling Technology, Boston, MA, 
USA) were added for 1 h of incubation and the membranes 
were then developed with an enhanced chemiluminescence 
kit (Thermo Fisher Scientific). The band intensities were 
quantified using ImageJ software with respect to β-actin. 
Anti- matrix metalloproteinases 2 (MMP2; cat. no. 87809S; 
1:1000), anti-lactate dehydrogenase A (LDHA; cat. no. 
3582T; 1:1000), anti-glucose transporter type 1 (GLUT1; 
cat. no. 73015S; 1:1000), anti-HDAC4 (cat. no. 7628T; 
1:1000), anti-photo (p)-STAT3 (cat. no. 9145T; 1:1000), 
anti-STAT3 (cat. no. 4904T; 1:1000) and anti-β-actin (cat. 
no. 4970T; 1:1000) antibodies were provided by Cell Signal-
ing Technology (Boston, MA, USA). Anti-MMP9 (cat. no. 
ab283575; 1:1000), anti-IL-6 (cat. no. ab259341; 1:1000) 
and anti-Ki67 (cat. no. ab16667) antibodies were obtained 
from Abcam Company (Cambridge, UK).

Statistical analysis

Data were presented as mean ± standard deviation (SD). All 
experiments were carried out at least three times and pre-
sented with representative data. The statistical graph was 
generated by GraphPad 8.0 statistical software (GraphPad 
Software Inc., USA). Statistical calculations of the data were 
performed using one-way analysis of variance (ANOVA), 
followed by Tukey’s test. A p-value less than 0.05 was con-
sidered a significant difference.

http://www.rcsb.org/
https://pymol.org/2/
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Results

Rh4 treatment inhibits the proliferation, migration 
and invasion of LPS‑induced HCC cells

It has been reported that LPS can induce the malignant 
phenotypes of HCC cells (Lu et al. 2018; Liu et al. 2021). 
To investigate the effects of Rh4 on LPS-induced increase 
in cell proliferation, migration and invasion, two types 
of HCC cells were subjected to treatment with LPS and 
Rh4. Firstly, the viability of LPS-induced HUH7 and LM3 
cells after Rh4 administration was evaluated by means of 
CCK-8 assay. As depicted in Fig. 1A, B, LPS stimula-
tion obviously elevated the viability of both HUH7 and 
LM3 cells when compared to the control group. On the 
contrary, the addition of Rh4 dose-dependently reduced 
the viability of these two HCC cell lines. Consistently, the 
enhanced fluorescence intensities of Ki67 induced by LPS 
in HUH7 and LM3 cells were significantly decreased with 
the increase of Rh4 concentrations (Fig. 1C, D). Addi-
tionally, Rh4 remarkably inhibited the migration (Fig. 2A) 
and invasion (Fig. 2B) of HUH7 cells exposed to LPS. As 
exhibited in Fig. 2C, D, the same trend of migrative and 
invasive capacities in the presence or absence of LPS and 
Rh4 was also found in LM3 cells. Concurrently, LPS led to 
upregulated MMP2 and MMP9 expression in both HUH7 
and LM3 cells compared to the control group, which were 
gradually restored by the increase in the concentration of 
Rh4 (Fig. 2E, F). These data suggest that Rh4 treatment 
suppresses the proliferation, migration and invasion of 
LPS-induced HCC cells.

Rh4 treatment suppresses the glycolysis 
of LPS‑induced HCC cells

This section was conducted to analyze the impacts of Rh4 
on the autophagy and glycolysis in HCC cells. The gly-
colysis levels of LPS-induced HCC cells were evaluated 
in HUH7 and LM3 cells when treated with LPS and Rh4. 
It was found that LPS exposure resulted in obviously ele-
vated glucose (Fig. 3A) and lactic acid (Fig. 3B) contents 
in HUH7 cells relative to the control group. When com-
pared to the LPS group, the levels of glucose and lactic 
acid were dose-dependently decreased after the addition of 
Rh4. Meantime, LM3 cells stimulated with LPS and Rh4 
showed the same variation tendency on glucose and lactic 
acid as HUH7 cells (Fig. 3C, D). LDHA and GLUT1 are 
two key regulatory enzymes involving in glycolysis in the 
development of HCC (Ye et al. 2019). Results of western 
blot exhibited in Fig. 3E, F indicated that LPS-induced 
upregulation in LDHA and GLUT1 expression in both 

HUH7 and LM3 cells was downregulated by Rh4 treat-
ment and the most obvious inhibitory effect was observed 
in the Rh4-80 μM group. These observations reveal that 
Rh4 treatment retrains the glycolysis of HCC cells under 
LPS stimulation.

