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Abstract
We sought to identify novel biomarkers and related mechanisms that might shape the immune infiltration in IDD, thereby 
providing novel perspective for IDD diagnosis and therapies. Gene expression data sets GSE124272 (for initial analysis) 
and GSE56081 (for validation analysis) involving samples from IDD patients and healthy controls were retrieved from the 
Gene Expression Omnibus (GEO) database. Immune genes associated with IDD were identified by GSEA; module genes 
that exhibited coordinated expression patterns and the strongest positive or negative correlation with IDD were identified 
by WGCNA. The intersection between immune genes and module genes was used for LASSO variable selection, whereby 
we obtained pivotal genes that were highly representative of IDD. We then correlated (Pearson correlation) the expression 
of pivotal genes with immune cell proportion inferred by CIBERSORT algorithm, and revealed the potential immune-
regulatory roles of pivotal genes on the pathogenesis of IDD. We discovered several immune-associated pathways in which 
IDD-associated immune genes were highly clustered, and identified two gene modules that might promote or inhibit the 
pathogenesis of IDD. These candidate genes were further narrowed down to 8 pivotal genes, namely, MSH2, LY96, ADAM8, 
HEBP2, ANXA3, RAB24, ZBTB16 and PIK3CD, among which ANXA3, MSH2, ZBTB16, LY96, PIK3CD, ZBTB16, and 
ADAM8 were revealed to be correlated with the proportion of CD8 T cells and resting memory CD4 T cells. This work 
identified 8 pivotal genes that might be involved in the pathogenesis of IDD through triggering various immune-associated 
pathways and altering the composition of immune and myeloid cells in IDD patients, which provides novel perspectives on 
IDD diagnosis and treatment.

Keywords  Intervertebral disc degeneration · Low back pain · Immune-associated disease · Biomarkers · Weighted gene 
co-expression network analysis

Abbreviations
LBP	� Low back pain
IDD	� Intervertebral disc degeneration
IVD	� Intervertebral disc
NP	� Nucleus pulposus
NK	� Natural killer
GSEA	� Gene set enrichment analysis
WGCNA	� Weighted correlation network analysis
BPNN	� Back propagation neural network

Introduction

Low back pain (LBP) is ranked among the top-3 causative 
factors responsible for disability in developed countries, 
whose victims are still growing globally (Murray et al. 
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2012). Nearly 8 in 10 adults will experience such disease 
throughout their life span (Cannata et al. 2020), and most 
of them have to struggle with LBP associated disadvan-
tages, such as reduced life quality, movement disability 
and potential unemployment (Andersson 1999). Thus, LBP 
has imposed an excessive burden on the economy and the 
society. Currently, the therapeutic outcomes of LBP are 
impeded by limited understanding of the underlying mecha-
nisms (Vergroesen et al. 2015). Nevertheless, this refectory 
symptom has been proposed to be strongly associated with 
intervertebral disc degeneration (IDD) (de Schepper et al. 
2010), among other factors, such as genetic background or 
environmental impact (Cannata et al. 2020).

IDD is a long-term pathological process that could be 
partially characterized by a gradual loss of proteoglycans 
and liquid content within the intervertebral disc (IVD) (Can-
nata et al. 2020). Although the pathophysiology of IDD has 
been established, the underlying etiology has remained 
obscur; thus, it is imperative to gain a deeper insight into 
the way by which IDD is initiated and developed. Nor-
mally, nucleus pulposus (NP) is isolated from the immune 
system by the surrounding intact IVD structure (for exam-
ple, annulus fibrosus, AF); upon impairment, NP is exposed 
to the immune system, leading to a series of auto-immune 
responses which play a fundamental role in the progression 
of IDD (Sun et al. 2020). For decades, extensive efforts have 
been put into clarifying the association between IDD and 
immune cells (Risbud and Shapiro 2014). For instance, T 
cells, B cells and neutrophils might be implicated in the 
NP-exposure-triggered auto-immune response (Wang and 
Samartzis 2014). In contrast, the activity of natural killer 
(NK) cells was found to be significantly lower in patients 
with lumbar disc herniation than that in healthy volunteers, 
indicating that the patients might experience stress resulted 
from pain or other discomforts (Sato et al. 2002). The land-
scape of immune infiltration and diagnostic markers for IDD 
have been revealed recently (Wang et al. 2021). Although 
macrophage was deemed the most important player in IDD 
according to numerous studies involving human participants 
(Silva et al. 2019; Wang et al. 2021), the implication of other 
immune cells in the development of IDD is still ill-defined, 
especially in the clinical setting. Hence, details regarding 
altered IDD immune microenvironment are worth discussing 
and deserve further investigation.

