CORRECTION

Correction: Regulation of PPARy/CPT-1 expression ameliorates cochlear hair cell injury by regulating cellular lipid metabolism and oxidative stress

Xiaorong Niu¹ · Peng Han¹ · Junsong Liu¹ · Zichen Chen² · Ting Zhang¹ · Baiya Li¹ · Xiaoyan Ma¹ · Qun Wu¹ · Xudong Ma³ •

Accepted: 7 April 2023 / Published online: 25 April 2023 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

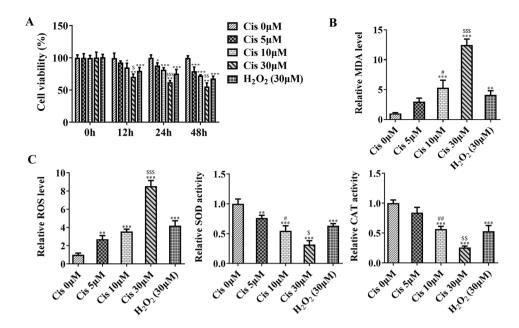
Correction: Molecular Genetics and Genomics (2023) 298:473–483

https://doi.org/10.1007/s00438-023-01993-8

Figure 1 in the original version of this article has been replaced with the below updated Fig. 1.

The original article has been updated.

The original article can be found online at https://doi.org/10.1007/s00438-023-01993-8.



Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China

Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China

Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an 710061, Shaanxi, China

Fig. 1 Cisplatin inhibits the viability and promotes the oxidative stress in HEI-OC1 cells. A The viability of HEI-OC1 cells induced by different concentrations of cisplatin was detected by CCK-8 assay. **B** and **C** The levels of MDA, ROS, SOD and CAT in HEI-OC1 cells induced by different concentrations of cisplatin were detected by corresponding assay kits. *P < 0.05, **P < 0.01 and ***P<0.001 vs. Cis 0 μM group. ${}^{\#}P < 0.05$ and ${}^{\#'}P < 0.01$ vs. Cis 5 μ M group. ${}^{\$}P < 0.05$, ${}^{\$\$}P < 0.01$ and ${}^{\$\$\$}P < 0.001$ vs. Cis 10 µM group

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