Rh4 can target HDAC4 to inactivate the HDAC4/IL‑6/
STAT3 signaling in HCC cells

To explore the mechanisms of Rh4 in regulating the malig-
nant biological behaviors of HCC cells, molecular dock-
ing method was used to predict the protein that could be 
targeted by Rh4, and it was found that HDAC4 served as 
a potential protein that bound to Rh4 (Fig. 4A). Addition-
ally, western blot demonstrated that LPS-induced increase in 
HDAC4 expression levels in both HUH7 and LM3 cells were 
reduced by Rh4 in a dose-dependent manner (Fig. 4B, C). To 
further investigate the mechanism underlying the effects of 
Rh4 on the LPS-induced enhancement of malignant behav-
iors in HCC cells, we detected the expression of proteins in 
IL-6/STAT3 signaling. It was found that Rh4 significantly 
downregulated the expression of IL-6 and p-STAT3 in LPS-
induced HUH7 and LM3 cells as comparison to the LPS 
group. Above data reveal that Rh4 targets HDAC4 to inacti-
vate the HDAC4/IL-6/STAT3 signaling in HCC cells.

HDAC4 overexpression weaken the impacts of Rh4 
on the progression of HCC cells

Due to the better inhibitory effects, Rh4-80 μM was selected 
to treat HUH7 cells in the following experiments. And 
HDAC4 was overexpressed to clarify the regulatory effects 
of Rh4 on HDAC4/IL-6/STAT3 signaling in HCC cells. 
Significantly elevated HDAC4 expression was observed in 
HUH7 cells transfected with HDAC4 plasmid (Fig. 5A). 
CCK-8 assay and Ki67 staining indicated that HDAC4 
gain-of-function partially reversed the decreased HUH7 cell 
viability and Ki67 fluorescence intensity caused by Rh4-
80 μM administration under LPS stimulation (Fig. 5B, C). 
As expected, the migration and invasion of HUH7 cells were 
obviously promoted after transfection with HDAC4 plasmid 
in the presence of LPS and Rh4 (Fig. 6A, C). Besides, it 
was observed from western blot assay that HDAC4 overex-
pression markedly upregulated MMP2 and MMP9 expres-
sion in HUH7 cells when compared to the LPS + Rh4-
80 μM + Ov-NC group (Fig. 6C). The further experiments 
revealed that the decrease in glucose and lactic acid contents 
as well as LDHA and GLUT1 expression levels caused by 
Rh4 was restored after HDAC4 was overexpressed (Fig. 6D, 
E). Through the above findings, we prove that HDAC4 over-
expression weaken the impacts of Rh4 on the progression 
of HCC cells.
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Fig. 1  Rh4 treatment inhibited the proliferation of LPS-induced 
HCC cells. The viability of A HUH7 and B LM3 cells stimulated 
by LPS in the presence or absence of Rh4 was evaluated by CCK-8 
assay. Ki67 expression in C HUH7 and D LM3 cells treated by LPS 

or/and Rh4 was tested by immunofluorescence staining. Magnifica-
tion, × 200. ***P < 0.001 vs. control group; ##P < 0.01, ###P < 0.001 vs. 
LPS group
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Rh4 inhibits the development of subcutaneous 
HUH7 tumors in nude mice and inactivates 
the HDAC4/IL‑6/STAT3 signaling

Then, the transplantation tumor model of HUH7 cells in 
mice was established to analyze the antineoplastic effect of 
Rh4 in vivo. As shown in Fig. 7A–C, LPS stimulation nota-
bly increased the tumor volume of nude mice compared with 
the control group, which was decreased after Rh4 admin-
istration. In addition, the upregulation in Ki67, MMP2, 
MMP9, LDHA and GLUT1 expression caused by LPS was 
also downregulated by Rh4 treatment (Fig. 7D). Consist-
ently, Rh4 reduced the expression levels of HDAC4, IL-6 
and p-STAT3 in tumor tissues of nude mice intratumorally 
injected with LPS as comparison to the LPS group (Fig. 7E). 
In general, these observations reveal that Rh4 represses the 
growth of subcutaneous HUH7 tumors in nude mice and 
inactivates the HDAC4/IL-6/STAT3 signaling.