Given the foregoing, the present study aimed at explor-
ing altered immune pathways-based biomarkers that are 
involved in the pathogenesis of IDD, and their association 
with immune cell infiltration. Bioinformatics is an emerging 
interdisciplinary field that borrows strengths from both bio-
logical knowledge and computational potential, and has been 
extensively utilized to unravel biologically significant mark-
ers that are hidden within the tremendous biological data 
(Cai et al. 2020; Yan et al. 2021). The advent of gene chip or 

microarray allowed highly efficient acquisition of biological 
data, and GEO (Gene Expression Omnibus) database serves 
as a global repository of the high-throughput information 
generated by gene chip or micro array, and so forth, allows 
in-depth analysis of the differences between IDD patients 
and healthy volunteers. In the current comprehensive anal-
ysis, several bioinformatics algorithms were incorporated: 
GSEA was used to interpret the biological significance 
between different phenotypes in a gene-expression-depend-
ent manner (Subramanian et al. 2005), and, most impor-
tantly, unearth immune-associated genes responsible for 
IDD. WGCNA has long been used to detect gene modules 
(wherein genes exhibit coordinated expression patterns), and 
subsequently associate biologically significant modules with 
clinical traits; such an algorithm tends to find hub genes that 
play central roles in a regulatory network (Langfelder and 
Horvath 2008). CIBERSORT is a v-support vector regres-
sion-based algorithm used to infer immune cell composition 
in bulk RNA-seq samples by referring to an immune-cell 
signature matrix of 22 human hematopoietic cell phenotypes 
(Newman et al. 2015), which enabled us to associate piv-
otal IDD markers with altered IDD immune environment. 
Through combined use of the-above-mentioned bioinformat-
ics methods, we expect to find out immune signature genes 
that are involved in the altered immune cell composition and 
in the pathogenesis of IDD. Through combined utilization of 
various bioinformatics and machine learning tools, we hope 
to provide novel perspectives regarding IDD diagnosis and 
treatment in the context of immune infiltration.

Methods

Data collection

Gene expression data sets used in the current study were 
obtained from the Gene Expression Omnibus database 
(GEO; http://​www.​ncbi.​nlm.​nih.​gov/​geo/) on January 5th, 
2021. Two GEO series were chosen for incorporation into 
this study, including an initial analysis set (GSE124272) 
(Wang et al. 2019) and a validation set (GSE56081) (Liu 
et al. 2015). GSE124272 contained whole blood samples 
collected from 8 IDD patients (IDD) and equal number of 
healthy volunteers (HV) was used in the analyses (including 
GSEA, WGCNA, GO/KEGG enrichment analysis, LASSO 
feature selection). GSE56081 included nucleus pulposus tis-
sues derived from 5 IDD patients and 5 controls and was 
used for validating the biological significance of the pivotal 
IDD biomarkers identified in GSE124272. Moreover, CIB-
ERSORT inference of the composition of immune cells was 
executed in both the initial and validation data sets, whereby 
comparisons of the immune-regulatory roles of pivotal IDD 
biomarkers could be made across IDD samples of different 

http://www.ncbi.nlm.nih.gov/geo/
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origins. The overall design of this study is shown as a flow 
chart in Supplementary Fig. S1.

Gene set enrichment analysis (GSEA)

To reveal the alerted biological functions contributing to the 
pathogenesis of IDD in a gene-expression dependent fash-
ion, we first conducted a GSEA using clusterProfiler (3.16.1) 
(Yu et al. 2012) in R (version 4.0.2). In brief, genes were 
ranked based on their differences in expression between IDD 
and HV; in this manner, gene expression could be associated 
with phenotypes (IDD or HV). Next, the ranked gene list 
was fed to GSEA algorithm, and queried against GEO data 
base to associate gene expression with functional enrich-
ment. In particular, genes were examined throughout the 
ranked gene list, during which the running sum statistic was 
raised as long as a gene in the queried pathway was encoun-
tered; otherwise, the statistics was reduced by the algorithm, 
and an Enrichment score (ES) representing the maximum 
deviation of running-sum statistic from zero could be cal-
culated. Leading-edge subsets that contributed greatly to the 
ES of immune-associated pathways were extracted, and the 
intersection among them was defined as immune genes.

