Skip to main content
Log in

Genomic characterization of Nitrospirillum amazonense strain CBAmC, a nitrogen-fixing bacterium isolated from surface-sterilized sugarcane stems

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Nitrospirillum amazonense is a nitrogen-fixing bacterium that shows potential to promote plant growth when inoculated into sugarcane and rice plants. This microorganism has been the subject of biochemical and genetic characterization to elucidate important functions related to host plant interaction and growth promotion, including the determination of draft genome sequences of two strains, Y2 and CBAmC, the second of which is the aim of the present study. CBAmC has been isolated from sugarcane (Saccharum spp.), and is currently used in a sugarcane consortium inoculant with four other nitrogen-fixing bacterial strains. The present paper describes a significant improvement in the genome sequence and assembly for the N. amazonense strain CBAmC, and determination for the first time of a complete genome sequence for this bacterial species, using PacBio technology. The analysis of the genomic data obtained allowed the discovery of genes coding for metabolic pathways and cellular structures that may be determinant for the success of the bacterial establishment and colonization into the host sugarcane plant, besides conferring important characteristics to the inoculant. These include genes for the use of sucrose and N-glycans, biosynthesis of autoinducer molecules, siderophore production and acquisition, auxin and polyamine biosynthesis, flagellum, σ-fimbriae, a variety of secretion systems, and a complete denitrification system. Concerning genes for nitrogenase and auxiliary proteins, it was possible to corroborate literature data that in N. amazonense these probably had originated from horizontal gene transfer, from bacteria of the Rhizobiales order. The complete genomic sequence of the CBAmC strain of N. amazonense revealed that the bacterium harbors four replicons, including three chromosomes and one chromid, a profile that coincides with that of other two strains, according to literature data, suggesting that as a replicon pattern for the species. Finally, results of phylogenomic analyses in this work support the recent reclassification of the species, separating it from the Azospirillum genus. More importantly, results of the present work shall guide subsequent studies on strain CBAmC as well as the development of a sugarcane inoculant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Arrieta JG, Sotolongo M, Menéndez C, Alfonso D, Trujillo LE, Soto M, Ramírez R, Hernández L (2004) A type II protein secretory pathway required for levansucrase secretion by Gluconacetobacter diazotrophicus. J Bacteriol 186:5031–5039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  CAS  Google Scholar 

  • Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Ciênc 77:549–579

    Article  PubMed  CAS  Google Scholar 

  • Baldani J, Pot B, Kirchhof G, Falsen E, Baldani V, Olivares F, Hoste B, Kersters K, Hartmann A, Gillis M, Döbereiner J (1996) Emended description of Herbaspirillum; inclusion of (Pseudomonas) rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Int J Syst Bacteriol 46:802–810

    Article  PubMed  CAS  Google Scholar 

  • Baldani J, Krieg NR, Baldani VLD, Hartmann A, Döbereiner J (2005) Genus II. Azospirillum. In: Bergey’s Manual® of Systematic Bacteriology, 2nd edn. Springer, New York, pp 22–24

    Google Scholar 

  • Baldani JI, Cruz LM, Vidal MS, Simões-Araújo JL, Schwab S, Teixeira KR, Dos S, Souza EM, Pedrosa FO, Farinelli L, INCT-FBN consortium (2010) Draft genome sequence of six endophytic nitrogen-fixing bacteria with potential biofertilizer application in non-leguminous plants. In: International symposium on biological nitrogen fixation with non-legumes, 12th, Armação dos Búzios

  • Baldani JI, Videira SS, dos Teixeira KR, Reis VM, Oliveira AL, Schwab S, de Souza EM, Pedraza RO, Baldani VL, Hartmann A (2014) The family Rhodospirillaceae. In: The prokaryotes: alphaproteobacteria and betaproteobacteria, 4th edn. Springer, Berlin, pp 533–618