Discussion

The association between chronic inflammation and the 
development and metastatic progression of human cancers 
has been extensively studied. Chronic inflammation of the 
liver is a well-recognized risk factor for carcinogenesis since 
80% of HCC cases are associated with cirrhosis or fibrosis 
(Alison et al. 2011; Afify et al. 2022; Wen et al. 2022). In 
addition, chronic inflammation can promote the malignant 
development of liver cancer and affect the prognosis (Leone 
et al. 2021). Therefore, it is of great significance to explore 
and develop anti-liver cancer drugs from the perspective of 
inflammation. In this study, we focused on the effects and 
underlying regulatory mechanism of Rh4 on malignant pro-
gression of LPS-induced HCC cells. We finally proved that 
Rh4 could suppress inflammation-related HCC progression 
by targeting HDAC4/IL-6/STAT3 signaling.

In recent years, traditional Chinese medicine have made 
good progress in the treatment of HCC due to their advan-
tages of high efficiency, low toxicity and side effects (Xi 
and Minuk 2018; Yuan et al. 2023). For instance, Schisan-
therin A has been reported to inhibit cell proliferation by 
regulating glucose metabolism pathway in HCC (Feng et al. 
2022). Tao et al. have demonstrated that Orientin, a flavone 

isolated from medicinal plants used in traditional Chinese 
medicine, represses the proliferation and migration of HCC 
cells (Tao et al. 2023). From Jean’s work, total flavonoids 
from Radix Tetrastigma inhibit inflammation-related prolif-
eration and invasion of HCC cells (Liu et al. 2021). Particu-
larly, Ginsenoside Rk3 has excellent efficacy in alleviating 
intestinal inflammatory response and protecting the liver, 
and it can inhibit the development of HCC by targeting the 
gut-liver axis (Qu et al. 2021). As a rare triol ginsenoside, 
Rh4 is more soluble in water than other polysaccharides 
ginsenoside, which might improve its prospects for clinical 
application (Baek et al. 1996). A growing body of literature 
has shown that Rh4 has excellent anti-inflammatory and 
anti-cancer properties. Rh4 inhibits LPS-induced activation 
of NF-κB and STAT3 signaling in macrophages, thereby 
playing anti-inflammatory effect (To et al. 2022). Rh4 can 
also protect against ethanol-induced gastric mucosal injury 
via mitigating inflammation and oxidative stress (Wu et al. 
2023). Shao et al.’s research findings have suggested that 
Rh4 can inhibit the apoptosis of hippocampal neurons and 
the damage of synaptic structure caused by the overexpres-
sion of proinflammatory cytokines and the over-activation 
of microglia and astrocytes by inhibiting the immune inflam-
matory response (Shao et al. 2023). Besides, Rh4 has been 
reported to inhibit the proliferation of colorectal cancer 
cells (Wu et al. 2022). By regulating immune microenvi-
ronment and apoptosis, Rh4 suppresses the growth of breast 
cancer without any adverse effects (Dong et al. 2023). In a 
study of esophageal squamous cell carcinoma, Chen's team 
has found that Rh4 inhibits tumor metastasis both in vitro 
and in vivo (Chen et al. 2022). This work was the first to 
reveal the effects of Rh4 on malignant progression of LPS-
induced HCC cells, and we demonstrated that Rh4 treatment 
inhibited the proliferation, migration and invasion of LPS-
induced HCC cells.