Weighted correlation network analysis (WGCNA)

Co-expression network was constructed through WGCNA 
(1.69) (Langfelder and Horvath 2008) in R. We first filtered 
non-varying genes which could be generally considered as 
noise (based on a 75% median absolute deviation thresh-
old), whereby the robustness and effectiveness of WGCNA 
algorithm was improved. To construct a scale-free network, 
the gene co-expression similarity Skj between two arbitrary 
genes (nodes) m and n were calculated using Skj =|cor(k, j)|. 
The pickSoftThreshold function in WGCNA package was 
used to screen ideal soft thresholding power β by calculat-
ing the degree of independence as β gradually increases, an 
optimized β was picked when the degree of independence 
exceeded a 0.85 threshold, after which Skj was raised by β, 
whereby the co-expression similarity was transformed into 
and adjacency: akj =|Skj|β, resulting in the construction of 
a topological overlap matrix. Next, module detection was 
carried out with a minimal module size being set as 30, 
dynamic tree cut method was subsequently applied to merge 
highly similar modules. The finalized modules were then 
related to external phenotypes (IDD or HV).

Pathway enrichment analysis (GO/KEGG)

Modules with the highest positive/negative correlation with 
IDD were named pivotal modules and subjected to path-
way enrichment analysis, which was performed using clus-
terProfiler, whereby biological significance of two pivotal 

modules were interpreted. Next, we defined the union of 
genes within pivotal modules as module genes. The inter-
section between modules genes (identified by WGCNA) and 
immune genes (revealed by GSEA) were named immune 
signature genes and underwent further investigation in our 
subsequent analyses.

LASSO feature selection

To ensure the robustness of subsequent analyses, LASSO 
(least absolute shrinkage and selection operator) algorithm 
was performed on immune signature genes to screen can-
didates for machine learning modeling. LASSO was per-
formed using glmnet package (Friedman et al. 2010) (ver-
sion 4.0.2) in R. The features selected by LASSO bears a 
greater biological significance and were named pivotal 
genes before being used in machine learning based model 
validation.

Machine learning‑based model validation

For further confirmation of the biological significance con-
cerning pivotal genes, 5 machine learning predictive models 
were applied to both GSE124272 and GSE56081 data sets, 
with pivotal genes being used as features. The tenfold cross 
validation method was used to evaluate the combinations of 
hyperparameters. The main parameters of the 5 models were 
as follows: (i) the λ penalty coefficient of LASSO was set to 
0.2; (ii) the radial basis function (RBF) was set to the kernel 
function in SVM; (iii) the number of sub-decision trees was 
set to 500 in Random forest (RF); (iv) the eXtreme Gradient 
Boosting (Xgboost) had the maximum depth of 10, and the 
learning rate was 0.001; (v) The back propagation neural 
network (BPNN) model had one single hidden layer, and the 
number of neurons was set to 10. The activation function of 
hidden layer and output layer were set to ReLU and Sigmoid 
function, respectively. The cross-entropy function was set to 
loss function. Finally, the model was trained through batch 
gradient descent method with 1000 iterations, and the learn-
ing rate was 0.001. Receiver operating characteristic curve 
(ROC) and area under curve (AUC) were used to evaluate 
the performance of model. Machine-learning model valida-
tion was performed in python (version 3.7.6).

Correlation analysis of pivotal gene expression 
and IDD immune environment

To better understand the altered immune environment in 
the pathogenesis of IDD, CIBERSORT algorithm (New-
man et al. 2015) (cell-type Identification by Estimating 
Relative Subsets of Known RNA Transcripts) was used to 
infer immune cell composition in both training and valida-
tion data sets, and then we measured the Pearson-correlation 
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coefficient between the level of immune infiltration (propor-
tion of a type of immune cell) and the expression of 8 piv-
otal genes across all IDD patients enrolled in this study. All 
gene-cell pairs with significant correlation coefficient were 
subsequently visualized using Cytoscape (Shannon et al. 
2003) (version 3.6.1), and comparisons were made between 
training set and validation set.

Results

GSEA‑based identification of immune genes 
responsible for IDD

To identify the immune-related genes that are potentially 
involved in IDD, we performed GSEA analysis based on 
GO and KEGG source databases. The GSEA–GO and 
GSEA–KEGG results were provided in Supplementary 
Tables S1 and S2. We extracted immune-associated path-
ways from GSEA results, and defined the intersection of 
leading-edge gene sets of all immune-associated pathways 
as immune genes. The involvement of immune genes in 
GSEA-immune-associated pathways were shown in circos 
plot (Fig. 1A); the top-10 representative immune-asso-
ciated pathways (with a predominant number of immune 
genes) were “cell activation involved in immune response”, 
“innate immune response”, “leukocyte activation involved 
in immune response”, “leukocyte degranulation”, “leukocyte 
mediated immunity”, “myeloid cell activation involved in 
immune response”, “myeloid leukocyte activation”, “mye-
loid leukocyte mediated immunity”, “neutrophil activation” 
and “neutrophil mediated immunity”. Enrichment plot of the 
above-mentioned pathways is shown in Fig. 1B; it is notable 
that all of these pathways achieved positive enrichment score 
(ES) in the IDD versus HV comparison, suggesting that the 
genes involved in these predominant immune-associated 
pathways were up-regulated in IDD patients, showing the 
biological significance of immune genes retrieved from these 
pathways.

