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Abstract
The current pandemic (COVID-19) has made evident the need to approach pathogenicity from a deeper and more systematic 
perspective that might lead to methodologies to quickly predict new strains of microbes that could be pathogenic to humans. 
Here we propose as a solution a general and principled definition of pathogenicity that can be practically implemented in 
operational ways in a framework for characterizing and assessing the (degree of) potential pathogenicity of a microbe to a 
given host (e.g., a human individual) just based on DNA biomarkers, and to the point of predicting its impact on a host a 
priori  to a meaningful degree of accuracy. The definition is based on basic biochemistry, the Gibbs free Energy of duplex 
formation between oligonucleotides and some deep structural properties of DNA revealed by an approximation with certain 
properties. We propose two operational tests based on the nearest neighbor (NN) model of the Gibbs Energy and an approxi-
mating metric (the h-distance.) Quality assessments demonstrate that these tests predict pathogenicity with an accuracy of 
over 80%, and sensitivity and specificity over 90%. Other tests obtained by training machine learning models on deep fea-
tures extracted from DNA sequences yield scores of 90% for accuracy, 100% for sensitivity and 80% for specificity. These 
results hint towards the possibility of an operational, objective, and general conceptual framework for prior identification of 
pathogens and their impact without the cost of death or sickness in a host (e.g., humans.) Consequently, a reasonable predic-
tion of possible pathogens might pave the way to eventually transform the way we handle and prepare for future pandemic 
events and mitigate the adverse impact on human health, while reducing the number of clinical trials to obtain similar results.
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Introduction

The COVID-19 pandemic has given a renewed sense of 
urgency about something we have known all along, our 
vulnerability to myriad strains of microbes that may cause 
severe damage to human health, both in individuals and 
communities. The overarching goal of this work is to pro-
pose a new approach to the concept of pathogenicity and 
to describe a framework for characterizing and assessing 
the degree of potential pathogenicity of a microbe to a given 
host (e.g., a human individual.) It is based on DNA biomark-
ers from both and affords a priori predictions of the impact 
on a host to a meaningful degree of sensitivity and specific-
ity. To put our proposal in perspective, we first summarize 
the efforts made in the field of pathogenicity and immunol-
ogy to address this problem.

http://orcid.org/0000-0001-9552-2255
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Evolution of the concept/definition of `pathogen’

The term pathogen (borrowed from the Greek, pathos 
meaning disease and genos meaning origin) has been in 
use since the 1880s to refer to infectious microorganisms, 
including viruses, bacteria, protozoans, prions, viroids 
and fungi (Alberts et al. 2002; Casadevall and Pirofski 
2014). The study of diseases caused by pathogens does 
not have a distinct origin but could be traced back to 
their documentation in Egyptian medicine, for instance, 
the Edwin Smith Papyrus (seventh century BC) and the 
Papyrus Ebers (about 1550 BC.) These records contain 
data regarding several bone injuries, trachoma, ulcerating 
lumps, parasites and other diseases (Van den Tweel and 
Taylor 2010). Identifying, naming and recording specific 
microbes that cause bodily damage (Ghosh 2017) disease 
or death was the first systematic attempt to narrow down 
the concept of pathogenicity.

Since then, several characterizations have been pro-
posed to come to grips with the nature of pathogens. Ear-
lier views were primarily based on microorganisms and 
their intrinsic properties only, although it was also implic-
itly understood that pathogenicity was neither invariant 
nor absolute (Casadevall and Pirofski 1999). In the early 
twentieth century, Bail proposed aggressins and Rosenow 
proposed virulins as microbial products ushering patho-
gens themselves into the host. Later in the 1900s, (Zins-
ser 1914; Watson and Brandly 1949) proposed grouping 
microorganisms into three different categories, namely, 
saprophytes (unable to establish themselves in living 
tissue), pure parasites and half parasites. Later, Falkow 
proposed “Molecular Koch’s Postulates” as a conceptual 
framework to identify the genes causing diseases (Falkow 
1988) and noted that a pathogen has an intrinsic ability 
to breach the cell barriers of a host (Falkow 1997). These 
several definitions, reviewed in more detail in (Casadevall 
and Pirofski 1999), can be summarized as follows:

•	 A microbe capable of causing disease (Hoeprich 1989; 
Shulman 1997).

•	 A micro-organism that can grow in living tissue and 
produce disease (Ford 1927).

•	 Any micro-organism whose survival is dependent upon 
its capacity to replicate and persist on or within another 
species by actively breaching or destroying a cellular or 
humoral host barrier that ordinarily restricts or inhibits 
other micro-organisms (Falkow 1997).

•	 A parasite capable of causing or producing some dis-
turbance in the host (Smith 1934).