    Chapter  Google Scholar 

  • Berks BC, Palmer T, Sargent F (2003) The Tat protein translocation pathway and its role in microbial physiology. Academic Press, Cambridge, pp 187–254

    Google Scholar 

  • Berry J-L, Phelan MM, Collins RF, Adomavicius T, Tønjum T, Frye SA, Bird L, Owens R, Ford RC, Lian L-Y, Derrick JP (2012) Structure and assembly of a trans-periplasmic channel for type IV pili in Neisseria meningitidis. PLoS Pathog 8:e1002923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A others (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genom 10:450

    Article  CAS  Google Scholar 

  • Bertelli C, Laird MR, Williams KP, Group SFURC., Lau BY, Hoad G, Winsor GL, Brinkman FS (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45:W30–W35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denancé N, Vasse J, Lauber E, Arlat M (2007) Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2:e224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boulanger A, Zischek C, Lautier M, Jamet S, Rival P, Carrère S, Arlat M, Lauber E (2014) The plant pathogen Xanthomonas campestris pv. campestris exploits N-acetylglucosamine during infection. MBio 5:e01527–e01514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buschart A, Sachs S, Chen X, Herglotz J, Krause A, Reinhold-Hurek B (2012) Flagella mediate endophytic competence rather than act as MAMPS in rice–Azoarcus sp. strain BH72 interactions. Mol Plant Microbe Interact 25:191–199

    Article  PubMed  CAS  Google Scholar 

  • Carvalho FM, Souza RC, Barcellos FG, Hungria M, Vasconcelos ATR (2010) Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales. BMC Microbiol 10:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28:464–469

    Article  PubMed  CAS  Google Scholar 

  • Cassan F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  CAS  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459

    Article  CAS  Google Scholar 

  • Cecagno R, Fritsch TE, Schrank IS (2015) The plant growth-promoting bacteria Azospirillum amazonense: genomic versatility and phytohormone pathway. BioMed Res Int 2015:898592

  • Chaves VA, Santos SG dos, Schultz N, Pereira W, Sousa JS, Monteiro RC, Reis VM (2015) Initial development of two sugarcane varieties inoculated with diazotrophic bacteria. Rev Bras Ciênc Solo 39:1595–1602

    Article  Google Scholar 

  • Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64:316–324

    Article  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343–359

    Article  PubMed  CAS  Google Scholar 

  • Croes CL, Moens S, van Bastelaere E, Vanderleyden J, Michiels KW (1993) The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. Microbiology 139:2261–2269

    CAS  Google Scholar 

  • D’Alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TCJ (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37:813–826

    Article  PubMed  CAS  Google Scholar 

  • da Silva PRA, Drechsel MM, de Paula Soares C, Vidal MS, Baldani JI (2013) Efeito antagônico de bactérias diazotróficas contra fungos patógenos de cana-de-açúcar. In: Semana Científica Johanna Döbereiner, XII, Seropédica

    Google Scholar 

  • da Silva Gírio LA, Dias FLF, Reis VM, Urquiaga S, Schultz N, Bolonhezi D, Mutton MA (2015) Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas. Pesquisa Agropecuária Brasileira 50(1):33–43

    Article  Google Scholar 

  • Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochim Biophys Acta BBA-Mol Cell Res 1694:149–161

    Article  CAS  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    Article  PubMed  CAS  Google Scholar 

  • dos Santos SG, da Silva Ribeiro F, da Fonseca CS, Pereira W, Santos LA, Reis VM (2017) Development and nitrate reductase activity of sugarcane inoculated with five diazotrophic strains. Arch Microbiol 199:863–873

