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Abstract
Modern wheat (Triticum aestivum L.) cultivars have a free-threshing habit, which allows for easy manual or mechanical 
threshing. However, when harvesting is delayed or extreme weather events occur at harvest time, grain shattering can cause 
severe loss of harvestable yield. In the past, grain size was considered a predisposing factor as large, plump kernels can 
lead to buckling and breaking of the outer glume, but the correlation between glume strength and shattering is not strong in 
modern wheat, and it is hypothesised that there may be other genetic mechanisms. Data from two bi-parent populations and 
a wheat diversity panel were analyzed to explore the underlying genetic basis for grain shattering observed in multiple field 
experiments through quantitative trait loci (QTL) analysis. Grain shattering had a significant and negative association with 
grain yield, irrespective of populations and environments. The correlation with plant height was positive in all populations, 
but correlations with phenology were population specific, being negative in the diversity panel and the Drysdale × Waagan 
population, and positive in the Crusader × RT812 population. In the wheat diversity panel, allelic variations at well-known 
major genes (Rht-B1, Rht-D1 and Ppd-D1) showed minimal association with grain shattering. Instead, the genome-wide 
analysis identified a single locus on chromosome 2DS, which explained 50% of the phenotypic variation, and mapping 
to ~ 10 Mb from Tenacious glume (Tg) gene. In the Drysdale × Waagan cross, however, the reduced height (Rht) genes showed 
major effects on grain shattering. At the Rht-B1 locus, the Rht-B1b allele was associated with 10.4 cm shorter plant height, 
and 18% decreased grain shattering, whereas Rht-D1b reduced plant height by 11.4 cm and reduced grain shattering by 20%. 
Ten QTL were detected in the Crusader × RT812, including a major locus detected on the long arm of chromosome 5A. All 
the QTL identified in this population were non-pleiotropic, as they were still significant even after removing the influence 
of plant height. In conclusion, these results indicated a complex genetic system for grain shattering in modern wheat, which 
varied with genetic background, involved pleiotropic as well as independent gene actions, and which might be different from 
shattering in wild wheat species caused by major domestication genes. The influence of Rht genes was confirmed, and this 
provides valuable information in breeding crops of the future. Further, the SNP marker close to Tg on chromosome 2DS 
should be considered for utility in marker-assisted selection.
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Introduction

Modern wheat (Triticum aestivum L.) cultivars have a free-
threshing habit, with soft glumes that allow for manual or 
mechanical harvesting. However, when harvesting is delayed 

or extreme weather events occur at harvest time, grain shat-
tering can account for up to 17% loss of harvestable yield. 
The propensity to shatter was eliminated in early forms of 
the domesticated crops (Dubcovsky and Dvorak 2007), but 
not completely (Li et al. 2006). In the wild type, the head 
fractures easily at the junction of the rachilla with the rachis 
but modern wheat have a tough rachis governed by major 
genes located on homoeologous regions on the short arms of 
chromosomes 3A (Br2), 3B (Br3) and 3D (Br1) (Nalam et al. 
2006; Watanabe et al. 2006). Independent recessive muta-
tions in each of the brittle rachis genes cause the cell wall at 
specific ‘‘constriction grooves’’ or fracture zones to thicken, 
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converting the wild-type brittle rachis into a tough, non-brit-
tle form that promotes head retention (Pourkheirandish et al. 
2015). The brittle rachis, like other domestication traits, is 
easily distinguishable due to its high penetrance and is heav-
ily selected against during the early generations of breeding 
programs. Despite heavy selection, however, grain loss due 
to shattering still occurs in the field in modern wheat (Chang 
1943; Clarke and De Pauw 1983). Grain loss in this con-
text is defined as the dropping of individual grains from the 
rachis at apical end of the spikes (Beck 1951; Porter 1959; 
Clarke 1981) (Fig. 1a), or the loss of a spike segment and 
the grains (Kandemir et al. 2000), which is different from 
the loss of whole spikes, as in barley (Clarke 1981). There 
are suggestions in the literature that the size of individual 
grains might be a predisposing factor (Platt and Wells 1949; 
Clarke 1981) as large, plump kernels and more grains per 
head can lead to buckling and breaking of the outer glume 
(bracts enclosing the grain), making the grain more easily 
removable from the spike (Vogel 1938). Genes that control 
soft glume (sog) and glume tenacity (Tg) have been identi-
fied and localised to chromosomes 2AS and 2DS (Sood et al. 
2009), but according to Zhang et al. (2009), the correlation 
between glume strength and shattering is not strong in mod-
ern wheat. It was hypothesised, therefore, that there may be 
other genetic mechanisms controlling differences in grain 
shattering between varieties (Doebley et al. 2006).

Wheat is the second most-widely cultivated crop grown 
in the world, driven by the plethora of products that can 
be made from the grain, each of which has a near-limitless 
number of variations (Kiszonas and Morris 2018). It is piv-
otal to global food security, with demand now outstripping 
supply, as global production volume in 2020–2021 of over 
700 million metric tonnes was outstripped by the consump-
tion volume of over 710 million metric tonnes (Shahbandeh 
2022). It is expected that climate change will exacerbate 
food security in areas that already currently have a high 
prevalence of hunger and malnutrition (Wheeler and Braun 
2013). Globally, annual wheat yield ranges from < 1 t/ha/

year when water or nutrients are limiting to > 10 t/ha/year 
in cooler, well-watered environments (Asseng et al. 2020). 
Causes of the yield gap are well documented (see Hochman 
and Horan 2018) but a significant component that is often 
overlooked is the loss of harvests in standing crops due to 
various reasons, including grain shattering.