These conflicting drives between host and pathogen 
led to an evolutionary “attack-defense” approach (Kuduva 

et  al. 2020). Recent studies further rely on a similar 
approach to define pathogens. (Balloux and van Dorp 
2017) defined pathogens as organisms causing diseases 
to their hosts, with the severity of the disease symptoms 
referred to as virulence. There are two types of patho-
gens i.e., facultative pathogens (environmental bacteria 
and fungi occasionally causing diseases) and obligate 
pathogens (requiring hosts to complete their lifecycle.) 
However, this definition of a pathogen remains incomplete 
since there are probably millions of pathogenic micro-
organisms that remain unidentified. Even bioinformatic 
tools to detect pathogens fail to detect novel species when 
similar genomes are not available and have limitations 
related to the dependence on genome assembly or being 
slow to large-scale read mapping (Deneke et al. 2017).

Consequently, recent studies are solely focused on the 
identification of these pathogens and how they can cause 
diseases rather than giving a general unified and more prin-
cipled definition. (Saliba et al. 2017) pointed out that under-
standing how bacteria cause disease requires knowledge of 
which genes are expressed and how they are regulated dur-
ing infection. (Cosentino et al. 2013) developed a web server 
to predict bacterial pathogenicity based on the analysis of 
the input proteome, genome or raw NGS reads provided by 
a user. The conceptual framework behind the server had 
been validated using 449 sequenced bacteria with 88.6% of 
accuracy. (Segawa et al. 2014) argued that Matrix-assisted 
laser desorption/ionization time of flight mass spectrometry 
(MALDI-TOF MS) is an appropriate tool to diagnose rap-
idly and accurately to identify species that are pathogens. A 
case of bacterial meningitis caused by Klebsiella pneumo-
niae using the same method for the same purpose was also 
described. Similarly, (Gu et al. 2021) proposed a metagen-
omic next-generation sequencing test using cell-free DNA 
from body fluids to identify pathogens. They assessed their 
sensitivity/specificity at about 79%/91% for bacteria, 91% 
/89% for fungi, using Illumina sequencing; 75%/81% for 
bacteria and 91%/100% for fungi using nanopore sequenc-
ing, respectively.

Furthermore, (Liu et al. 2021) used databases of nonpath-
ogenic and pathogenic species to make training workflows 
and then predict sets of pathogenic and nonpathogenic spe-
cies. Random forest models used for the predictions yielded 
an accuracy between 88 and 93%. A comparison between 
metagenomic next-generation sequencing (NGS) and the 
conventional diagnostic methods for the detection of CNS 
infection in patients after allogeneic hematopoietic stem 
cell transplantation (allo-HSCT) was made. Thirty-eight 
(38) pathogens were found in 34 of 53 patients in the study 
(including 33 viruses, 3 bacteria and 2 fungi.) 32 pathogens 
were detected by mNGS and conventional testing both and 6 
by mNGS only (then, those 6 cases were verified, 5 of them 
had an infection.) The sensitivity of mNGS and conventional 
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testing for diagnosing CNS infections post-transplant were 
97.1% and 82.9%, respectively (P = 0.106), while the speci-
ficity of mNGS and conventional testing were 94.4% and 
100%, respectively (P = 1.000).

These characterizations cannot really be regarded as 
logically satisfactory general definitions because they still 
rely on “someone dying/getting sick” to establish that some 
microbe is pathogenic. COVID-19 and influenza have now 
made evident that the ability of some microorganisms, even 
viruses, to cause disease depends on a specific host. Thus, 
recent studies are shifting their focus on the two-way rela-
tionship between host and micro-organisms in the form of 
pathogenicity and are even advocating to ditch the term 
“pathogen” (Casadevall and Pirofski 2014).

An objective and operational perspective towards a patho-
genic relationship between a microbe and a host is a must 
to be prepared for a possible insurgence of a pandemic (like 
COVID-19) in the future. (Credle et al. 2021) also affirms 
the need of such technologies or methodologies that are 
quickly reconfigurable to prevent or be prepared for future 
crises caused by emerging threatening pathogens to human 
health. For the same reason, (Credle et al. 2021) proposed 
a method based on NGS and claimed to be able to detect 
new strains based on rapid analysis. A short time frame is 
very useful for surveillance and can separate targeted from 
untargeted RNA molecules (especially when the spread of a 
disease is in its early phase.)