    Article  PubMed  CAS  Google Scholar 

  • Dupoiron S, Zischek C, Ligat L, Carbonne J, Boulanger A, de Bernonville TD, Lautier M, Rival P, Arlat M, Jamet E, Lauber E, Albenne C (2015) The N-glycan cluster from Xanthomonas campestris pv. campestris – a toolbox for sequential plant N-glycan processing. J Biol Chem 290:6022–6036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faoro H, Rene Menegazzo R, Battistoni F, Gyaneshwar P, do Amaral FP, Taulé C, Rausch S, Gonçalves Galvão P, de los Santos C, Mitra S (2017) The oil-contaminated soil diazotroph Azoarcus olearius DQS-4T is genetically and phenotypically similar to the model grass endophyte Azoarcus sp. BH72. Environ Microbiol Rep 9:others 223–238

    Article  CAS  Google Scholar 

  • Fischer D, Pfitzner B, Schmid M, Simões-Araújo JL, Reis VM, Pereira W, Ormeño-Orrillo E, Hai B, Hofmann A, Schloter M, Martinez-Romero E, Baldani JI, Hartmann A (2012) Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant Soil 356:83–99

    Article  CAS  Google Scholar 

  • Fu HA, Hartmann A, Lowery RG, Fitzmaurice WP, Roberts GP, Burris RH (1989) Posttranslational regulatory system for nitrogenase activity in Azospirillum spp. J Bacteriol 171:4679–4685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghoneem KM, Saber WIA, Youssef IAM, Mohamed MR, Al-Askar AA (2015) Postulation and efficiency of leaf rust resistance genes of wheat and biological control of virulence formulae of Puccinia triticina races. Egypt J Biol Pest Control 25:23–31

    Google Scholar 

  • Glaeser SP, Kämpfer P (2015) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38:237–245

    Article  PubMed  CAS  Google Scholar 

  • Gottig N, Garavaglia BS, Garofalo CG, Orellano EG, Ottado J (2009) A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS One 4:e4358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  PubMed  CAS  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57

    Article  PubMed  PubMed Central  Google Scholar 

  • Guilhabert MR, Kirkpatrick BC (2005) Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute to X. fastidiosa biofilm maturation and colonization and attenuate virulence. Mol Plant Microbe Interact 18:856–868

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series. pp 95–98

  • Harrison PW, Lower RPJ, Kim NKD, Young JPW (2010) Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 18:141–148

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Fu H, Burris RH (1986) Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp. J Bacteriol 165:864–870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC (2005) Whole-genome prokaryotic phylogeny. Bioinformatics 21:2329–2335

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Reyes C, Schenk ST, Neumann C, Kogel K-H, Schikora A (2014) N-Acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microb Biotechnol 7:580–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jha G, Rajeshwari R, Sonti RV (2005) Bacterial type two secretion system secreted proteins: double-edged swords for plant pathogens. Mol Plant Microbe Interact 18:891–898

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Suzuki T, Fujita T, Masuda M, Shimizu S (1995) Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc Natl Acad Sci USA 92:714–718

    Article  PubMed  CAS  Google Scholar 

  • Korotkov KV, Sandkvist M, Hol WGJ (2012) The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10:336–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Böhm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorhölter FJ, Weidner S, Pühler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Ghosh S, Bhatt DN, Narula A, Datta A (2016) Magnaporthe oryzae aminosugar metabolism is essential for successful host colonization. Environ Microbiol 18:1063–1077

    Article  PubMed  CAS  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuznetsov VV, Radyukina NL, Shevyakova NI (2006) Polyamines and stress: biological role, metabolism, and regulation. Russ J Plant Physiol 53:583–604

    Article  CAS  Google Scholar 

  • Li P-L, Hwang I, Miyagi H, True H, Farrand SK (1999) Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. J Bacteriol 181:5033–5041

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li YZ, Wang D, Feng XY, Jiao J, Chen WX, Tian CF (2016) Genetics analysis reveals the essential role of nitrogen phosphotransferase system components in Sinorhizobium fredii CCBAU 45436 symbioses with soybean and pigeonpea plants. Appl Environ Microbiol 82:1305–1315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin S-Y, Hameed A, Shen F-T, Liu Y-C, Hsu Y-H, Shahina M, Lai W-A, Young C-C (2014) Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie Van Leeuwenhoek 105:1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Logeshwaran P, Thangaraju M, Rajasundari K (2009) Hydroxamate siderophores of endophytic bacteria Gluconacetobacter diazotrophicus isolated from sugarcane roots. Aust J Basic Appl Sci 3:3564–3567