Detection of IDD‑associated co‑expression modules 
by WGCNA

To construct a scale-free network, an optimal power was 
first screened; as depicted in Fig. 2A, the soft-thresholding 
power was determined to be 6 by the algorithm when scale-
free fit index first reached a 0.85 threshold, where the mean 
connectivity remained relatively high. Afterwards, a topo-
logical overlap matrix was generated; a series of modules 
were subsequently detected by hierarchical clustering, and 
we narrowed down the number of modules using Dynamic 
Tree Cut algorithm, whereby modules with high similar-
ity were merged (Fig. 2C). Next, the merged modules were 

correlated to sample clinical traits (IDD or HV), the result-
ing correlation and p value (in parenthesis) were displayed 
in a heatmap (Fig. 2D), among which magenta module 
and orangered4 module displayed the strongest positive or 
negative correlation with IDD phenotype and were chosen 
for further investigation. The scatter plots of gene signifi-
cance for IDD versus module membership in magenta or 
orangered4 modules are shown in Fig. 2E, F, respectively. 
The biological significance of these two modules was inter-
preted using GO or KEGG pathway enrichment analysis. 
As shown in Fig. 3A–D, Magenta module genes were most 
significantly enriched in “secretory granule membrane” 
(GO-Cellular component, CC); “protein serine/threonine 
kinase activity (GO-Molecular function, MF)”; “neutro-
phil mediated immunity”, “neutrophil activation”, “neutro-
phil activation involved in immune response”, “neutrophil 
degranulation” (GO-Biological process, BP); “Phospholi-
pase D signaling pathway”, and “Osteoclast differentiation” 
(KEGG). As shown in Fig. 3E–H, Orangered4 module genes 
were most significantly enriched in “vesicle lumen”, “cyto-
plasmic vesicle lumen”, “secretory granule lumen” for CC; 
“organic acid binding”, “carboxylic acid binding”, “beta-
catenin binding” for MF; “regulation of binding”, “positive 
regulation of binding”, “histone deacetylation”; “regulation 
of interleukin-8 production”, “aminoglycan catabolic pro-
cess”, and “glycosaminoglycan catabolic process” for BP, 
while the significance of enrichment of Orangered4 module 
genes under each category of KEGG was identical. Never-
theless, “MAPK signaling pathway” had the highest Gen-
eRatio (Number of genes involved in a given pathway/Total 
number of queried genes), and could represent the KEGG 
enrichment of Orangered4 module genes. We then defined 
the module genes as the intersection of genes in these two 
modules for subsequent analyses.

Selection for pivotal immune‑associated players 
in the pathogenesis of IDD

Based on the results of GSEA (leading edge genes in 
immune-associated pathways responsible for the patho-
genesis of IDD), and WGCNA (IDD-associated genes with 
coordinated expression patterns), we defined the intersection 
of immune genes and module genes as immune signature 
genes (Fig. 4A), which contained 207 genes. To ensure the 
robustness of the current study, we used LASSO algorithm 
to screen for pivotal genes with higher biological signifi-
cance from 207 immune signature genes. The LASSO path 
plot is shown in Fig. 4B, with the increase of λ parameter, 
the coefficients were shrunk towards zero, and λ corre-
sponding to the minimum binomial deviance was chosen 
as the penalty coefficient (Fig. 4C), the remaining 8 pivotal 
genes (with non-zero coefficients estimates) were named 
pivotal genes, and their coefficient weights are shown in 
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Fig. 4D. The expression of 8 pivotal genes in validation 
set was shown in boxplot (Fig. 4F); aside from ANXA3 
and ZBTB16 which were down-regulated in IDD patients, 
other pivotal genes were significantly up-regulated in IDD 
patients, especially MSH2 and LY96 (with P value less than 

0.01). To investigate whether the 8 pivotal genes could con-
stitute a diagnostic model for distinguishing IDD patients 
from HV controls, five machine learning algorithms, namely, 
“LASSO”, “SVM”, “RF”, “Xgboost” and “BPNN” were run. 
As shown in Fig. 4E, the area under curve (AUC) obtained 