Grain loss due to shattering (Fig. 1b) is a direct loss of 
income to the grower, as the more grains a grower can get 
into the machine at harvest, the greater the returns (Hofman 
and Kucera 1978). Clarke and De Pauw (1983) calculated 
the potential loss to range from 3 to 17% of harvestable 
yield, while Vogel (1938) reported it to be between 5 and 
15%. Not only is the grain lost when shattering occurs, but 
a high amount of volunteer crop can also be expected dur-
ing fallow, and if uncontrolled, can reduce water storage 
and contribute to the field seed bank. The amount of grain 
loss due to shattering depends on environmental conditions, 
such as high temperatures and wind speed, two weather fac-
tors that are predicted to increase in intensity due to cli-
mate change. Efforts to limit the loss are focused on cultivar 
choice and management, and a good understanding of the 
genetics would enable identifying susceptible genotypes 
before field trials and allow agronomic research to focus on 
managing the risk by varietal selection. The objectives of 
this study were to determine the underlying genetic basis for 
grain shattering in standing crop of modern wheat through 
quantitative trait loci (QTL) analysis and investigate the 
linkage with important agronomic characters.

Materials and methods

Diversity panel

The diversity panel comprised of 295 hexaploid and tetra-
ploid genotypes, as well as advanced breeding lines from 
the International Maize and Wheat Improvement Center 
(CIMMYT), and landrace cultivars sourced from heat-prone 

Fig. 1  Grain shattering in stand-
ing crop of wheat in the field. 
A Grain shattering occurred 
mostly in the apical spikelet 
positions on the spike (green 
arrows), B Shattered grains on 
the ground, which are a direct 
loss of income to the grower
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environments. They formed part of a larger research on 
wheat heat tolerance reported by Collins et  al. (2017). 
Molecular data for the diversity panel were derived from 
publicly available Illumina iSelect 90 K SNP array markers, 
made available by Garcia et al. (2019) for more than 500 
diverse wheat accessions. The total marker set of 30,548 
SNPs was filtered to remove markers with minor allele fre-
quency of 5% or below. Then, the data were further reduced 
to retain 10,826 markers using PLINK’s function for SNP 
pruning based on linkage disequilibrium (Purcell et  al. 
2007). Missing data were imputed using the Random Forest 
regression method in R package (Stekhoven and Bühlmann 
2011).

Drysdale × Waagan

This is a population of 142 doubled haploid (DH) lines 
derived from the  F1 of a cross between the Australian wheat 
cultivars, ‘Drysdale’ and ‘Waagan’. Drysdale (named after 
the Australian artist, Russell Drysdale) was released in 2002 
with the pedigree Hartog*3/Quarrion and was one of two 
varieties (the second was Rees) bred for increased water 
use efficiency by selecting for reduced carbon isotope dis-
crimination (Richards 2006). Waagan was derived from a 
cross of Janz with a CIMMYT line, 24IBWSN-244. The 
point mutations responsible for the two major semi-dwarfing 
genes Rht-B1 (Syn. Rht1) and Rht-D1 (Syn. Rht2), segregate 
in the population, with Drysdale carrying the tall allele at 
Rht-B1 locus (Rht-B1a) and the dwarfing allele (Rht-D1b) 
at Rht-D1, and vice versa for Waagan (Shirdelmoghanloo 
et al. 2016).

Details of the Drysdale × Waagan DH population devel-
opment and genotyping with the 9 k SNP array (Cavanagh 
et al. 2013) were described by (Shirdelmoghanloo et al. 
2016). The total marker set consisted of 2,711 SNP mark-
ers, and these were assigned to physical positions on the 
wheat genome by searching against the T3/Wheat repository 
(https:// wheat. triti ceaet oolbox. org/). From these, a subset 
of 908 markers located on the wheat genome was selected 
for QTL analysis. They covered 13.7 Gigabase (Gb) of the 
17-gigabase hexaploid bread wheat genome (80.6%), with 
an average inter-marker interval of 15.1 Mb.

Crusader × RT812

The Crusader × RT812 population is a DH population con-
structed from the  F1 of a cross between the Australian culti-
var, ‘Longreach-Crusader’ (Sunbrook/H45), and a breeding 
line, ‘RT812’, developed at CIMMYT. RT812 has the pedi-
gree, Pastor//HXL7573/2*Bau/3/CMH82.575/CMH82.801. 
Crusader is extremely well adapted to main and later sea-
son sowings in New South Wales and Queensland, Aus-
tralia. The population comprised of 243 lines, genotyped 

with 9,792 DArTseq single-nucleotide polymorphic mark-
ers assayed across the whole genome. DArTseq sequences 
(available at https:// www. diver sitya rrays. com/) were used 
to query the IWGSC RefSeq v2.1 wheat reference genome 
for physical positions (Mb) of the markers. Missing values 
were imputed using the ‘fill.geno” in R/QTL (Broman et al. 
2003).

Field experiments

Eleven field experiments were conducted between 2015 and 
2018, and the locations for individual populations are indi-
cated on Table 1. The soil at Wagga Wagga (latitude 35.05° 
S, longitude 147.35° E) is a sandy clay loam described as a 
Red Kandosol. It is moderately permeable, moderately well-
drained with a greyish brown colour. At Condobolin (lati-
tude 33.07° S, longitude 147.26° E), the soil is red brown in 
colour with near neutral pH and low inherent fertility and 
organic matter, and at Leeton (latitude 34.36° S, longitude 
146.21° E), the soil is a vertosol, with shrink-swell proper-
ties that exhibit strong cracking when dry.