All these considerations point towards a single clear 
conclusion, that although there are several approaches to 
make a distinction between pathogens and nonpathogens, 
there is no general, principled, and operational definition of 
pathogens. The purpose of this paper is to propose such a 
general definition of a pathogenic relationship between two 
biological organisms. Next, we present the first proposal for 
such a definition. In the "Materials and methods" section, we 
present the description of the conceptual framework neces-
sary to implement it in a practical way. We then describe the 
datasets used to validate and assess its quality. In the "Dis-
cussion and conclusion" section, we present the results of 
the assessment and summarize our findings, along with some 
advantages, limitations and conclusions.

A principled computational definition 
of ‘pathogenicity’

To find a solution to the problem of identifying the patho-
genicity of a microbe, one should follow a wholistic rather 
than a reductionist approach. There are several factors 
involved for a microbe to cause disturbances in the homeo-
stasis of a host. First, a microbe is a changing entity once 
it enters a host. Second, a host likewise changes because 

of infection. Third, they interact with each other (i.e., host 
response to a pathogen’s attack has also some impact on the 
latter.) Fourth, both parties interact with each other in an 
uncontrolled dynamic environment (not in a wet lab where 
factors like temperature, pressure and so on are closely mon-
itored and controlled.) This simply implies that the term 
‘pathogen’ is, like motion, relative and does not make abso-
lute sense. Therefore, the right approach is to focus rather on 
the nature of the relationship between a microbe and a host.

Definition 1.  A specimen P has a pathogenic relationship 
with a species H over a given period of time, if and only if.

•	 P interacts with any specimen in H and begins to repro-
duce.

•	 H produces a defense in response to counteract the result-
ing colony of Ps.

•	 Ps may push back, and H may counteract, until H reaches 
a stable condition that may be different from the condi-
tion prior to interaction with P.

•	 These three conditions remain true with at least K other 
specimens in H, in the absence of any other such P*, for 
an appropriate value of K (e.g., 32.)

There are situations where two pathogens can attack the 
host simultaneously and may be successful jointly, but not 
individually. Therefore, a general definition should allow for 
multi-way pathogenic relationships. However, in this first 
study, we will only address in-depth binary relationships.

Materials and methods

Therefore, in this approach, the problem of identifying 
whether a given micro-organism is pathogenic to a human 
or not can be approached at first as a binary classification 
problem into the categories of pathogen/nonpathogen. To 
solve it using DNA samples alone, we identified a proxy 
DNA sequence to represent a microbe and another proxy 
sequence to represent the individual Homo sapiens host. 
The primary limitation in gathering the data was their avail-
ability, including labels (pathogenic/non) for the genomic 
sequences (paired data.) The methods and tests described 
below can in principle be applied to any organism in the 
given taxa (bacteria and fungi.) The sequences required to 
obtain such proxies for these labeled microbes were down-
loaded from GenBank (Benson et al. 2012), as shown in 
tables in the Appendix. Custom-made MATLAB and Python 
scripts were used to run the tests stated below and compute 
some standard metrics for the assessment of the quality of 
the proposed definition.
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The key idea behind our proposal is to obtain a pattern 
of hybridization between the proxy sequences from micro-
organisms and host on a certain set of oligos (the so-called 
grid below.) Once such a pattern is obtained, then a com-
parison is made (either by an analytic or a machine learning 
model) to determine the pathogenicity of the micro-organ-
isms in reference to the host. The precise proposed definition 
of pathogenicity is given next.

The PNP‑G test based on Gibbs free energies

We selected a so-called grid from the host as a proxy to 
obtain a pattern of hybridization affinity between a host and 
a micro-organism, as determined by a model of hybridiza-
tion (Gibbs Energy or h-distance) (Azizzadeh et al. 2021). 
The grid consists of a number m of n-mers selected ran-
domly from a consensus sequence (representing 32 speci-
mens of Homo sapiens) with a uniform distribution. The 
critical parameter that turned out to be most helpful in the 
classification is the count of the number of hybridizations 
of the proxies of such microbes with the grids consisting of 
m = 100 or 200 genomic fragments of length n = 20 or 40. 
The test is determined by two parameters ε and r, selected 
as optimal thresholds with radius defining the upper and 
lower bounds for the count of hybridizations at 37 ◦ Cel-
sius to gene fragments in the grid. (Similar results can be 
obtained at a fever temperature of 41 ◦ C.) To optimize the 
choice of such parameters, we quantized the range of pos-
sible values (between 1 and 65 000 with increment steps 
of 1 for both Gibbs energy and h-distance) and computed 
the corresponding accuracy, specificity, and sensitivity of 
the test for values of upper and lower bounds such that the 
average of these bounds ε and r is the positive difference 
between these bounds and the average on the data (described 
below.) The hybridization energy threshold for hybridization 
with Gibbs energy was assumed to be τ = − 6 kcal/mol as 
it is usually assumed, i.e., two oligonucleotides (of length 
at most 60) hybridize if the Gibbs energy (as given by the 
Nearest-Neighbor model (SantaLucia 1998)) of the pair is 
at most − 6 kcal/mol. The test can thus be stated as follows.

