Skip to main content
Log in

Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

S-RNase-based self-incompatibility is found in Solanaceae, Rosaceae, and Scrophulariaceae, and is the most widespread mechanism that prevents self-fertilization in plants. Although ‘Shatian’ pummelo (Citrus grandis), a traditional cultivated variety, possesses the self-incompatible trait, the role of S-RNases in the self-incompatibility of ‘Shatian’ pummelo is poorly understood. To identify genes associated with self-incompatibility in citrus, we identified 16 genes encoding homologs of ribonucleases in the genomes of sweet orange (Citrus sinensis) and clementine mandarin (Citrus clementine). We preliminarily distinguished S-RNases from S-like RNases with a phylogenetic analysis that classified these homologs into three groups, which is consistent with the previous reports. Expression analysis provided evidence that CsRNS1 and CsRNS6 are S-like RNase genes. The expression level of CsRNS1 was increased during fruit development. The expression of CsRNS6 was increased during the formation of embryogenic callus. In contrast, we found that CsRNS3 possessed several common characteristics of the pistil determinant of self-incompatibility: it has an alkaline isoelectric point (pI), harbors only one intron, and is specifically expressed in style. We obtained a cDNA encoding CgRNS3 from ‘Shatian’ pummelo and found that it is homolog to CsRNS3 and that CgRNS3 exhibited the same expression pattern as CsRNS3. In an in vitro culture system, the CgRNS3 protein significantly inhibited the growth of self-pollen tubes from ‘Shatian’ pummelo, but after a heat treatment, this protein did not significantly inhibit the elongation of self- or non-self-pollen tubes. In conclusion, an S-RNase gene, CgRNS3, was obtained by searching the genomes of sweet orange and clementine for genes exhibiting sequence similarity to ribonucleases followed by expression analyses. Using this approach, we identified a protein that significantly inhibited the growth of self-pollen tubes, which is the defining property of an S-RNase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ambrosio L, Morriss S, Riaz A, Bailey R, Ding J, MacIntosh GC (2014) Phylogenetic analyses and characterization of RNase X25 from Drosophila melanogaster suggest a conserved housekeeping role and additional functions for RNase T2 enzymes in protostomes. PLoS One 9:e105444

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson MA, Cornish EC, Mau SL, Williams EG, Hoggart R, Atkinson A, Bonig I, Grego B, Simpson R, Roche PJ, Haley JD, Penschow JD, Niall HD, Tregear GW, Coghlan JP, Crawford RJ, Clarke AE (1986) Cloning of cDNA for a stylar glycoprotein associated with expression of self incompatibility in Nicotiana alata. Nature 321:38–44

    Article  CAS  Google Scholar 

  • Asquini E, Gerdol M, Gasperini D, Igic B, Graziosi G, Pallavicini A (2011) S-RNase-like sequences in styles of Coffea (Rubiaceae). Evidence for S-RNase based gametophytic self-Incompatibility? Trop Plant Biol 4:237–249

    Article  CAS  Google Scholar 

  • Banović B, Šurbanovski N, Konstantinović M, Maksimović V (2009) Basic RNases of wild almond (Prunus webbii): cloning and characterization of six new S-RNase and one “non-S RNase” genes. J Plant Physiol 166:395–402

    Article  PubMed  Google Scholar 

  • Bariola PA, Green PJ (1997) Plant ribonucleases. Ribonucleases: structures and functions. Academic Press, New York

    Google Scholar 

  • Bredemeijer GMM, Blaas J (1981) S-specific proteins in styles of self-incompatible Nicotiana alata. Theor Appl Genet 59:185–190

    Article  CAS  PubMed  Google Scholar 

  • Broothaerts W, Janssens GA, Proost P, Broekaert WF (1995) cDNA cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Mol Biol 27:499–511

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Zhang J, Xu J, Ye J, Yun Z, Xu Q, Xu J, Deng X (2012) Comprehending crystalline β-carotene accumulation by comparing engineered cell models and the natural carotenoid-rich system of citrus. J Exp Bot 63:4403–4417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caruso M, Merelo P, Distefano G, La Malfa S, Lo Piero AR, Tadeo FR, Talon M, Gentile A (2012) Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina. BMC Plant Biol 12:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai L, Biswas MK, Ge X, Deng X (2010) Isolation, characterization, and expression analysis of an SKP1-like gene from ‘Shatian’ pummelo (Citrus grandis Osbeck). Plant Mol Biol Rep 28:569–577