The experiments were sown with entries in a partial rep-
lication (p-rep), in which 75% of the entries were duplicated 
twice. Plot size was 7.5  m2 (6 rows with 30 cm spacing, 6 m 
long), and sown with 60 g seed. All experiments were ferti-
lized at the time of sowing with mono-ammonium phosphate 
(MAP) at the rate of 100 kg  ha−1. Weed and disease control, 
including irrigation, followed standard procedures described 
in Sissons et al. (2018).

Resistance to shattering was based on visual scoring using 
a scale of 1 to 9, in which 1 = no shattering and 9 = severe 
shattering (Haley et al. 2005). Plant height was measured in 
each plot, from soil surface to tip of the spike and defined 
as the average of three locations within each plot. Phenol-
ogy was measured as the date of awn emergence, defined 
in days from sowing to when awns on 50% of the plants in 
a plot were approximately 1 cm above the flag leaf auricle 
(Sissons et al. 2018).

Plots were trimmed from 6 m long to 5 m prior to har-
vest, and grain yields were harvested using a plot machine, 
and converted to tonnes per hectare, based on the weight of 
uncleaned seed from each plot. A sub-sample of 300 g grains 
were taken from each plot and used to determine grain size, 
first by counting out 250 kernels randomly on a grain coun-
ter (Numigral, Rousseau, Paris, France), and then weighing 
the kernels, and the weight expressed as the weight of 1000 
kernels.

Statistical analysis

Statistical analyses were performed in R (https:// cran.r- proje 
ct. org/) using mixed linear models to partition the phenotypic 
variance into genetic and non-genetic components. A baseline 

https://wheat.triticeaetoolbox.org/
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model was fitted within a multi-environment framework, 
which involved using information of the plot layouts (rows 
and columns) to model position of each plot. The analyses 
were performed using ASREML-R (version 4) package (But-
ler et al. 2017) according to the following form:

where y is a vector of trait observations, β is a vector of 
fixed effects to test for trends in the row and column direc-
tions, g is a vector of the underlying genetic variation of the 
trait among the progeny lines, X and Z are the associated 
design matrices, and ε is a vector of random residual errors. 
The residual variance also included a correlation structure 
parameterized as AR1 × AR1 (AR1 = autoregressive first 
order process) to model the correlation along the rows and 
columns due to neighbourliness of the experimental plots. 
These were fitted separately for each environment as fixed 
factors using the ASReml-R function at(), tested for signifi-
cance (P < 0.05) using the wald statistics, and non-signifi-
cant terms were removed from the final model. Normality 
checking was performed on the residuals as suggested in 
Kozak and Piepho (2018), and phenotypes with extreme val-
ues were replaced with ‘NA’ in multiple iterations until no 
residuals beyond ± 3 standard deviations were left.

Heritability (h2) was calculated as described by Cullis 
et al. (2006):

(1)y = X� + Zg + �

h.2 = 1 −
(mean.sed)2

2�2

g

where mean.sed is the average pairwise prediction error of 
the genetic effects for the tested genotypes and σ2g is the 
genetic variance for the respective treatments.

Genetic correlations (rA) between grain yield, grain shat-
tering and agronomic traits were calculated as:

where σ2
x and σ2

y are the genotypic variance components for 
traits x and y, and  Covxy is the genetic covariance compo-
nent, calculated after creating a dummy variable (z = x + y) 
as [(σ2

z − (σ2
x + σ2

y)]/2. The statistical significance of rA was 
assessed as proposed by Schefler (1979), assuming a popula-
tion correlation coefficient of zero, as:t = rA

√

(1−r2
A
)∕(n−2)

where 

t is a student’s t value with (n-2) degrees of freedom, and n 
is the number of pairs of observations.

Genome‑wide association analysis (GWA)

The population used for GWA comprised of 131 geno-
types selected from the diversity panel for their ploidy 
(2n = 6x = 42) and availability of high-density molecular 
data, including KASP markers for the presence of well-
known major semi-dwarf genes, Rht-B1 and Rht-D1, and 
photoperiod response gene, Ppd-D1. Population structure 
in the GWA panel was analyzed using discriminant analysis 
of principal components (DAPC) in the adegenet R package 
(Jombart et al. 2010). The final marker matrix after pre-
processing contained 131 individuals and 3,711 markers. 

rA = Covxy∕
√

�2

x
�2

y

Table 1  Overview of considered genetic materials, field experiments, layout, and trait heritabilities in field experiments conducted between 2015 
and 2018

Field layout refers to the number of columns (C) and rows (R) used to ensure genotype allocation would be spatially balanced across the experi-
ment. Heritability estimates represent the fraction of total variation due to genetic factors

Population/Site/year No. lines Field 
layout 
(C × R)

Heritability estimates

Grain shattering Plant height Phenology Grain weight Grain yield

Drysdale × Waagan
 Wagga Wagga, 2015 Early 144 12 × 18 0.30 0.27 0.39 0.95 0.82
 Wagga Wagga, 2015 Late 144 12 × 18 0.85 0.97 0.82 0.92 0.90

Crusader × RT812
 Condobolin, 2017 Early 243 18 × 10 0.79 0.57 0.52 0.91 0.86
 Condobolin, 2017 late 243 18 × 10 0.87 0.50 0.86 0.91 0.48
 Condobolin, 2018 Early 262 18 × 20 0.42 0.23 0.88 0.85 0.56