The pathogenicity Gibbs test PNP‑G (n, m, ε, r)

Pre-Conditions: a `grid’ Γ consisting of m randomly 
selected n-mers y with a uniform distribution from a host 
H. Thresholds τ and ε for hybridization to n-mers in Γ.

Input: two sets of n-mers M (a microbe) and H (a host).
Output: `Pathogenic’ or `Nonpathogenic’.
Procedure: If the count of the number of hybridizations 

between x in M and z in Γ is in the interval [ε – r, ε + r], 
return `pathogenic’; else return ‘nonpathogenic’.

To estimate the Gibbs energy in the metric equivalent, 
we used the h-distance metric approximation of the Gibbs 
energy introduced in (Garzon et al. 1997) to perform a 
similar test PNP-h test with hybridization threshold τ = 14 
(bacteria) and τ = 27 (fungi) and ε = 19,460.5 (bacteria) and 
ε = 59,271.5 (fungi) with r = 123.5 (bacteria) and r = 101.5 
(fungi), for all performance scores>=80% ≥ 80% . The 
PNP-G test appears to be more accurate. The parameters 
used in both tests are shown in Tables 1 and 2.

Machine learning models using features obtained 
from Nxh bases

In biology, microarrays used to be the first choice for min-
ing huge amounts of data from DNA sequences (Schena 
2003). But noise introduced by hybridization uncertainty in 
the readout analyses and the subjective selection of relevant 
features (to be used as targets on the chip) have made this 
type of analysis irreproducible and hence unreliable. The 
recent advances in next-generation sequencing and bioinfor-
matic tools to analyze these sequences have addressed these 
issues to some extent (Roh et al. 2010). Our new approach 
also relies on hybridization affinity, but some deep structure 
revealed by analyses of the hybridization landscapes in the 
h-distance model affords designs of so-called nxh chips (or 
bases) based on a more principled and objective foundation. 
We summarize them here briefly to make this paper self-
contained. (The reader is referred to (Garzon and Bobba 
2012; Garzon and Mainali 2017; Garzon and Mainali 2021) 
for more details.)

A noncrosshybridizing (nxh) basis can be defined as a set 
consisting of pairs of Watson–Crick (WC) complementary 

Table 1   The parameters used in the proposed definition of pathogenic 
relationship between microbes and humans based on the PNP-G test

ID Threshold Radius

bacs20C-OnGrid200 20,545.0 7,925.0
bacs40B-OnGrid100 19,558.5 428.5
funs20C-OnGrid200 5,102.5 894.5
funs40B-OnGrid100 15,891.0 545.0

Table 2   The parameters used in the proposed definition of pathogenic 
relationship between microbes and humans based on the PNP-h test

ID � Threshold Radius

bacs20COnGrid200 14 29,928.5 29,927.5
bacs40BOnGrid100 27 19,460.5 123.5
funs20COnGrid200 14 59,721.5 101.5
funs40BOnGrid100 27 18,670 177
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oligonucleotides of fixed length (so-called pmers) that do 
not hybridize to one another under certain reaction condi-
tions specified by a parameter τ > 0. The following property 
summarizes the ideal requirements for an ideal set of such 
oligonucleotides (Garzon and Minali 2017).

(1) A nxh basis should consist of a sufficient number of 
paired oligonucleotides (hereafter pmers) in such a way 
that every random n-mer of the same length n in any tar-
get sequence(s) will hybridize with exactly one of them (as 
determined by a stringency threshold �.)

With the proper design of an nxh basis in hand, a cus-
tom python script was written to reduce arbitrarily long 
DNA sequences x to a few but very informative features in 
a numerical vector. First, we split a proxy DNA sequence 
x into fragments of the same length matching that of oli-
gos in the basis. Next, based on the hybridization affinity 
between each fragment and the oligos on the basis (hereaf-
ter referred to as probes), we counted the number of frag-
ments in the sequence that are likely to hybridize with each 
probe, according to the given hybridization criterion. Once 
the counts for the probes in the basis are obtained, we nor-
malized the vector containing these counts using a partition 
function so that the sum of all normalized counts adds up 
to 1. We use the term genomic signature to refer to such a 
normalized vector. The decision about a possible hybridi-
zation is made based on a metric approximation of Gibbs 
energy between any two oligos, known as hybridization (h-) 
distance (Garzon et al. 1997) quantifying the likelihood of 
hybridization between such oligos. In other words, for any 
two oligos of the same length, if their h-distance is 0, then 
they are either identical or WC complements and they are 
most likely to hybridize. On the other hand, if their h-dis-
tance is maximum (i.e., their length n), then they are least 
likely to hybridize (e.g. pmers aaa/ttt and ccc/ggg). Further-
more, (Garzon and Bobba 2012) showed that hybridization 
decisions under a set of reaction conditions made based on 
a criterion that h-distance between any two oligos be less 
than �(for a suitable choice of threshold reflecting reaction 
conditions, such as temperature and ph), agree at least 80% 
of the time with decisions made using the nearest neighbor 
model of Gibbs energy for hybridization affinity, assuming 
a threshold of Gibbs energy less than  � = − 6 kcal/mol for 
hybridization.