Fig. 4   Selection of pivotal genes and machine learning model valida-
tion. A Intersection between module genes (2861 genes, identified by 
WGCNA) and immune genes (788 genes, identified by GSEA) were 
named immune signature genes (207 genes). B, C LASSO penalized 
model demonstrated that when Log λ =− 3.339, the minimum bino-
mial deviance was obtained. D Coefficient of 8 selected pivotal genes 

(with non-zero coefficients when Log λ = −  3.339). E ROC curve 
demonstrated the prediction effect of 5 machine learning validation 
models on the validation set, the 95% confidence interval was marked 
with dotted lines. F Expression patterns of 8 pivotal genes in valida-
tion set (tissue samples). P p value, Fc log-fold change (IDD versus 
HV)
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with the five machine learning models ranged between 0.48 
and 0.86 and the highest AUC of 0.86 was obtained with 
the BPNN model. These results indicated that the 8 pivotal 
genes could be used as a diagnostic model for distinguishing 
between IDD patients and healthy individuals.

Correlation between pivotal genes and immune cell 
composition

Immune genes undoubtedly affect the immune processes, 
which can be reflected by altered immune cell composition. 
Therefore, we constructed a correlation matrix to visual-
ize the association between the expression of pivotal genes 
and the proportion of immune cells across different sam-
ples based on the two data sets. As shown in Fig. 5A, C), 
the stacked bar plot represented the accumulated proportion 
of 22 immune genes in IDD samples inferred by CIBER-
SORT, and the heatmaps (Fig. 5B, D) showed the correlation 
between pivotal genes and immune cells in IDD samples, 
where positive and negative correlations were denoted by 
blue or red blocks, respectively. The correlations are summa-
rized in Fig. 5E, which demonstrated that the above pivotal 
genes jointly regulate CD8 T cells and resting memory CD4 
T cells across both data sets.

Discussion

In the present study, we first focused on the GSE124272 con-
taining blood samples; numerous immune-associated path-
ways that might be responsible for the pathogenesis of IDD 
were initially identified by GSEA, whereas gene modules 
that displayed strong correlation with IDD phenotype were 
detected by WGCNA. Afterwards, 207 immune signature 
genes were defined on the basis of GSEA and WGCNA, 
which were subsequently narrowed down to 8 pivotal genes 
by LASSO feature selection. We then turned our attention 
to the validation data (GSE56081), and performed cross-
validation of 8 pivotal genes using 5 machine learning mod-
els, whereby “BPNN” model indicated that the eight gene 
could be used for distinguishing IDD patients from HV with 
an AUC of 0.86, which further verified the biological sig-
nificance of pivotal genes.

Our GSEA results showed that the most representa-
tive immune-associated pathways were related to immune 
response, leukocyte, myeloid and neutrophil, and their posi-
tive ES in IDD versus HV comparison indicated that the 
above pathways might be activated in the pathogenesis of 
IDD, along with up-regulation of immune genes involved 
in these regulatory processes. Specifically, we found that 
the immune genes were highly clustered in the following 
pathways: “cell activation involved in immune response”, 
“innate immune response”, “leukocyte activation involved 

in immune response”, “leukocyte degranulation”, “leukocyte 
mediated immunity”, “myeloid cell activation involved in 
immune response”, “myeloid leukocyte activation”, “mye-
loid leukocyte mediated immunity”, “neutrophil activation” 
and “neutrophil mediated immunity”. Aside from mac-
rophage, a mononuclear leukocyte that participates in innate 
immune response (Danielsson and Eriksson 2021) and IDD 
(Silva et al. 2019), previous studies demonstrated the activa-
tion of leukocytes during NP-associated intervertebral disc 
impairments (Wang et al. 2021). For instance, in animal 
IDD model, T-helper cells, T-killer cells and B cells were 
activated and attracted by NP exudate (Geiss et al. 2007); T 
cells and neutrophils were proposed to secret molecules that 
promote inflammation, autophagy or apoptosis (including 
well-studied TNF and IL-1β), thereby contributing to the 
IDD (Risbud and Shapiro 2014). Collectively, myeloid leu-
kocyte (neutrophils), leukocytes (macrophages, T cells and 
B cells) were proposed to be activated and involved in the 
pathogenesis of IDD; therefore, the GSEA results (especially 
ES that indicated positive correlation between these immune 
pathways and IDD phenotype) obtained in the present study 
agreed with previous reports.