Diversity panel
 Elite lines, Leeton, 2015, Early 224 21 × 20 0.83 0.80 0.93 0.96 0.82
 Elite lines, Leeton, 2015, Late 224 21 × 20 0.68 0.92 0.93 0.96 0.90
 Elite lines, Wagga Wagga, 2015, Early 231 23 × 18 0.85 0.91 0.78 – 0.85
 Elite lines, Wagga Wagga, 2015, Late 231 18 × 23 0.76 0.82 0.79 – 0.82
 Landraces, Leeton, 2015, Late 64 6 × 20 0.65 0.80 – – 0.85
 Landraces, Wagga Wagga, 2015, Late 64 7 × 18 0.70 0.71 – – 0.91
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Genome-wide association (GWA) analysis was performed 
with the R package, GAPIT3 (Lipka et al. 2012), using the 
multi-locus mixed model approach (mlmm) described by 
Segura et al. (2012), which accounts for kinship. The method 
uses forward–backward stepwise regression to sequentially 
incorporate significant markers as covariates in the GWA 
model before scanning all other markers. Four principal 
component dimensions, fitted as fixed effects, were used to 
control for the confounding effect of population structure, 
along with a kinship matrix calculated according to Van-
Raden (2008) to define the variance and covariance struc-
ture of random individual effects (Yu et al. 2006). Markers 
exhibiting a genome-wide adjusted FDR P value < 0.05 were 
identified as significant.

Bi‑parent QTL analysis

QTL analysis was performed using the Whole Genome 
Average Interval Mapping (RWGAIM) algorithm (Verbyla 
et al. 2012). The SNP molecular marker data were imported 
using the ‘read.cross’ command of R/QTL (Broman et al. 
2003), and converted into an ‘interval’ object using the 
‘cross2int’ command of R/WGAIM, with co-located mark-
ers placed in consensus bins. Then, the genetic ‘interval’ 
datum was merged with the baseline model defined in (1), 
and in the final step, R/WGAIM extended the model by 
incorporating all markers simultaneously as random covari-
ates to detect main effect QTL. In the R script, the ‘fix.lines’ 
command was set to TRUE to fix the lines that do not exist in 
the genetic map. The gen.type = "marker" and the genome-
wide Type I error for declaring a significant QTL was set at 
0.01. Detailed summaries of detected QTL, including their 
position, effect size, and level of significance were provided 
by the package, and the QTL graphically displayed using 
linkMap() function.

Pleiotropic QTL analysis

In this step, we performed conditional genome scans using 
plant height as a fixed covariate in the R/WGAIM analy-
sis of grain shattering. Comparison of unconditioned and 
conditioned scans would reveal changes in the LOD score 
for a QTL (Li et al. 2006), and if an unconditioned QTL is 
still detected after removing the influence of plant height, 
then this would likely represent an independent locus, but if 
the QTL is no longer significant, then that would suggest a 
pleiotropic QTL, causally linked to grain shattering through 
the effect of plant height. This approached yielded results 
that were identical to those from conditional genetic analysis 
proposed by Zhu (1995) and in some cases, revealed new 
QTL whose presence was made possible by removing the 
influence of plant height.

QTL × E analysis

Following the approach used by many authors (e.g., Lukens 
and Doebley 1999; Jermstad et  al. 2003; Weinig et  al. 
2003; Geshnizjani et al. 2020), we used analysis of vari-
ance (ANOVA) to test the QTLs for environmental sensitiv-
ity. The approach also served to validate results obtain by 
RWGAIM algorithm.

Bioinformatic analysis

The physical positions of all SNP markers were determined 
by aligning the sequences harbouring each SNP to the 
updated reference sequence of the wheat genome (RefSeq 
v2.1) by BLAST search through the URGI portal (https:// 
wheat- urgi. versa illes. inra. fr/). The start position of each 
locus was extracted from the BLASTN output and used in 
the QTL analyses.

Results

Genotypic variation in landrace and elite wheat

Eleven field experiments were monitored for grain shat-
tering in 2015, 2017 and 2018, and significant genotypic 
variations were observed in all cases (Fig. 2; Table 1). The 
variability in grain shattering was largest in the elite wheat 
cultivars grown under normal (June sowing) conditions, as 
opposed to those grown under late (August) sowing condi-
tions (Fig. 2). Broad-sense heritability estimates obtained for 
the different population/year data (Table 1) showed higher 
genetic variances relative to error in eight of the eleven field 
experiments. This indicates high trait repeatability, which 
ranged from 0.30 to 0.87. Equally important, these values 
compared well with those for plant height (Table 1), sug-
gesting either a strong, independent genetic basis for the 
varietal differences in grain shattering, or pleiotropic effect 
of genes controlling plant height. Using data for the elite 
wheat cultivars (because of the diverse genetic background), 
we found grain shattering in standing crop to show a high 
degree of repeatability across environments (Fig. 3), with 
highly significant positive correlation across sites (r = 0.77; 
P < 0.001) and time of sowing (r = 0.73; P < 0.001).