Once the sequences were transformed into genomic 
signatures, they were fed to machine learning models (as 
described in Table 3) to differentiate between pathogenic 
and nonpathogenic microorganisms.

Data and assessment

To assess the quality of the tests and the definition of path-
ogenicity, we selected three sets of DNA sequences and 

downloaded them from GenBank (Benson et al. 2012). The 
first contained coding sequences of whole genomes in 25 
known pathogenic and 25 known nonpathogenic bacteria 
for Homo sapiens in general, according to (Cosentino et al. 
2013). A similar selection was made for a second sample of 
fungi (CDC 2014). The third sample consisted of four mito-
chondrial genes (COI, COII, COIII, CytB) in 32 specimens 
of Homo sapiens (as a host species; the specimens contained 
in these samples are fully referenced in the Appendix.) As 
mentioned above, no further specific criteria were used in 
choosing the organisms other than the availability of their 
labels about their pathogenicity (pathogenic/non) so that 
paired data could be used to assess the quality of the tests 
below. In particular, whether these bacteria are present in 
human hosts is unknown, although it is fairly safe to assume 
that microbes pathogenic to a given healthy host are likely 
to be alien to that host and that no horizontal gene transfers 
have occurred from the microbe.

The proxies of these organisms to be used in the analyses 
were chosen as follows. For a proxy for a microbe bacte-
rium specimen, we randomly (uniform distribution) selected 
m = 200 or 300 random n-mers with n = 20 as well as 40 
from the genomic sequence of the specimen. The same 
procedure was repeated to obtain four datasets for fungi. 
Thus, we obtained eight (8) datasets altogether. Similarly, 
to obtain a proxy for a grid G for the species host Homo 
sapiens, we created a pool of all n-mers (when n = 20 or 40) 
from all specimens in our sample and then selected m = 100 
as well as 200 n-mers randomly under the uniform distri-
bution. Finally, the Gibbs Energies (SantaLucia 1998) and 
h-distances (Garzon et al. 1997; Garzon and Bobba 2012; 
Garzon and Mainali 2021) between every pair of oligomers 
from each pair of microbe and host proxies were computed. 
The detailed description of the proxies is shown in Table 4.

We also trained ML models (as shown in Table 3) using 
genomic signatures of sequences in each sample using 

Table 3   Machine learning models for prediction and assessment of 
pathogenicity tests of microbes in Homo sapiens based on genomic 
signatures

Machine learning models ID Implementation

k-Nearest Neighbors kNN Python (Pedregosa et al. 
2011)

Support Vector Machines 
(SVMs) with radial basis 
kernel

RBF Python (Pedregosa et al. 
2011)

Decision Trees DT Python (Pedregosa et al. 
2011)

Multilayer perceptrons MLP Python (Pedregosa et al. 
2011)

Adaboost AB Python (Pedregosa et al. 
2011)
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the workflow described above in Fig. 1 on the nxh bases 
in Table 5. These models were trained on three samples 
containing bacteria only, fungi only and both together, 
using 80% of each data set for training. Then these models 
were used to make predictions about the pathogenicity of 
these microorganisms on the remaining testing dataset (the 
remaining points for testing 20% of the full dataset.)

The metrics for assessment are standard in the medical 
field (for example, for diagnostics tests.) Quantitative metrics 
are used because it is important to quantify the accuracy of 
the tests and make an approximation of the extent to which 
they discriminate between the two conditions (Šimundić 

Table 4   The proxies for 
microbes (25 pathogens and 25 
nonpathogens) and host species 
pathogen/nonpathogen and host 
used in the assessment of the 
pathogenicity tests PNP-G and 
PNP-h 

ID Target taxon Length of oligos No of points in dataset
(microbe*host)