    Article  CAS  Google Scholar 

  • Chai L, Ge X, Biswas MK, Deng X (2011a) Molecular analysis and expression of a floral organ-relative F-box gene isolated from ‘Zigui shatian’ pummelo (Citrus grandis Osbeck). Mol Biol Rep 38:4429–4436

    Article  CAS  PubMed  Google Scholar 

  • Chai L, Ge X, Xu Q, Deng X (2011b) CgSL2, an S-like RNase gene in ‘Zigui shatian’ pummelo (Citrus grandis Osbeck), is involved in ovary senescence. Mol Biol Rep 38:1–8

    Article  PubMed  Google Scholar 

  • Chalivendra SC, Lopez-Casado G, Kumar A, Kassenbrock AR, Royer S, Tovar-Mèndez A, Covey PA, Dempsey LA, Randle AM, Stack SM (2013) Developmental onset of reproductive barriers and associated proteome changes in stigma/styles of Solanum pennellii. J Exp Bot 64:265–279

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Wang H, Liu S, Zhu L, Qiu X, Jiang Z, Wang X, Liu Z (2014) SNP discovery from transcriptome of the Swimbladder of Takifugu rubripes. PLoS One 9:e92502

    Article  PubMed  PubMed Central  Google Scholar 

  • De Franceschi P, Dondini L, Sanzol J (2012) Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). J Exp Bot 63:4015–4032

    Article  PubMed  Google Scholar 

  • De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Deng X (1987) Studies on the isolation, regeneration and fusion of protoplast in Citrus. Dissertation, Huazhong Agriculture University

  • Deshpande RA, Shankar V (2002) Ribonucleases from T2 family. Crit Rev Microbiol 28:79–122

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In Walker JM (ed) The Proteomics Protocols Handbook. Humana Press, pp 571–607

  • Gray JE, Mcclure BA, Bönig I, Anderson MA, Clarke AE (1991) Action of the style product of the self-incompatibility gene of Nicotiana alata (S-RNase) on in vitro-grown pollen tubes. Plant Cell 3:271–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo A, Zhu Q, Chen X, Luo J (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Hillwig MS, Rizhsky L, Wang Y, Umanskaya A, Essner JJ, MacIntosh GC (2009) Zebrafish RNase T2 genes and the evolution of secretory ribonucleases in animals. BMC Evol Biol 9:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiratsuka S, Zhang SL, Nakagawa E, Kawai Y (2001) Selective inhibition of the growth of incompatible pollen tube by S-protein in the Japanese pear. Sex Plant Reprod 13:209–215

    Article  CAS  Google Scholar 

  • Hua ZH, Fields A, Kao Th (2008) Biochemical models for S-RNase-based self-incompatibility. Mol Plant 1:575–585

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Lee HS, Karunanandaa B, Kao TH (1994) Ribonuclease activity of Petunia inflata S proteins is essential for rejection of self-pollen. Plant Cell 6:1021–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igic B, Kohn JR (2001) Evolutionary relationships among self-incompatibility RNases. Proc Natl Acad Sci USA 98:13167–13171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irie M (1999) Structure-function relationships of acid ribonucleases: lysosomal, vacuolar, and periplasmic enzymes. Pharmacol Ther 81:77–89

    Article  CAS  PubMed  Google Scholar 

  • Isaacson T, Damasceno CM, Saravanan RS, He Y, Catalá C, Saladié M, Rose JK (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769–774

    Article  CAS  PubMed  Google Scholar 

  • Jahnen W, Lush WM, Clarke AE (1989) Inhibition of in vitro pollen tube growth by isolated S-glycoproteins of Nicotiana alata. Plant Cell 1:501–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawata Y, Sakiyama F, Hayashi F, Kyogoku Y (1990) Identification of two essential histidine residues of ribonuclease T2 from Aspergillus oryzae. Eur J Biochem 187:255–262

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Singh A, Kao T (1992) RNase X2, a pistil-specific ribonuclease from Petunia inflata, shares sequence similarity with solanaceous S proteins. Plant Mol Biol 20:1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Huang S, Kao TH (1994) S proteins control rejection of incompatible pollen in petunia inflata. Nature 367:560–563