Genetic correlations

Grain shattering had a negative association with grain yield, 
irrespective of populations and environments (Table 2). The 
degree of association was small (− 0.07) in only 1 of the 11 
population/year experiments we analyzed and was strong 
and consistently significant in majority of the experiments, 
ranging from – 0.20 to – 0.83 (Table 2). The correlations 

https://wheat-urgi.versailles.inra.fr/
https://wheat-urgi.versailles.inra.fr/
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Fig. 2  Observed phenotypic 
variation for grain shattering in 
standing crop of multiple wheat 
populations grown in different 
field experiments between 2015 
and 2018

Fig. 3  Scatterplot of grain shat-
tering measured in elite wheat 
cultivars grown at two sites (a) 
and sowing times (b) in the 
wheat diversity panel

Table 2  Genetic correlation 
 coefficients† of grain yield with 
shattering and other agronomic 
traits in different wheat 
populations averaged across 
sites and years

Signif. codes: < 0.001 '***'; 0.01 '**'; '*' 0.05; ns = Not significant, ‘- ‘ = Not available
† A genetic correlation coefficient measures the degree of association between the genetic variations of two 
quantitative characters in a population (Reeve 1955)

Population/site/year Grain shattering vs:

Grain yield Plant height Phenology Grain size

Drysdale × Waagan
 Wagga Wagga, 2015 Early − 0.07 ns 0.25** 0.07 ns 0.09 ns
 Wagga Wagga, 2015 Late − 0.50*** 0.67*** − 0.32*** 0.06 ns

Crusader × RT812
 Condobolin, 2017 Early − 0.69*** 0.14* 0.09 ns 0.11 ns
 Condobolin, 2017 late − 0.75*** 0.25** 0.17** 0.12 ns
 Condobolin, 2018 Early − 0.83*** 0.08 ns 0.37*** 0.26***

Diversity panel
 Elite lines, Leeton, 2015, Early − 0.36*** 0.32*** − 0.30*** 0.25***
 Elite lines, Leeton, 2015, Late − 0.11 ns 0.37*** − 0.30*** 0.40***
 Elite lines, Wagga Wagga, 2015, Early − 0.43*** 0.38*** − 0.19** –
 Elite lines, Wagga Wagga, 2015, Late − 0.20** 0.41*** − 0.05 ns –
 Landraces, Leeton, 2015, Late − 0.50*** 0.12 ns – –
 Landraces, Wagga Wagga, 2015, Late − 0.29* 0.18 ns – –
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with grain size were positive, indicating that large grains 
increased the propensity to shattering, but data were not 
complete, particularly in the landraces, which were com-
promised by heavy lodging and had to be discarded.

The correlation with plant height was positive in all pop-
ulations, and strongest in the Drysdale × Waagan doubled 
haploids, which segregated for the semi-dwarfing genes. The 
genetic correlation with plant height was also strong in the 
diversity panel, which comprised of genotypes with different 
genetic background, but was weak in the Crusader × RT812 
population. Phenology had a significant effect on the pro-
pensity to grain shattering, but the influence was population-
specific (Table 2), being negative in the diversity panel and 
the Drysdale × Waagan populations, and positive in the Cru-
sader × RT812 population.

Genome‑wide study of diversity panel

The GWA identified a marker (Fig.  4), BobWhite_
c2949_1083 (Syn. IWB2281), which explained 50% of the 
phenotypic variability (GAPIT estimate). This could be due 
to the low statistical power associated with the relatively 
small population size, but to confirm the GWA result was 
not spurious, we analyzed data on plant height in the panel, 
which was genotyped with KASP markers that targeted 
major semi-dwarf genes, Rht-B1 and Rht-D1. The analysis 
identified the presence of the major genes in the panel, and 
their allelic effects conformed to expectations (Fig. 4).

For grain shattering, the quantile–quantile (QQ) plot 
(Fig. 4) showed further evidence that observed P values 
closely adhered to the expected values, with the genomic 
inflation factor less than 1.0 (λ = 0.90), indicating there were 
no systematic, spurious associations due to confounding fac-
tors. In the consensus wheat 90 K SNP array (Wang et al. 
2014), the identified marker, BobWhite_c2949_1083 (Syn. 
IWB2281), was placed on chromosome 2BS, but physical 

mapping localised the SNP marker to the short arm of chro-
mosome 2D, based on the recent Chinese Spring genome 
assembly (RefSeq v2.1).

QTL detection in Drysdale × Waagan

Both Drysdale and Waagan were present in the diversity 
panel, and they carried the alternate, non-shattering allele 
identified for grain shattering in the GWA analysis. In field 
experiments, however, Waagan ranked better than Drysdale 
for grain shattering, and their doubled haploid progenies 
were significantly different, with moderate-to-high herit-
ability observed across the sowing times, and estimated at 
an average of 57.6% (Table 1). For plant height, the average 
heritability was 62.0%, and for phenology, it was 60.4%. 
The comparable heritability values showed grain shattering 
to be under strong genetic control, and further investigations 
were undertaken to unravel the genetic basis by scanning 
the wheat genome for allelic differences associated with the 
phenotype.

In the R/WGAIM analysis, 857 SNP markers repre-
senting unique, non-redundant marker bins were used for 
QTL analysis. The markers satisfied the expected ratio of 
1:1 segregation, with 50.9% of ‘AA’ alleles, and 49.1% of 
the ‘BB’ alleles. Six genomic regions were found to be 
significantly linked to the variability in the grain shatter-
ing (Fig. 5a), and all QTL were verified to be significant 
(P < 0.01) by independent ANOVA tests (Table 3). Two of 
the QTL had major effects, collectively explaining almost 
50% of the phenotypic variation. The two major QTL were 
located on chromosomes 4B and 4D, and directly linked 
to Rht-B1 and Rht-D1 semi-dwarfing genes. At the Rht-
B1 locus, the Rht-B1b allele for reduced height carried 
by Waagan was associated with 10.4 cm shorter plant 
height, and 18% decreased grain shattering, whereas Rht-
D1b carried by Drysdale reduced plant height by 11.4 cm 

Fig. 4  Summary plot of GWA 
results in a wheat diversity 
panel, showing A Manhattan 
plot, QQ plot, and allele effect 
of identified QTL on grain shat-
tering, B Manhattan plot, QQ 
plot, and allele effect of major 
genes present for plant height in 
the diversity panel
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and reduced grain shattering by 20% (Fig. 6). These QTL 
were still significant, even after adjusting for the effect 
of plant height, but the explained variation was substan-
tially reduced from 27.4 to 13.9% in the case of the Rht-B1 
locus, and from 18.9 to 6.7% for the Rht-D1 locus. These 
results indicated a pleiotropic influence of the plant height 
major genes on grain shattering in the population.