Approximation 
of hybridization 
affinity

bacs20C-G-On-Grid100|
bacs40B-G-OnGrid200

Bacteria 20 | 40 300*100 | 200*200 Gibbs Energy

funs20C-G-OnGrid100|
funs40B-G-OnGrid200

Fungi 20 | 40 300*100 | 200*200

bacs20C-h-On-Grid100|
bacs40B-h-OnGrid200

Bacteria 20 | 40 300*100 | 200*200 h-distance

funs20C-h-OnGrid100|
funs40B-h-OnGrid200

Fungi 20 | 40 300*100 | 200*200

Fig. 1   A DNA sequence x is shredded into fragments of the same 
length n as that of the probes on an nxh basis so that the total num-
ber of fragments hybridizing with each oligo can be counted for each 
probe to obtain a feature vector from x. The oligos for the basis are 
judiciously selected in such a way that no cross hybridization occurs 

among probes in the basis itself and, moreover, that every random 
fragment hybridizes to (ideally exactly) one probe. An ideal basis 
thus produces feature vectors that are fully reproducible and contain 
much of the information in the original sequence x 

Table 5   Nxh bases used to extract predictor features for machine 
learning models to predict pathogenicity of microbes in Homo sapi-
ens 

The quality of a basis can be quantified by the Shannon entropy 
(uncertainty) of the random variable that counts the number of ran-
dom target oligos that hybridize to the probes in the basis. An ideal 
basis (such as 4mP3-3) has entropy 0 and leaves no uncertainty in the 
hybridization count

Basis Length Size τ Avg Entropy

3mE4b 3 4 1.1 1.09 0.45
4mP3-3 4 3 2.1 1.0 0
8mP10 8 10 4.1 1.1 0.57
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2009) and because they might afford a finer distinction 
between degrees of pathogenicity. Accuracy describes “the 
proportion of all tests that was correctly predicted” (Lutgen-
dorf and Stoll 2016). Two other measures give finer infor-
mation about the accuracy of the tests and quantify their 
discriminative potential, sensitivity and specificity. These 
are complementary, with the first one quantifying the abil-
ity of the test to identify the portion of true positives of the 
total of evaluations (Šimundić 2009); the higher the sensi-
tivity, the fewer false negatives are obtained (Maxim et al. 
2014). On the other hand, specificity quantifies true nega-
tives (Šimundić 2009); the higher the specificity, the fewer 
false positives are obtained (Maxim et al. 2014). According 
to the recent literature (Cosentino et al. 2013; Saliba et al. 
2017; Gu et al. 2021; Liu et al. 2021), we can conclude that 
a model with a sensitivity above 75% and specificity above 
80% could be deemed acceptable.

Results

The PNP‑G test based on Gibbs energies and PNP‑h 
test on h‑distance

We present the parameters used in both tests to define patho-
genic relationships between microbes and hosts in Tables 1 

and 2. The results on prediction based on PNP-G and PNP-h 
tests are shown in Figs. 2 and 3. We report the grids with 
best performance scores (others were fairly scattered below 
them.) On the one hand, for the PNP-G test, grid hsGrid200 
gives the optimal scores for the bacterial set bacs25-20C 
with 82% of accuracy, 100% of sensitivity and 64% of speci-
ficity. Similarly, they achieved performance scores of 98% 
for accuracy, 96% for sensitivity and 100% for specificity, 
on the grid hsGrid200 for the fungal dataset funs20C. On 
the other hand, we got optimal scores of 86% accuracy, 92% 
sensitivity and 80% specificity for bacteria and 92% of all 
performance scores (accuracy, sensitivity, and specificity) 
for fungi with the PNP-h test.

Performance of machine learning (ML) on nxh bases

The results of prediction based on machine learning mod-
els (as shown in Table 3) are shown in Fig. 3. Again, we 
report models with the best performance scores since it is 
preferable to use only the most successful test for each case. 
The basis 3mE4b-2 gives the best result with the models 
kNN, RBF and MLP with perfect scores for bacteria. How-
ever, when we analyze these signatures using ML models to 
obtain the definition of pathogenicity for fungi, the scores 
dropped significantly. Figure 3 (middle) shows that the mod-
els DT and AB give the best performance when trained using 
combined features from the bases 4mP3-3 and 8mP10-4. 

Fig. 2   Performance assessment 
of the definition of pathogenic-
ity of bacteria and fungi using 
thresholding methods, based 
on the decision about hybridi-
zation events between oligos 
in the proxies of a host and a 
microorganism (Top: based 
on Gibbs Energy and Bottom: 
based on h-distance.) The x-axis 
represents different data sets for 
proxies and grids (IDs are in 
Table 4.)
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They show a perfect score for sensitivity; moreover, the 
remaining scores are all above 80%. These findings are con-
sistent with the current literature showing challenges in the 
definition of pathogenicity among fungi (CDC 2014). Sur-
prisingly, the worst performing ML models were Support 
Vector Machines (SVM) on Radial Basis Transfer functions 
(RBFs.) The models were trained using combined features 
from all bases. Finally, for the third sample containing the 
combined taxa, only one model (AB) showed the best per-
formance in predicting pathogenicity among bacteria and 

fungi, although the remaining models gave good scores 
(above 75%) for sensitivity.