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Miao HX, Ma YW, Wang L, Hu GB, Ye ZX, Zhao JT, Qin YH (2015) CrWSKP1, an SKP1-like Gene, is involved in the self-Incompatibility reaction of “Wuzishatangju” (Citrus reticulata Blanco). Int J Mol Sci 16:21695–21710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang Y, Song Y, Zhang H, Fan J, Li Q, Zhang D, Xue Y (2016) Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida. Plant J. doi:10.1111/tpj.13318

    Google Scholar 

  • Liang LZ, Lai Z, Ma WS, Zhang YS, Xue YB (2002) AhSL28, a senescence-and phosphate starvation-induced S-like RNase gene in Antirrhinum. Biochim Biophys Acta 1579:64–71

    Article  CAS  PubMed  Google Scholar 

  • Liang M, Yang X, Li H, Su S, Yi H, Chai L, Deng X (2015) De novo transcriptome assembly of pummelo and molecular marker development. PLoS ONE 10:e0120615

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Eaves DJ, Sanchez Moran E, Franklin FCH, Franklin Tong VE (2015) The Papaver rhoeas S determinants confer self-incompatibility to Arabidopsis thaliana in planta. Science 350:684–687

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Deng X (2002) Regeneration and analysis of citrus interspecific mixoploid hybrid plants from asymmetric somatic hybridization. Euphytica 125:13–20

    Article  CAS  Google Scholar 

  • Liu Y, Liu Q (2006) Efficient isolation of RNA from fruit peel and pulp of ripening navel orange (Citrus sinensis Osbeck). Dissertation, Journal of Huazhong Agricultural University

  • Luhtala N, Parker R (2010) T2 Family ribonucleases: ancient enzymes with diverse roles. Trends Biochem Sci 35:253–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masashi Y, Tatsuya K, Shigeto T (2006) Self-and cross-incompatibility of various citrus accessions. J Jpn Soc Hortic Sci 75:372–378

    Article  Google Scholar 

  • McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE (1989) Style self-incompatibility gene products of Nicotlana alata are ribonucleases. Nature 342:955–957

    Article  CAS  PubMed  Google Scholar 

  • McCubbin AG, Kao Th (2000) Molecular recognition and response in pollen and pistil interactions. Annu Rev Cell Dev Biol 16:333–364

    Article  CAS  PubMed  Google Scholar 

  • Meng D, Gu Z, Yuan H, Wang A, Li W, Yang Q, Zhu Y, Li T (2014) The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple. Plant Cell Physiol 55:977–989

    Article  CAS  PubMed  Google Scholar 

  • Miao HX, Qin YH, da Silva JAT, Ye ZX, Hu GB (2011) Cloning and expression analysis of S-RNase homologous gene in Citrus reticulata Blanco cv. Wuzishatangju. Plant Sci 180:358–367

    Article  CAS  PubMed  Google Scholar 

  • Miao HX, Ye ZX, Qin YH, Hu GB (2013) Molecular characterization and expression analysis of S1 self-incompatibility locus-linked pollen 3.15 gene in Citrus reticulata. J Integr Plant Biol 55:443–452

    Article  CAS  PubMed  Google Scholar 

  • Miao HX, Ye ZX, Hu GB, Qin YH (2015) Comparative transcript profiling of gene expression between self-incompatible and self-compatible mandarins by suppression subtractive hybridization and cDNA microarray. Mol Breed 35:1–15

    Article  CAS  Google Scholar 

  • Murfett J, Atherton TL, Mou B, Gassert CS, Mcclure BA (1994) S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367:563–566

    Article  CAS  PubMed  Google Scholar 

  • Ngo B (2001) Study on the self-incompatibility in Citrus (Rutaceae) with special emphases on the pollen tube growth and allelic variation. Dissertation, Kyushu University

  • Nishimura E, Jumyo S, Arai N, Kanna K, Kume M, J-i Nishikawa, J-i Tanase, Ohyama T (2014) Structural and functional characteristics of S-like ribonucleases from carnivorous plants. Planta 240:147–159

    Article  CAS  PubMed  Google Scholar 

  • Ohno H, Ehara Y (2005) Expression of ribonuclease gene in mechanically injured or virus-inoculated Nicotiana tabacum leaves. Tohoku J Agric Res 55:99–109

    CAS  Google Scholar 

  • Pan Z, Liu Q, Yun Z, Guan R, Zeng W, Xu Q, Deng X (2009) Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck). Proteomics 9:5455–5470