The subsequent WGCNA revealed two modules that 
closely associated with IDD, namely, magenta module 
that was positively associated with IDD, and orangered4 
module that was negatively associated with IDD. Function 
enrichment analyses showed that, in the category of CC, 
magenta or orangered4 module genes were most signifi-
cantly enriched in “secretory granule membrane” or “vesi-
cle lumen”, “cytoplasmic vesicle lumen”, and “secretory 
granule lumen”. The importance of extracellular vesicles 
(EV, a heterogeneous mixture of vesicles) in the field of 
inter-cell communication has been established in recent 
years (McConnell 2018), especially those that are respon-
sible for immune processes in response to infectious dis-
eases (Hosseini-Beheshti and Grau 2018). Specifically, the 
release of EV targets several immune cells including T-cells 
and macrophages in the presence of exogenous pathogen 
(McConnell 2018). Likewise, secretory granule could serve 
as a “shuttle” by carrying various host defense peptides, con-
tinuous replenishment and release of these “shuttles” are 
crucial for maintaining the innate host defense (Yokoi et al. 
2019). However, the immune regulatory roles of EV and 
secretory granule in auto-immune responses are still unclear. 
Considering that the genes in both magenta and orangered4 
modules were significantly enriched in “secretory granule 
membrane”, we hypothesized that secretory granule might 
be a double-edged sword in the pathogenesis of IDD, while 
vesicles-associated pathway might be protectives factors to 
IDD.

With regard to MF terms, magenta or orangered4 module 
genes were predominantly involved in “protein serine/threo-
nine kinase activity”, “organic acid binding”, “carboxylic 
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Fig. 5   Correlation between the immune cell composition and the 
expression of pivotal genes. Stacked barplots demonstrate the inferred 
immune cell composition of IDD and HV groups in A validation set 
(tissue samples) and C training set (blood samples). The heatmaps 
show the correlation between pivotal genes (rows) and immune cells 
(columns) in B validation set and D training set, where positive and 
negative correlations were denoted by blue or red blocks, respec-
tively. Significant pairwise correlations (with p value less than 0.05) 
were highlighted by asterisks. E All gene-cell pairs corresponding to 
significant correlations were summarized in an interaction network, 
where significant positive or negative correlations were represented 

by arrows with solid lines or squared arrows with dash lines, respec-
tively. The green, purple or blue nodes correspond to pivotal genes 
expression in training set/pivotal genes expression in validation set/
proportion of immune cells. Characters in parentheses indicate the 
expression of pivotal genes in “B” (blood samples, training set) or 
“T” (tissue samples, validation set). Nodes with larger size possess 
an increased number of edges. Nodes highlighted by red circles rep-
resented the proportion of CD8 T cells and resting memory CD4 T 
cells, which was associated with pivotal genes in both blood and tis-
sue samples.
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acid binding”, and “beta-catenin binding”. Protein kinase 
B is a well-established serine/threonine kinase whose acti-
vation depend greatly on its phosphorylation during the 
immune activation of T cells (Fabre et al. 2005; Finlay 
and Cantrell 2011); these might explain the involvement of 
magenta module genes in “protein serine/threonine kinase 
activity”, since activated leukocytes might be accompanied 
by elevated protein serine/threonine kinase activity in IDD 
patients. The top enriched MF terms for orangered4 mod-
ule suggested that the ability of interacting selectively and 
non-covalently with an organic acid or carboxylic acid or 
beta-catenin might be hampered in IDD patients, among 
which beta-catenin was proposed as a mediator of immune 
evasion which are exploited by cancer cells to hide from 
host immune responses (Du et al. 2020; Sorci et al. 2013). 
Moreover, activated Wnt/beta-catenin pathway prevents T 
cells from infiltrating into metastatic melanomas, resulting 
in local immune exclusion (Pai et al. 2017); therefore, we 
speculated that beta-catenin might exert protective roles in 
IDD by calming the inflammation provoked by T cells.

As for the BP category, magenta or orangered4 mod-
ule genes were mainly clustered in “neutrophil mediated 
immunity”, “neutrophil activation”, “neutrophil activation 
involved in immune response”, “neutrophil degranulation”, 
“regulation of binding”, “positive regulation of binding”, 
“histone deacetylation”, “regulation of interleukin-8 produc-
tion”, “aminoglycan catabolic process”, and “glycosamino-
glycan catabolic process”. The results of magenta module 
were highly consistent with that of GSEA, further confirm-
ing the roles of these immune cells in the pathogenesis of 
IDD. In contrast, orangered4 module genes were implicated 
in BP terms that promotes binding (the selective interaction 
between molecules). Although not reported, these biologi-
cal processes may have a profound impact on IDD. His-
tone deacetylation is a pleiotropic immune regulator that 
not only participates in the development and differentiation 
of myeloid, but also regulates the functions of the mature 
leukocytes (such as macrophage and dendritic cells) through 
controlling the generation of inflammatory factors (Shake-
spear et al. 2011), while interleukin-8 is a pro-inflamma-
tory chemokine generated by macrophages (Hedges et al. 
2000); thus, the enrichment results showed that orangered4 
module genes might counteract the IDD through regulat-
ing immune processes induced by histone deacetylation and 
interleukin-8.