Discussion and conclusion

We have proposed a novel approach to pathogenicity based 
on a computational characterization of the pathogenic rela-
tionship between a microbe and a host. The operational 
implementation of the definition yielded scores of over 

Fig. 3   Performance assessment 
of the definition of pathogenic-
ity of bacteria (top), fungi (mid-
dle) and combined (bottom) 
obtained using machine learn-
ing models trained on genomic 
signatures
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80% for accuracy and over 90% for sensitivity and speci-
ficity by two PNP tests for both bacterial and fungal taxa. 
Tests on machine learning models on the combined taxa 
achieved scores about 90% for accuracy, 100% for sensitiv-
ity and 80% for specificity.

A question may arise as to whether these results are gen-
eral enough to scale them to pathogens and Homo sapiens in 
general. To test the diversity of this dataset to ensure wide-
spread coverage of the whole population of pathogens and 
hosts, we calculated the average Gibbs energies and h-dis-
tances between all pairs of specimens in the datasets (as an 
average of the Gibbs energy or h-distance between pairs of 
their 200 or 300 randomly selected 20- and 40-mers from 
their proxy sequences.) Their averages in Table 6 confirm 
that this is indeed the case. They show that hybridizations 
within groups are unlikely to occur on the average within 
each group (bacteria and fungi) and even across groups, 
according to the hybridization metrics used in the tests, i.e., 
these microbes in the datasets are biologically very different 
from one another.

These results have some interesting implications. First, 
both PNP tests include proxies of relatively small size. 
Particularly, coding sequences on whole genome of bac-
teria include millions of nucleotides in general, but our 
proxies include at most 12 000 nucleotides. (Ghosh 2017; 
Garzon and Mainali 2021; Watson and Brandly 1949). 
Therefore, it is interesting that the tests were able to 
achieve performance over 80% for bacteria and 95% for 
fungi in all scores on a proxy of such a small proportion 
of the entire genome. Second, the PNP-h test gives better 
accuracy and sensitivity for bacteria than the PNP-G test, 
even though the h-distance metric is just an approxima-
tion of Gibb’s Energy Nearest-Neighbor model (Santa-
Lucia 1998) that allows about 20% error for hybridization 
decisions (Garzon et al. 1997; Garzon 2014; Garzon and 
Bobba 2012). Even when the former gives a lower score 
than the latter, the difference in the corresponding score is 

insignificant compared to this margin of error while mak-
ing hybridization decisions when compared to the Gibbs 
Energy Nearest-Neighbor Model (SantaLucia 1998). 
Third, not all machine learning models were suitable to 
obtain classifiers for pathogenicity over all datasets com-
bined. An alternative approach would be to select different 
models for different taxa (here bacteria and fungi.) Fourth, 
our proposed solutions can easily provide a more reason-
able definition of pathogenicity in the case of bacteria than 
fungi. This fact is consistent with biological knowledge 
that fungi are eukaryotes and have a more complex cellular 
structure and physiology. It is worth noting the fact that 
we humans share a more diverse and versatile symbiotic 
relationship with bacteria. For example, fungal diversity 
in the human population was found to be low in largely 
stable colonization over time, with the occasional transient 
species. Moreover, a large proportion of fungi may be of 
dietary origin and thus may not be functionally relevant in 
the human gut environment (Huseyin et al. 2017). Fifth, 
the results from this method imply that pathogens feature 
a higher Gibbs energy with the genome of a host. Further, 
as remarked above in the ''Data Assessment" section, this 
affinity is not likely to be due to horizontal gene transfers 
between bacteria and hosts. Upon reflection, these results 
are consistent with the local nature of the interactions in 
the biological machinery of living organisms.

This line of research opens some new possibilities as 
well. Although in this first approach the problem of path-
ogenicity was addressed as a binary classification prob-
lem, our method can be readily extended to a prediction 
problem of the degree of pathogenicity of a microbe to a 
host, a reasonable next step. Furthermore, it may be pos-
sible to evaluate the degree of pathogenicity in different 
strains of the same species. Second, in our time, there is a 
growing interest in personalized medicine. These methods 
can be readily extended to grids for individual specimens 
of H. sapiens. That is an intriguing possibility for fur-
ther research. Third, we only presented the definition of 
pathogenic relationship in relation to the human species. 
It would be interesting to explore how these tests perform 
with other hosts. Finally, we performed these experiments 
in silico only and have not made any analysis to carry out 
these tests with appropriate parameters and their results in 
a wet lab. It would be interesting to explore the translation 
of these parameters into physical experimental conditions.