    Article  CAS  PubMed  Google Scholar 

  • Perez-Amador MA, Leon J, Green PJ, Carbonell J (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol 130:1454–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roalson EH, McCubbin AG (2003) S-RNases and sexual incompatibility: structure, functions, and evolutionary perspectives. Mol Phylogenet Evol 29:490–506

    Article  CAS  PubMed  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade L, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought-and salt-responsiveness in rice. Field Crops Research 76:199–219

    Article  Google Scholar 

  • Sassa H, Hirano H, Ikehashi H (1992) Self-incompatibility-related RNases in styles of Japanese pear (Pyrus serotina Rehd.). Plant Cell Physiol 33:811–814

    CAS  Google Scholar 

  • Sassa H, Hirano H, Ikehashi H (1993) Identification and characterization of stylar glycoproteins associated with self-incompatibility genes of Japanese pear, Pyrus serotina Rehd. Mol Gen Genet 241:17–25

    Article  CAS  PubMed  Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:e230

    Article  PubMed  PubMed Central  Google Scholar 

  • Takayama S, Isogai A (2005) Self-incompatibility in plants. Ann Rev Plant Biol 56:467–489

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao R, Yamane H, Sassa H, Mori H, Gradziel TM, Dandekar AM, Sugiura A (1997) Identification of stylar RNases associated with gametophytic self-incompatibility in Almond (Prunus dulcis). Plant Cell Physiol 38:304–311

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, Mori H (1999) Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Am Soc Hortic Sci 124:224–233

    CAS  Google Scholar 

  • Taylor CB, Bariola PA, Raines RT, Green PJ (1993) RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proc Natl Acad Sci USA 90:5118–5122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida A, Takenaka S, Sakakibara Y, Kurogi S, Honsho C, Sassa H, Suiko M, Kunitake H (2012) Comprehensive analysis of expressed proteins in the different stages of the style development of self-incompatible ‘Hyuganatsu’ (Citrus tamurana hort. ex Tanaka). J Jpn Soc Hortic Sci 81:150–158

    Article  CAS  Google Scholar 

  • Velasco R, Licciardello C (2014) A genealogy of the citrus family. Nat Biotechnol 32:640–642

    Article  CAS  PubMed  Google Scholar 

  • Wang CL, Xu GH, Jiang XT, Chen G, Wu J, Wu HQ, Zhang SL (2009) S-RNase triggers mitochondrial alteration and DNA degradation in the incompatible pollen tube of Pyrus pyrifolia in vitro. Plant J 57:220–229

    Article  CAS  PubMed  Google Scholar 

  • Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316–320

    Article  CAS  PubMed  Google Scholar 

  • Wei JY, Li AM, Li Y, Wang J, Liu XB, Liu LS, Xu ZF (2006) Cloning and characterization of an RNase-related protein gene preferentially expressed in rice stems. Biosci Biotechnol Biochem 70:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Gu C, Khan MA, Wu J, Gao Y, Wang C, Korban SS, Zhang S (2013) Molecular determinants and mechanisms of gametophytic self-Incompatibility in fruit trees of Rosaceae. Crit Rev Plant Sci 32:53–68

    Article  Google Scholar 

  • Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J (2014a) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32:656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Xu Z, Zhang Y, Chai L, Yi H, Deng X (2014b) An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. J Exp Bot 65:1651–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W-B, Hao B-H, Lyon MP (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhang SW, Ding F, He XH, Luo C, Huang GX, Hu Y (2015) Characterization of the ‘Xiangshui’ lemon transcriptome by de novo assembly to discover genes associated with self-incompatibility. Mol Genet Genomics 290:365–375

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 31301760, 31521092, 31460507), the Special Fund for Agro-scientific Research in the Public Interest (201303093), and Scientific Research and Technology Development Program of Guangxi (Gui Ke He1599005-2-15). We also thank Prof. Zuoxiong Liu and Prof. Robert M. Larkin for help with English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Chai.

Ethics declarations

Conflict of interest

The authors declare that none of the authors have a conflict of interest and that this article does not contain any studies with human participants or animals.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Yang, W., Su, S. et al. Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus. Mol Genet Genomics 292, 325–341 (2017). https://doi.org/10.1007/s00438-016-1279-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1279-8

Keywords

Navigation