    CAS  Google Scholar 

  • Magalhães F, Baldani J, Souto S, Kuykendall J, Döbereiner J (1983) A new acid-tolerant Azospirillum species. An Acad Bras Ciênc 55:417–430

    Google Scholar 

  • Martin-Didonet CC, Chubatsu LS, Souza EM, Kleina M, Rego FG, Rigo LU, Yates MG, Pedrosa FO (2000) Genome structure of the genus Azospirillum. J Bacteriol 182:4113–4116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Drets G, Fabiano E, Cardona A (1985) Carbohydrate catabolism in Azospirillum amazonense. Appl Environ Microbiol 50:183–185

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Meloni S, Rey L, Sidler S, Imperial J, Ruiz-Argüeso T, Palacios JM (2003) The twin-arginine translocation (Tat) system is essential for Rhizobium–legume symbiosis. Mol Microbiol 48:1195–1207

    Article  PubMed  CAS  Google Scholar 

  • Meng F (2013) The virulence factors of the bacterial wilt pathogen Ralstonia solanacearum. J Plant Pathol Microbiol 4:168

    Article  CAS  Google Scholar 

  • Mitter B, Petric A, Shin MW, Chain PSG, Hauberg-Lotte L, Reinhold-Hurek B, Nowak J, Sessitsch A (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuer G, Kronenberg A, Bothe H (1985) Denitrification and nitrogen fixation by Azospirillum: III. Properties of a wheat-Azospirillum association. Arch Microbiol 141:364–370

    Article  CAS  Google Scholar 

  • Nuccio S-P, Bäumler AJ (2007) Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 71:551–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    Article  CAS  Google Scholar 

  • Oliveira ALM, Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32

    Article  CAS  Google Scholar 

  • Oren A, Garrity GM (2016) Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 66:7–8

    Article  PubMed  Google Scholar 

  • Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, Fernandez MA, Fungaro MHP, Grisard EC, Hungria M, others (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:e1002064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedula RO, Schultz N, Monteiro RC, Pereira W, de Araujo AP, Urquiaga S, Reis VM (2016) Growth analysis of sugarcane inoculated with diazotrophic bacteria and nitrogen fertilization. Afr J Agric Res 11:2786–2795

    Article  Google Scholar 

  • Pereira W, Leite JM, Hipólito G, de S, Santos, dos CLR, Reis VM (2013) Biomass accumulation in sugarcane varieties inoculated with different strains of diazotrophs. Rev Ciênc Agronômica 44:363–370

    Article  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    Article  PubMed  CAS  Google Scholar 

  • Pflüger-Grau K, Görke B (2010) Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 18:205–214

    Article  PubMed  CAS  Google Scholar 

  • Prell J, Mulley G, Haufe F, White JP, Williams A, Karunakaran R, Downie JA, Poole PS (2012) The PTSNtr system globally regulates ATP-dependent transporters in Rhizobium leguminosarum. Mol Microbiol 84:117–129

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran R, Burke AK, Cormier G, Jensen RV, Stevens AM (2014) Transcriptome-based analysis of the Pantoea stewartii quorum-sensing regulon and identification of EsaR direct targets. Appl Environ Microbiol 80:5790–5800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reis VM, Estrada-De los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VLD, Schmid M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162

    Article  PubMed  CAS  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  PubMed  Google Scholar 

  • Richter M, Rosselló-Móra R, Glöckner FO, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues EP, Rodrigues LS, Oliveira ALM, Baldani VLD, dos Teixeira KR, Urquiaga S, Reis S VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261

    Article  CAS  Google Scholar 

  • Rodriguez-R LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe 9:111–118

    Google Scholar 

  • Rojas CM, Ham JH, Deng W-L, Doyle JJ, Collmer A (2002) HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci USA 99:13142–13147