There were four minor QTL, located on chromosomes 
3A, 6A, 6B and 7B (Fig. 5; Table 3). The minor QTL on 3A 
and 7B shared co-location with QTL associated with other 
agronomic traits, but the loci on chromosomes 6A and 6B 
were independent (Fig. 5a). Indeed, the locus on chromo-
some 3A was no longer significant, after adjusting for plant 
height, indicating it was a pleiotropic effect. However, the 

Fig. 5  Chromosomal location of 
main-effect QTL identified for 
grain shattering and agronomic 
traits in two bi-parent popula-
tions of elite wheat cultivars. 
Chromosomes harbouring the 
QTL are represented by vertical 
lines, and each horizontal black 
line represents one of the unique 
SNP markers. Physical dis-
tances are reported on the scales 
to the left of the chromosomes

Table 3  Main-effect 
quantitative trait loci (QTL) 
associated with grain shattering 
in two bi-parent populations of 
wheat

Marker Chr Pos. (Mb) Effect Prob %Var ANOVA test

Marker M × E

Drysdale- × -Waagan
 IWA3730 3A 53.19 0.25  < 0.001 6.80 0.012 0.015
 Rht-B1 4B 30.86 0.53  < 0.001 27.40  < 0.001  < 0.001
 Rht-D1 4D 18.78 − 0.42  < 0.001 18.90  < 0.001  < 0.001
 IWA6434 6A 594.83 0.17 0.002 3.30 0.010 0.061
 IWA4486 6B 519.15 − 0.18 0.003 3.90 0.005 0.005
 IWA418 7B 97.31 − 0.20 0.001 4.30  < 0.001 0.001

Crusader-×-RT812
 1248362 2A 74.25 − 0.14 0.001 4.30  < 0.001 0.56
 1144438 2A 692.73 − 0.11 0.006 3.00  < 0.001 0.20
 3945645 2B 663.13 0.18  < 0.001 7.00  < 0.001 0.33
 4329714 2D 586.94 0.13 0.001 3.70  < 0.001  < 0.001
 1127861 3A 718.34 0.27  < 0.001 7.80 0.01 0.71
 2244885 3D 457.84 0.17  < 0.001 5.90  < 0.001 0.78
 1048025 4A 330.09 − 0.17 0.001 3.30  < 0.001 0.53
 1107268 5A 705.90 − 0.26  < 0.001 15.20  < 0.001 0.32
 2322338 7B 712.83 0.13 0.001 4.20  < 0.001 0.54
 1105401 7D 65.94 − 0.14  < 0.001 4.70  < 0.001 0.28
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two loci detected on chromosome 6A and 6B, along with the 
QTL on chromosome 7B were still significant, even after 
conditioning on plant height, indicating they represent inde-
pendent QTL. A QTL was detected for plant height on the 
short arm of chromosome 6A, which did not appear to affect 
shattering propensity. All identified QTL had some level 
of environmental sensitivity (Table 3), but this involved a 
change in magnitude rather than a change in direction.

QTL detected in Crusader × RT812

Amongst parent of this mapping population, RT812 was 
shatter resistant, while Crusader was susceptible. As 
shown in Table 1, the doubled haploid progeny from the 
cross exhibited significant variability for grain shattering, 
with heritability that ranged from 0.42 to 0.87, depending 
on the environment. To investigate the genetic basis, the 
DNA of the progeny lines were assayed for polymorphism 
at DArTseq markers, and from a total of 9792, a subset of 
3948 non-redundant markers were used for QTL analysis. 
These covered 15.7 Gigabase (Gb) of the 17-Gb hexaploid 
bread wheat genome (92.4%), with a density of one marker 
per 4 Mb. The markers, on average, satisfied the expected 
ratio of 1:1 (AA = 48.9%; BB = 51.1%).

Ten QTL were detected for grain shattering using the 
WGAIM algorithm, and the QTL × environment ANOVA 
testing showed the effects were largely stable across envi-
ronments (Table 3). Half of the identified QTL (located on 
chromosomes 2A, 2B, 5A and 7D) were closely linked to 
QTL affecting other agronomic traits, while the other half 
were largely isolated (Fig. 5b). The major locus for grain 
shattering was detected on the long arm of chromosome 
5A, approximately 433 Mb from the centromere. Based on 
in silico mapping against the reference wheat genome, this 
QTL was located about 54.1 Mb downstream of the wheat 

domestication gene, Q, which determines spike morphology. 
Support interval for the QTL was small, spanning 374.3 Kb 
in length, and contained six genes, including genes that 
encodes for Cytochrome P450 and UDP-glucosyltransferase.

The QTL with minor effects explained between 3 and 
7.8% of the phenotypic variability, and the ANOVA test for 
main effects confirmed that all were significantly associated 
with grain shattering, and stable across environments. Two 
loci located at the apical and centromeric ends of chromo-
some 4A were no longer significant after adjusting for the 
plant height, despite there being no QTL for plant height at 
these regions. Apart from these two, all other QTL identified 
in the population were non-pleiotropic, independent genetic 
factors, as they were still significant after removing the influ-
ence of plant height.