It is well known that tumor cells under physiological 
oxygen conditions tend to be metabolized by glycolysis 
rather than oxidative phosphorylation, exhibiting an abnor-
mally high rate of aerobic glycolysis, termed the Warburg 
effect (Chandel 2021). Upregulation of aerobic glycolysis 
is thought to underlie tumor cell survival and tumorigen-
esis (Chelakkot et al. 2023). There are a plenty of related 
enzymes participating in the regulation of glycolysis. For 
instance, LDHA, an isoenzyme of lactate dehydrogenase that 
functions in the final step of glycolysis to convert pyruvate 
to lactate, has been demonstrated to be elevated in tumors 
and can be used as a prognostic marker in cancer patients 
(Koukourakis and Giatromanolaki 2019). Notably, GLUT1 
is a transmembrane protein responsible for the uptake of glu-
cose into the cells in a readily diffused manner (Wang et al. 
2019a). Glucose metabolism produces lactic acid, which 
is the main end product of glucose metabolism (Mossenta 
et al. 2020). Therefore, the estimation of extracellular lactic 

Fig. 2  Rh4 treatment inhibited the migration and invasion of LPS-
induced HCC cells. The capacities of A migration and B invasion of 
HUH7 cells were measured with the help of wound healing and tran-
swell assay. The capacities of C migration and D invasion of LM3 
cells were determined using wound healing and transwell assay. Mag-
nification, wound healing, × 100, transwell, × 200. The expression of 
MMP2 and MMP9 proteins in E HUH7 and F LM3 cells was esti-
mated by western blot assay. ***P < 0.001 vs. control group; #P < 0.05, 
##P < 0.01, ###P < 0.001 vs. LPS group

◂
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acid and glucose may indirectly reflect the metabolic level 
of aerobic glycolysis (Fang et al. 2019). Recent studies have 
suggested that glycolysis metabolism is closely associated 
with the development and progression of HCC (Bi et al. 
2021; Li et al. 2022; Lin et al. 2023). A better understanding 
of the interaction between glycolysis and anti-tumor agents 
is of great importance to understand the pathogenesis and 
therapeutic mechanisms of cancers. Importantly, Rh4 plays 
anti-esophageal cancer roles with few side effects by inhib-
iting aerobic glycolysis (Deng et al. 2020). In the current 
study, Rh4 dose-dependently suppressed the glycolysis of 
both HUH7 and LM3 cells under LPS condition, evidenced 
by decreased glucose and lactic acid contents as well as 
downregulated LDHA and GLUT1 expression.

To explore the mechanisms of Rh4 in regulating the 
malignant biological behaviors of HCC cells, molecular 
docking method found that HDAC4 served as a potential 
protein that bound to Rh4. HDAC4, located on chromo-
some 2q37.2, is a member of class IIa family of HDACs 

which are hotspots in the field of cancer drug development 
(Wang et al. 2014). An increasing body of evidence sug-
gests that HDAC4 plays a crucial role in tumorigenesis 
and is frequently dysregulated in human malignancies 
(Cuttini et al. 2023; Xu et al. 2023). HDAC4 has been 
considered as a promising therapeutic target for multiple 
cancers, including gastric cancer, nasopharyngeal carci-
noma and colon cancer, due to its effects on promoting 
the growth and metastasis of tumors (Cheng et al. 2021; 
Zang et al. 2022). A previous study has highlighted that 
HDAC4 expression is increased in the tissues of type B 
HCC, and the higher the expression, the worse the prog-
nosis (Wang et al. 2019b). Of note, Zhang et al. have also 
reported that HDAC4 knockdown has an anti-proliferative 
effect on HCC cells both in vitro and in vivo (Zhang et al. 
2010). The results of this work suggested that the upregu-
lated HDAC4 expression induced by LPS was downregu-
lated by Rh4 in a dose-dependent manner. Additionally, 
IL-6/STAT3 is one of the key signaling involved in the 

Fig. 3  Rh4 treatment suppressed the glycolysis of LPS-induced HCC 
cells. The levels of A glucose and B lactic acid in HUH7 cells were 
detected by the corresponding kits. The levels of C glucose and D 
lactic acid in LM3 cells were estimated with the application of the 