    Article  PubMed  CAS  Google Scholar 

  • Rosconi F, Davyt D, Martínez V, Martínez M, Abin-Carriquiry JA, Zane H, Butler A, Souza EM, Fabiano E (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–927

    Article  PubMed  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto M, Ohkuma M (2011) Identification and classification of the genus Bacteroides by multilocus sequence analysis. Microbiology 157:3388–3397

    Article  PubMed  Google Scholar 

  • Sant’Anna F, Almeida L, Cecagno R, Reolon L, Siqueira F, Machado M, Vasconcelos A, Schrank I (2011) Genomic insights into the versatility of the plant growth-promoting bacterium Azospirillum amazonense. BMC Genom 12:409

    Article  CAS  Google Scholar 

  • Sarkar A, Marszalkowska M, Schäfer M, Pees T, Klingenberg H, Macht F, Reinhold-Hurek B (2017) Global expression analysis of the response to microaerobiosis reveals an important cue for endophytic establishment of Azoarcus sp. BH72. Environ Microbiol 19:198–217

    Article  PubMed  CAS  Google Scholar 

  • Schenk ST, Hernández-Reyes C, Samans B, Stein E, Neumann C, Schikora M, Reichelt M, Mithöfer A, Becker A, Kogel K-H, Schikora A (2014) N-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 26:2708–2723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schikora A, Schenk ST, Stein E, Molitor A, Zuccaro A, Kogel K-H (2011) N-Acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol 157:1407–1418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schikora A, Schenk ST, Hartmann A (2016) Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol Biol 90:605–612

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MA, Balsanelli E, Faoro H, Cruz LM, Wassem R, de Baura VA, Weiss V, Yates MG, Madeira HM, Pereira-Ferrari L, Fungaro MHP, Paula FM de, Pereira LFP, Vieira LGE, Olivares FL, Pedrosa FO, Souza EM de, Monteiro RA (2012) The type III secretion system is necessary for the development of a pathogenic and endophytic interaction between Herbaspirillum rubrisubalbicans and Poaceae. BMC Microbiol 12:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schultz N, de Morais RF, da Silva JA, Baptista RB, Oliveira RP, Leite JM, Pereira W, de Barros Carneiro Júnior J, Alves BJR, Baldani JI, Boddey RM, Urquiaga S, Reis VM (2012) Avaliação agronômica de variedades de cana-de-açúcar inoculadas com bactérias diazotróficas e adubadas com nitrogênio. Pesquisa Agropecuária Brasileira 47(2):261–268

    Article  Google Scholar 

  • Schultz N, da Silva JA, Sousa JS, Monteiro RC, Oliveira RP, Chaves VA, Pereira W, da Silva MF, Baldani JI, Boddey RM, Reis VM, Urquiaga S (2014) Inoculation of sugarcane with diazotrophic bacteria. Revista Brasileira de Ciência do Solo 38(2):407–414

    Article  Google Scholar 

  • Schultz N, Pereira W, Reis VM, Urquiaga SS (2016) Produtividade e diluição isotópica de 15N em cana-de-açúcar inoculada com bactérias diazotróficas. Pesquisa Agropecuária Brasileira 51(9):1594–1601

    Article  Google Scholar 

  • Sekine M, Ichikawa T, Kuga N, Kobayashi M, Sakurai A, Syōno K (1988) Detection of the IAA biosynthetic pathway from tryptophan via indole-3-acetamide in Bradyrhizobium spp. Plant Cell Physiol 29(5):867–874

    CAS  Google Scholar 

  • Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, McCallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, de Bruijn FJ, Ronson CW (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184(11):3086–3095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swain MT, Tsai IJ, Assefa SA, Newbold C, Berriman M, Otto TD (2012) A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat Protoc 7(7):1260–1284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and Nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant Microbe Interact 17(10):1153–1161