Discussion

In this study, a major locus was identified for grain shattering 
in the diversity panel, which mapped close to the Tenacious 
glume gene, Tg, on chromosome 2D. This locus was not 
evident in either of the bi-parent populations. This result is 
one of the benefits of using a combined linkage-based QTL 
mapping and LD-based association mapping to dissect the 
genetics of complex traits, as more genes can be identified 
by the combined use of these two methods (Lou et al. 2015). 
However, results obtained from such a combined approach 
are often not identical (Famoso et al. 2011; Lou et al. 2015; 
Altendorf et al. 2021), just as results from different bi-parent 
populations could be different due to heterogeneous genetic 
backgrounds (Holland 2007). In this case, one explanation is 
that the chromosome 2DS locus is probably fixed in the bi-
parent populations. Parents of the doubled haploid popula-
tions were elite, high-yielding lines and not selected because 

Fig. 6  Allelic effects of the 
major Rht gene loci on grain 
shattering and plant height 
in the Drysdale × Waagan bi-
parent population
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of their contrasting phenotypes. QTL identified would be 
limited to the genetic loci segregating in the cross (Honsdorf 
et al. 2010; Brachi et al. 2010). The diversity panel, on the 
other hand, was comprised of old and current varieties, and 
the higher number of recombination events in such materials 
increase the range of natural variation that can be surveyed 
and would increase QTL detection power and resolution 
(Ewens and Spielman 2001).

Grain shattering is a difficult trait to phenotype accurately 
under field conditions (Zhang and Mergoum 2007a; Zhang 
et al. 2009), and in the past, breeding (Haley et al. 2005) and 
genetic studies (Marza et al. 2006; Bokore et al. 2022) have 
used visual scoring methods that are applied at harvest matu-
rity. We followed the same approach here, and in a diverse 
panel of wheat cultivars, which comprised of elite lines and 
landrace varieties, this provided a good indication of a geno-
type’s propensity to shatter, with good stability across envi-
ronments (Fig. 3). Substantial genetic variation was found 
to exist, with Spearman’s rank correlations ranging from 
0.67 to 0.73, depending on the environment (Fig. 3). This 
meant that some wheat cultivars were more shatter resistant 
than others, and interestingly, more grain shattering occurred 
when crops were sown early (average score 4.3) than when 
sown late (average score 1.7). This has implications for early 
sowing systems to boost wheat yields (Hunt et al. 2019) 
because in bad years, a good portion of the harvest could be 
lost due to shattering.

Most of the shattering we observed in the field were at the 
apical end of the spike, that is, the top one-third of the spike 
(Fig. 1). This supports the findings made over 8 decades 
ago (Vogel 1941) that florets in the upper spikelets tend to 
shatter more easily than those towards the base of the spike. 
It could be that grains at the apical spikelets dry out faster 
during senescence and, therefore, more susceptible to be 
removable from the spike by buffeting wind and/or birds, but 
the physiological basis needs to be explored further.

We explored the genetic basis of grain shattering by QTL 
mapping in populations of different genetic backgrounds 
and to account for possible pleiotropy, we included other 
plant traits, such as phenology, plant height and grain size 
as covariates. The estimates of broad-sense heritability cal-
culated for grain shattering in each population compared 
well with those calculated for plant height and phenology, 
suggesting it is either highly heritable on its own or it is the 
pleiotropic influence of genes affecting these traits. In the 
diversity panel, genome-wide analysis accurately identified 
the association of Rht-B1 and Rht-D1 with plant height, and 
these were the only markers above the threshold (Fig. 4), 
indicating presence of the Rht genes in the population. But 
there was no significant association of the Rht genes with 
grain shattering. Rather, the GWA identified a single locus, 
which explained 50% of the phenotypic variation in grain 
shattering. This was mapped to chromosome 2B (Wang 

et al. 2014), but the physical location was established to 
be the short arm of chromosome 2D, based on the updated 
Chinese Spring genome (RefSeq v2.1). Other previously 
reported genes on 2DS located in this vicinity include Ppd-
D1 and Rht8, based on sequence matches of closely linked 
markers (Jantasuriyarat et al. 2004). However, the most 
likely candidate gene is the Tenacious glume, Tg1, which 
is located ~ 10.0 Mb on the distal side, based on sequence 
matches of closely linked markers reported by Sood et al. 
(2009). The Tg genes governs the free-threshing habit in 
wheat (Kerber and Rowland 1974) and was mapped to short 
arms of chromosomes 2B and 2D by both Jantasuriyarat 
et al. (2004) and Sood et al. (2009). Until recently, most of 
the molecular markers for the genes were based on simple 
sequence repeats (SSR), but Arif et al. (2021) reported a 
SNP marker, wsnp_Ra_c25656_3522705, close to Tg gene 
on chromosome 2D. Its physical position on the Chinese 
Spring genome suggests it is co-located (~ 7.7 Mb) with the 
marker identified in this study.

Grain shattering may be due to pleiotropic gene 
action

The genetic relationship of plant height with grain shatter-
ing is poorly understood, and some studies have suggested it 
might be entirely environmental (Zhang et al. 2009). Clarke 
and De Pauw (1983) found the amount of shattering was pos-
itively related with plant height, although not significant, and 
suggested that tall-strawed lines might tend to shatter more 
easily than short-strawed lines due to greater exposure of 
the spikes. In the Drysdale × Waagan cross, half of the QTL 
detected for grain shattering co-located with QTL associated 
with plant height and/or grain size (Fig. 5a). The two semi-
dwarfing genes, Rht-B1 and Rht-D1, accounted for most of 
the observed variation in grain shattering, with alleles at the 
Rht-B1 locus contributing the most (R2 = 27.4%), and alleles 
at Rht-D1 accounting for a large proportion (18.9%) of the 
observed variability. The Rht-B1 locus explained 37.1% of 
the variation in plant height and 10.8% of the variability in 
grain size. On the other hand, the Rht-D1 locus explained 
43.2% of variation in plant height and only a small propor-
tion (3.4%) of the variability in grain size.