corresponding kits. Western blot was employed to analyze the expres-
sion of LDHA and GLUT1 in E HUH7 and F LM3 cells. ***P < 0.001 
vs. control group; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. LPS group
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occurrence, development and invasion of HCC cells (Liu 
et al. 2010, 2022). In recent years, IL-6/STAT3 has been 
thought to be a promising therapeutic target for HCC (Xu 
et al. 2021). Importantly, HDAC4-related inhibitors can 
inhibit the activation of downstream IL-6/STAT3 signal-
ing to suppress the growth and metastasis of breast cancer 
(Chen et al. 2020). In the present study, Rh4 led to the 
inactivation of IL-6/STAT3 signaling in LPS-stimulated 
HCC cells and in the tissues of mouse HCC subcutane-
ous transplanted tumor, evidenced by reduced IL-6 and 
p-STAT3 expression. Moreover, HDAC4 overexpression 
restored the impacts of Rh4 on the malignant phenotypes 
of HCC cells, suggesting that Rh4 inhibited the devel-
opment of HCC by inactivating the HDAC4/IL-6/STAT3 

signaling. It has been reported that autophagy-mediated 
ferroptosis plays significant roles in the progression of 
HCC (Li et al. 2021; Hu et al. 2022). As reported, Rh4 
induces autophagic cell death and ferroptosis to inhibit the 
malignant progression of cancers (Wu et al. 2018; Ying 
et al. 2023). Therefore, our next experiments will explore 
whether Rh4 affects autophagy and ferroptosis in HCC.

Taken together, the findings of this study demonstrated 
that Rh4 inhibited the development of HCC under LPS-
induced inflammatory condition both in vitro and in vivo. 
In detail, Rh4 targeted and suppressed HDAC4/IL-6/STAT3 
signaling to exert the anti-HCC effects. These findings might 
clarify a new anti-cancer mechanism of Rh4 on HCC and 
provide a promising agent for the treatment of HCC.

Fig. 4  Rh4 targeted HDAC4 to inactivate the HDAC4/IL-6/STAT3 
signaling in HCC cells. A Stereo view of the binding mode for Rh4 
with HDAC4. B The expression of proteins in HDAC4/IL-6/STAT3 
signaling in HUH7 cells was tested using western blot assay. C The 

expression of proteins in HDAC4/IL-6/STAT3 signaling in LM3 cells 
was tested using western blot assay. ***P < 0.001 vs. control group; 
##P < 0.01, ###P < 0.001 vs. LPS group
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Fig. 5  HDAC4 overexpression alleviated the impacts of Rh4 on the 
proliferation of HUH7 cells treated with LPS and Rh4. A HDAC4 
level in HUH7 cells was tested by western blot after transfection. 
***P < 0.001 vs. Ov-NC group. B Cell viability was detected by 

CCK-8 assay. ***P < 0.001 vs. control group; ###P < 0.001 vs. LPS 
group; &&P < 0.01 vs. LPS + Rh4-80  μM + Ov-NC group. C Ki67 
expression was analyzed by immunofluorescence staining. Magnifica-
tion, × 200
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Fig. 6  HDAC4 overexpression attenuated the impacts of Rh4 on the 
migration, invasion and glycolysis of HUH7 cells treated with LPS 
and Rh4. The capacities of A migration and B invasion of HUH7 
cells were measured with the help of wound healing and transwell 
assay. Magnification, wound healing, × 100, transwell, × 200. C The 
expression of MMP2 and MMP9 proteins was estimated by west-

ern blot assay. The levels of D glucose and E lactic acid in HUH7 
cells were detected by the corresponding kits. F Western blot 
was employed to analyze the expression of LDHA and GLUT1. 
***P < 0.001 vs. control group; ###P < 0.001 vs. LPS group; &P < 0.05, 
&&P < 0.01, &&&P < 0.001 vs. LPS + Rh4-80 μM + Ov-NC group
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Fig. 7  Rh4 repressed the development of subcutaneous HUH7 tumors 
in nude mice and inactivates the HDAC4/IL-6/STAT3 signaling. A 
Representative images of HUH7 xenograft nude mice in the control 
group, LPS group and LPS + Rh4 group. B Representative images 
of HUH7 xenograft tumors of the control group, LPS group and 
LPS + Rh4 group. C The tumor volume was recorded every two days. 

D The expression of Ki67, MMP2, MMP9, LDHA and GLUT1 in 
tumor tissues of nude mice was detected with the application of west-
ern blot. E The expression of HDAC4, IL-6 and p-STAT3 in tumor 
tissues of nude mice was detected with the application of western 
blot. ***P < 0.001 vs. control group; ##P < 0.01, ###P < 0.001 vs. LPS 
group
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