    Article  PubMed  CAS  Google Scholar 

  • Thuler DS, Floh EIS, Handro W, Barbosa HR (2003a) Beijerinckia derxii releases plant growth regulators and amino acids in synthetic media independent of nitrogenase activity. J Appl Microbiol 95(4):799–806

    Article  PubMed  CAS  Google Scholar 

  • Thuler DS, Floh EIS, Handro W, Barbosa HR (2003b) Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. Lett Appl Microbiol 37(2):174–178

    Article  PubMed  CAS  Google Scholar 

  • Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193(4):275–286

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Hurst GB, McDonald WH, Robertson JS, Barbe V, Calteau A, Rouy Z, Mangenot S, Prigent-Combaret C, Normand P, Boyer M, Siguier P, Dessaux Y, Elmerich C, Condemine G, Krishnen G, Kennedy I, Paterson AH, González V, Mavingui P, Zhulin IB, Richardson PM (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7(12):e1002430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Jean L. Simões-Araújo for bioinformatics hints, Marcia S. Vidal for preparing genomic DNA for Illumina sequencing, Marcia R. R. Coelho, Ederson da C. Jesus and Alexandre C. Baraúna for suggestions on phylogenomic analyses, Hugo R. Borges de Freitas for bioinformatics support, and M. Christine Saraiva Barbosa for making Fig. 2.

Funding

This study was funded by The National Council for Scientific and Technological Development (CNPq-“National Institute of Science and Technology of Biological Nitrogen Fixation”, Grant No. 573.828/2008-3, J.I.B. Grant “Universal” No. 476254/2013-2, and J.I.B. research fellowship no. 304750/2013), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (Faperj – J.I.B. “Cientista do Nosso Estado” research fellowship no. E-26/102.312/2013, and S.S. Grant “Desenvolvimento Científico e Tecnológico Regional” no. E-26/110.235/2011), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-L.A.T. doctorate fellowship, call CAPES/Embrapa no. 015/2014), and Brazilian Agricultural Research Corporation (Embrapa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schwab.

Ethics declarations

Conflict of interest

Stefan Schwab declares that he has no conflict of interest. Leonardo Araujo Terra declares that he has no conflict of interest. José Ivo Baldani declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

Genome annotation data for N. amazonense strain CBAmC according to RAST and NCBI (XLSX 7798 KB)

Supplementary Table S2

Phylogenomics analysis data (XLSX 37 KB)

Supplementary Table S3

Detailed description of potential genomic islands on the four replicons of N. amazonense strain CBAmC according to IslandViewer 4 (XLSX 49 KB)

Supplementary Table S4

Interesting functions potentially exerted / proteins synthesized by N. amazonense strain CBAmC, according to further genomic datamining (PDF 274 KB)

Supplementary Figure S1

Electronic micrographs of N. amazonense strain CBAmC after growth on BMS medium, exhibiting intracellular granules of poly-β-hydroxybutyrate (PHB) (DOCX 132 KB)

Supplementary Figure S2

Synteny between the ordered contigs of strain Y2 and each of the four CBAmC replicons (DOCX 129 KB)

Supplementary Figure S3

Phylogenetic trees obtained with representative strains of the Nitrospirillum-Niveispirillum-Rhodocista-Azospirillum-Skermanella clade, and Bradyrhizobium and Rhodospirillum as external group (DOCX 196 KB)

Supplementary Figure S4

Genome size and percent GC of the NitrospirillumNiveispirillum–Rhodocista–AzospirillumSkermanella clade in comparison with 7293 finished bacterial genomes (DOCX 704 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwab, S., Terra, L.A. & Baldani, J.I. Genomic characterization of Nitrospirillum amazonense strain CBAmC, a nitrogen-fixing bacterium isolated from surface-sterilized sugarcane stems. Mol Genet Genomics 293, 997–1016 (2018). https://doi.org/10.1007/s00438-018-1439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1439-0

Keywords

Navigation