It is conceivable, therefore, that the effect of these regions 
on grain shattering might be a pleiotropic action of the 
reduced height genes. The Rht genes encode mutant DELLA 
proteins that are negative regulators of several gibberellic 
acid responses required for growth and have been associated 
with some undesirable agronomic characteristics, especially 
in water-limited environments (Jatayev et al. 2020). A link-
age of grain shattering with semi-dwarfism was suggested by 
Oba et al. (1990), and later, Nakamura et al. (1995) showed 
that grain shattering caused by a single recessive gene, sh-2, 
is linked to the well-known semi-dwarf gene, sd-1 locus on 
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chromosome 1. Zhang et al. (2013) reported the cloning of 
TaqSH1, a wheat ortholog of the rice grain shattering gene, 
qSH1, whose over-expression in Arabidopsis thaliana down-
regulated known abscission genes and resulted in dwarfed 
plants, linking the reduced propensity to grain shattering 
with plant height.

The locus detected on chromosome 3A in the Drys-
dale × Waagan cross was no longer significant after adjust-
ing for plant height. A significant QTL for plant height was 
detected within the interval, and this might be related to a 
gene for plant height identified by Martinez et al. (2021). 
QTL were also detected for grain shattering at the api-
cal and centromeric ends of chromosome 4A in the Cru-
sader × RT812 cross (Fig. 5b), but these became non-signif-
icant after adjusting for the plant height. This would indicate 
that these loci were associated with plant height and causally 
linked to grain shattering through the effect of plant height. 
Inability to detect a QTL for plant height at these regions 
might be related to allele frequency and small size of the 
effect (Würschum et al. 2017).

Independent QTL for grain shattering

In the two bi-parent populations, we found significant 
QTL on multiple chromosomal regions other than those 
harbouring known Rht genes. The Q gene (TRAESC-
S5A02G473800), located on the long arm of chromosome 
5A, controls the ease with which grains can be separated 
from the chaff (Simons et al. 2006). We did not detect the 
presence of the Q gene in either of the two bi-parent popu-
lations used for this study. In fact, no QTLs were detected 
on chromosome 5A in the Drysdale × Waagan cross. In the 
Crusader × RT812 population, a QTL with strong phenotypic 
effect was identified on chromosome 5AL, with the peak 
signal at marker, 1107268 (Table 3), but it is unlikely to be 
linked to the Q gene locus, as it is physically located about 
55.8 Mb distal of Q gene location. Other previously reported 
QTL in this vicinity include loci identified by Jantasuriyarat 
et al. (2004) and more recently by Bokore et al. (2022).

We found multiple QTLs on homoeologous group 
2 chromosomes in the Crusader × RT812 population 
(Fig. 5b; Table 3), and this was intriguing because genes 
controlling classic domestication traits are located on these 
chromosomes. The spike-compacting gene, compactum 
(C), which affects rachilla morphology and grain size, 
is located on long arm of chromosome 2D, in a segment 
near the centromere (Johnson et al. 2008). The marker for 
QTL detected on chromosome 2D physically mapped to 
the long arm of the chromosome, closer to the telomere 
than the centromere, and is therefore unlinked. Peleg 
et al. (2011) identified a gene for brittle rachis in a durum 
wheat × wild emmer population, which mapped to the long 

arm of chromosome 2A, but the QTL detected in the cur-
rent study on the long arm of chromosome 2A (Fig. 5b; 
Table 3) mapped to approximately 41.2 Mb from this gene, 
and they are therefore unlikely to be linked.

In conclusion, our results suggest that grain shattering 
in standing crop of modern wheat is not related to any lin-
gering presence of classical domestication genes. Rather, 
in a population segregating for the semi-dwarf genes, 
strong genetic linkage to the known Rht genes, Rht-B1 
and Rht-D1, was found, which supports suggestions in the 
literature of an association with plant height. The genetic 
correlation of grain shattering with plant height was 
strong and positive in the diversity panel, like in the Drys-
dale × Waagan bi-parent population (Table 2). Unlike the 
bi-parent population, however, there GWA did not find an 
association with Rht genes in the diversity panel. In fact, 
the landrace cultivars in the wheat diversity panel were 
taller than the elite cultivars by an average of 18.1 cm, 
but they were also the less likely to shatter. Single-marker 
analysis of variance showed that, to varying degrees of 
error, allelic variation at both Rht-B1 (P = 0.002) and Rht-
D1 (P = 0.08) were associated with grain shattering in the 
diversity panel. Failure of GWA to detect an association 
might be due to stringency and can be regarded as a case 
of false negative.

QTL for grain shattering have been mapped to the Rht 
gene positions in previous studies (Marza et al. 2006; 
Bokore et al. 2022), but the current study is the first to 
use gene-based markers to confirm the association. The 
level of resolution is limited in these studies, and it would 
be worthwhile to further decipher the association of grain 
shattering with plant height and establish whether it is 
entirely pleiotropic or due to linkage disequilibrium. A 
SNP marker close to Tenacious glume gene, Tg, on chro-
mosome 2DS was identified in the diversity panel and 
should be optimised for utility in marker-assisted selection.
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