Appendix

See Tables 7 and 8.  

Table 6   The average values of the Gibbs energies (kCal/Mol) and/or 
h-distances between the sequences of shreds of pathogens and hosts 
are large enough to conclude that the specimens selected in the sam-
ple data are diverse enough to provide strong evidence of the scalabil-
ity of the PNP-G and PNP-h tests to other pathogens in these taxa and 
H. sapiens hosts

Avg Gibbs (kCal/
Mol) / h-distance

bac20C fun20C bac40B fun40B

bac20C − 4.4/11.9 − 3.9/11.9
fun20C − 3.9/11.9 − 3.5/10.8
bac40B − 8.9/25.5 − 8.0/25.4
fun40B − 8.0/25.4 − 7.0/23.6
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Table 7   The sample of 
specimens from bacteria and 
fungi that are pathogenic/
nonpathogenic to humans

Microorganism Species Accession ID Category

Bacteria Yersinia pestis CP001608.1 Pathogens
Treponema paraluiscuniculi CP002103.1

Tannerella forsythia CP003191.1

Staphylococcus aureus CP002110.1

CP001844.2

Simkania negevensis FR872582.1

Shewanella putrefaciens CP002457.1

Selenomonas sputigena CP002637.1

Roseburia hominis CP003040.1

Rickettsia slovaca CP002428.1

Rickettsia japonica AP011533.1

Porphyromonas asaccharolytica CP002689.1

Odoribacter splanchnicus CP002544.1

Mycoplasma fermentans CP002458.1

Mycobacterium tuberculosis CP001662.1

CP001641.1

CP001642.1

Mycobacterium sinense CP002329.1

Listeria monocytogenes CP002003.1

CP002001.1

CP002004.1

CP002002.1

Listeria ivanovii FR687253.1

Lactococcus garvieae AP009333.1

Helicobacter pylori AP011945.1

Zymomonas mobilis CP002850.1 Nonpathogens

Weeksella virosa CP002455.1

Streptococcus salivarius FR873481.1

CP002888.1

Streptococcus pyogenes CP003068.1

Sphingobium japonicum AP010803.1

Roseobacter litoralis CP002623.1

Rahnella aquatilis CP003244.1

Pseudarthrobacter phenanthrenivorans CP002379.1

votella denticola CP002589.1

Neisseria lactamica FN995097.1

Myxococcus macrosporus CP002830.1

Mycoplasma leachii FR668087.1

Mycobacterium tuberculosis CP002992.1
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Table 7   (continued) Microorganism Species Accession ID Category

Mycobacterium gilvum CP002385.1

Leuconostoc mesenteroides CP003101.3

Lactococcus lactis CP002365.1

Lactobacillus reuteri CP002844.1

Lactobacillus johnsonii CP002464.1

Lactobacillus delbrueckii CP002341.1

CP000156.1

Lactobacillus buchneri CP002652.1

Klebsiella pneumoniae CP000647.1

Geobacillus sp. Y412MC52 CP002442.1

Filifactor alocis CP002390.1

Fungi Paracoccidioides brasiliensis MT815704.1 Pathogens

AY955840.1

NC_007935.1

Cryptococcus gattii CP025773.1

Cryptococcus neoformans CP003834.1

AY101381.1

NC_018792.1

NC_004336.1

CP022335.1

Sporothrix schenckii NC_015923.1

AB568600.1

AB568599.1

Candida auris NC_053321.1

MT849287.1

AP018713.1

Talaromyces marneffei NC_005256.1

AY347307.1

KU761332.1

KU761331.1

KU761330.1

KU761329.1

Candida albicans NC_018046.1

JQ864234.1

JQ864233.1

KC993188.1

Neurospora crassa KY498478.1 Nonpathogens
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Table 7   (continued) Microorganism Species Accession ID Category

KY498477.1

KY213951.1

NC_026614.1

KC683708.1

Saccharomyces pastorianus KX657750.1

NC_031515.1

NC_012145.1

EU852811.1

Schizosaccharomyces pombe NC_001326.1

X54421.1

Schizosaccharomyces cryophilus NC_040930.1

MK457734.1

AF275271.2

NC_004312.1

Schizosaccharomyces pombe MK618140.1

MK618139.1

MK618138.1

MK618137.1

MK618136.1

MK618135.1

MK618134.1

MK618133.1

MK618132.1

MK618131.1
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