The KEGG enrichment results showed that magenta mod-
ule genes were mainly involved in “Phospholipase D signal-
ing pathway” and “Osteoclast differentiation”. In most cases, 
the intracellular activity of phospholipase D remains low, 
unless the cells were stimulated by cellular stress (Bruntz 
et al. 2014; Shin et al. 2001), and we presumed that phos-
pholipase D and associated signaling pathway might be acti-
vated in response to various cellular stress in IDD, such as 

mechanical stress (Chooi et al. 2017) and oxidative stress 
(Hou et al. 2014). Osteoclast is a crucial player in remod-
eling, maintaining, and repairing of bone tissue (Jayakumar 
and Di Silvio 2010), and was found activated in IVD with 
Modic changes (normally occur near the degenerated IVD), 
which could also be partially attributed to mechanical stress 
(Rahme and Moussa 2008; Torkki et al. 2016). The enrich-
ment of magenta module genes in these pathways were con-
cordant with their positive correlation with IDD. The sig-
nificance of enrichment of Orangered4 module genes under 
each KEGG pathway was identical, among which “MAPK 
signaling pathway” achieved the highest GeneRatio; such 
pathway is essential for initiating the innate immunity 
through participating in cytokine generation, it also plays a 
fundamental role in lymphocyte differentiation (Krzyzowska 
et al. 2010). Therefore, we hypothesized that MAPK associ-
ated processes might contribute to the anti-IDD effects in 
orangered4 module.

The combined utilization of GSEA and WGCNA iden-
tified several biological significant gene sets, which were 
considered responsible for the pathogenesis of IDD, and 
used for selecting pivotal markers (highly representative of 
IDD). After the selection by LASSO algorithm, we obtained 
8 pivotal IDD markers (ANXA3 and ZBTB16 (down-reg-
ulated in IDD patients), MSH2 and LY96 (up-regulated 
in IDD patients with p value less than 0.01), along with 
ADAM8, HEBP2, RAB24, PIK3CD (up-regulated in IDD 
patients)) and evaluated their expression in validation set. 
Among these genes, ADAM8 (A disintegrin and metallo-
proteinase) was found in IDD tissues (including both NP and 
AF tissues), and known to be responsible for FN cleavage 
(FN: fibronectin fragments which increase with the extent 
of disc degeneration and involved in the initiation of IDD 
progression) (Oegema et al. 2000; Ruel et al. 2014). Human 
mesenchymal stem cells induced regeneration of NP cells 
has emerged as a novel strategy to attenuate the negative 
effects of NP cell degeneration, and ANXA3 (Annexin A3) 
was recommended as a maker that determine the success 
of such regenerative process (Ehlicke et al. 2017). Other 
pivotal genes, although not reported, were associated with 
immune responses. ZBTB16 (transcription factor promye-
locytic leukemia zinc finger) is indispensable for timely and 
intense immune response of almost all Natural Killer T cells 
(Zhang et al. 2015). MSH2 (mutS homolog 2) was originally 
recognized as a regulator in DNA mismatch repair pathway 
and its strong correlation with elevated PD-L1 expression 
and immune infiltration was only revealed recently in lung 
adenocarcinoma (Jia et al. 2020). LY96 (Lymphocyte anti-
gen 96), also known as MD-2 (Myeloid Differentiation fac-
tor 2), is a molecular chaperone of TLR4 (Toll-like receptor 
4); the TLR4/MD-2 complex was found to control the early 
immune responses against bacterial infection (Robison et al. 
2019). PIK3CD is a well-studied immune gene that not only 
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shape the development and function of B cells (Wray-Dutra 
et al. 2018), but also is responsible for the susceptibility of 
T cells to virus infection (Rodriguez et al. 2019). HEBP2 
(Heme Binding Protein 2) and RAB24 (Ras-Related Pro-
tein Rab-24) were related to pathways associated with innate 
immune system according to the gene card (www.​genec​ards.​
org) database (Stelzer et al. 2016). Collectively, pivotal 
genes identified in our current study bear the potential to 
distinguish inflammatory IDD, their biological significance 
was also validated by the BPNN machine learning models 
with an AUC of 0.86.

Immune cell infiltration is accountable for the initiation 
and progression of IDD (Shamji et al. 2010). Considering 
that our currently identified pivotal genes were highly rep-
resentative of IDD and strongly associated with immune 
response, we sought to find their down-stream target immune 
cells that exert the major immune-pathological effects in 
IDD. Therefore, we evaluated the correlation between com-
position of immune cells and the expression of pivotal genes 
in IDD patients from both data sets. We found that, in blood 
samples, plasma cells and M0 macrophages were posi-
tively correlated with the majority of pivotal genes (includ-
ing ADAM8, ZBTB16, ANXA3 and RAB24), whereas in 
tissue sample, pivotal genes (including ZBTB16, MSH2, 
HEBP2 and ADAM8) were mainly positively correlated 
with activated NK cells and M2 macrophages. The discrep-
ancies regarding the correlation between pivotal genes and 
immune cells components across different origin of IDD 
samples (blood and tissue) could be explained by the tis-
sue heterogeneity, suggesting that the pivotal genes might 
affect the immune infiltration in a tissue-specific manner. Of 
note, pivotal genes in both blood and tissue samples were 
associated with the proportion of CD8 T cells and resting 
memory CD4 T cells; such concordance suggests that piv-
otal genes might work in concert to suppress the recruit-
ment of CD8 T cells (LY96, PIK3CD, ZBTB16 in tissue 
and MSH2 in blood) or promote the resting state of CD4 
T cells (PIK3CD, HEBP2, ADAM8 in tissue and MSH2 
in blood), thereby shaping the progression of IDD. Aside 
from macrophages (Silva et al. 2019), T cells (Wang and 
Samartzis 2014) and NK cells (Sato et al. 2002) that were 
proposed to participate in IDD, the potential roles of plasma 
cells in IDD are currently unclear, although plasma cells 
are crucial for maintaining the humoral immunity (D'Souza 
and Bhattacharya 2019). Based on the current results, the 
correlation between pivotal genes and plasma cells or NK 
cells might be specific characteristics for blood or tissue 
sample of IDD patients and might provide novel perspective 
on IDD diagnosis and treatment. Moreover, in our present 
study, myeloid cells of IDD patients also changed greatly. 
In addition, the genes LY96 (Tissières et al. 2009), ZBTB16 
(Girard et al. 2013; Quaranta et al. 2006) and PIK3CD (Kok 
et al. 2009) which are related to myeloid cells were found 

to be key genes involved in IDD. These results suggested 
that the dysregulation of genes related to myeloid cells and 
their associated functions might indicate the pathogenesis 
of IDD. Indeed, we found that the “myeloid cell activation 
involved in immune response”, “myeloid leukocyte activa-
tion” and “myeloid leukocyte mediated immunity” processes 
were involved in the pathogenesis of IDD. These results are 
indicative of a probable implication of the myeloid cells in 
IDD pathogenesis. Up to date, the involvement of myeloid 
cells in the pathogenesis of IDD has not been systematically 
reported. A previous study on IDD indicated that microR-
NAs regulate apoptosis in myeloid cells; however, the regu-
lated apoptosis pathways were not found to be IDD-specific 
(Yang 2022). The immune myeloid cells have been reported 
to regulate the extracellular matrix in cancer (Jiang and Lim 
2016). Interestingly, previous studies have conveyed that the 
degeneration of interverbal disc is associated with exces-
sive destruction of the outer disc extracellular matrix (ECM) 
due to the expression changes in matrix metalloproteinases 
(MMPs), which conducts to the decrease of intervertebral 
disc machinery and subsequent structural damage (Liu et al. 
2020). Thus, we inferred that myeloid cells may be involved 
in IDD by releasing immune related immune and inflamma-
tory markers and regulating the MMP proteins.

Our study may present some limitations. Indeed, contrary 
to the validation data GSE56081 which provided the pfir-
rmann disc grade for patients (Grades IV and V), the clini-
cal grade data of the IDD patients from the GSE124272 are 
unavailable; since the dynamic changes of immune status in 
the context of IDD may change with the pathological stage, 
the results of our study may be taken with caution.

Conclusions

The current study revealed a number of immune-associated 
pathways that might be responsible for the etiology of IDD, 
which might shed a light on in-depth researches on the 
pathogenesis of IDD in the context of immune response. 
The association between pivotal genes and immune cells 
are noteworthy and deserve further experimental validation.
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