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Abstract
The One-Health approach recognizes the intricate connection between human, animal, and environmental health, and that 
cooperative effort from various professionals provides comprehensive awareness and potential solutions for issues relating 
to the health of people, animals, and the environment. This approach has increasingly gained appeal as the standard strategy 
for tackling emerging infectious diseases, most of which are zoonoses. Treatment with anthelmintics (AHs) without a doubt 
minimizes the severe consequences of soil-transmitted helminths (STHs); however, evidence of anthelmintic resistance 
(AR) development to different helminths of practically every animal species and the distinct groups of AHs is overwhelming 
globally. In this regard, the correlation between the application of anthelmintic drugs in both human and animal popula-
tions and the consequent development of anthelmintic resistance in STHs within the context of a One-Health framework is 
explored. This review provides an overview of the major human and animal STHs, treatment of the STHs, AR development 
and drug-related factors contributing towards AR, One-Health and STHs, and an outline of some One-Health strategies that 
may be used in combating AR.
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Background

Infections with parasitic helminths, notably soil-transmit-
ted helminths (STHs) in humans and animals, consider-
ably impact health and impose an immense economic bur-
den, particularly on vulnerable communities with limited 
resources. These illnesses have a major influence on the 
food-handling chain all around the world. The World Health 
Organization (WHO) recognizes Ascaris lumbricoides, Tri-
churis trichiura, and the hookworms Ancylostoma duode-
nale and Necator americanus as the most prevalent human 
STH species (WHO 2023a). Although A. duodenale and N. 
americanus are frequently associated with human hook-
worm infections, polymerase chain reaction (PCR) analysis 

has detected the presence of N. americanus DNA in dog 
and pig fecal samples, implying that dogs and pigs play a 
likely role in the transmission of N. americanus in endemic 
regions (Boyko et al. 2020). In this review, the term STHs 
is broadened to include canine STHs (cSTHs) such as the 
hookworms Ancylostoma caninum, Ancylostoma ceylani-
cum, Uncinaria stenocephala, and Ancylostoma braziliense, 
which are zoonotic (Massetti et al. 2022) and are capable of 
causing cutaneous larva migrans (CLM) in humans (Traub 
et al. 2021). Patent A. ceylanicum infections manifest with 
accompanying clinical signs such as diarrhea and anemia 
(Colella et al. 2021; Stracke et al. 2020; Traub et al. 2021). 
The canine nematode Toxocara canis, which causes severe 
human disease, is a parasite of concern in young children in 
contact with pet animals and/or contaminated soil (Yousefi 
et al. 2020). T. canis larvae migrating into the bloodstream 
can induce a variety of clinical symptoms such as visceral 
larva migrans (VLM), ocular larva migrans (OLM), cov-
ert toxocariasis (CT), and neurological toxocariasis (NT) 
(Schwartz et al. 2022; WHO 2019b; Yousefi et al. 2020). 
Similarly, Baylisascaris procyonis, the raccoon roundworm, 
is a rare but serious cause of neurologic and ocular diseases 
in humans (CDC 2019a).
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Poor environmental sanitation, insufficient safe water sup-
ply, and low socioeconomic standing, which are common 
characteristics of populations in low- and middle-income 
countries (Ihnacik et al. 2022; Montresor et al. 2020; Tinkler 
2020), promote the high prevalence indexes in these settings. 
Furthermore, the wet and warm soils of the world’s tropi-
cal and subtropical regions promote the growth of parasite 
stages, which can directly infect exposed humans or animals 
(Ihnacik et al. 2022). While mortality rates for these para-
sitic infections are low, the range of health consequences and 
disabilities (Goshu et al. 2021) in vulnerable groups such 
as pre-school aged children (PSAC), school-aged children 
(SAC), and women of reproductive age (WRA) (Zeynudin 
et al. 2022), as well as young animals (Baiak et al. 2019; 
Kelleher et al. 2020), calls for significant efforts towards 
their control.

For decades, highly effective broad-spectrum anthelmin-
tic (AH) medications with wide safety margins have been 
the major option for combating and controlling gastroin-
testinal illnesses (Baiak et al. 2019; Beleckė et al. 2021) 
in people and animals (livestock and companion animals) 
(Kotze et al. 2020). The livestock industry has greatly relied 
on these medicines despite the availability of several other 
alternative methods of parasite control such as genetic 
selection and pasture management. AH drugs are divided 
into groups based on their identical chemical structure 
and mode of action (Mphahlele et al. 2019a). The benzi-
midazoles (BZs), albendazole (400 mg), and mebendazole 
(500 mg) are the recommended AHs for treatment and con-
trol of human STHs in mass drug administration (MDA) 
campaigns (W.H.O. 2017; WHO 2023a). Hosts of differ-
ent species can be treated with the same drug classes due 
to their similar chemical composition and mechanisms of 
action. For instance, BZs, such as albendazole (ALB), are 
widely administered across several host species, including 
most livestock, humans, and companion animals; macro-
cyclic lactones (MLs) (avermectins, e.g., ivermectin, and 
milbemycins, e.g., moxidectin) are used for the treatment of 
ectoparasite, endoparasites of livestock and companion ani-
mals, onchocerciasis, lymphatic filariasis, and Strongyloides 
in humans; pyrimidines (PYRs) (e.g., pyrantel) are occa-
sionally administered to humans, but common in companion 
animals; levamisole (LEV) (an imidazothiazole) is used for 
gastrointestinal nematode (GIN) control in livestock (Kotze 
et al. 2020; Zajac and Garza 2020). Regular treatment with 
AHs enhanced animal productivity, vitality, and weight gain 
(Gilleard et al. 2021; Kelleher et al. 2020) and reduced mor-
bidities in humans, thus justifying regular treatments (Fis-
siha and Kinde 2021). The low infection intensities in hosts, 
in turn, lead to minimal contamination of the environment 
with infective eggs/larvae, thus reducing reinfection after 
treatment. Despite these benefits, substantial rates of GINs 

and STH infections continue to be documented in veterinary 
and clinical settings.

Many years of intensive and incorrect use of AHs, how-
ever, have culminated in the rapid development of anthel-
mintic resistance (AR) (Beleckė et al. 2021; Fairweather 
et al. 2020; Kelleher et al. 2020; Kotze et al. 2020; Vineer 
2020). Parasite populations frequently exposed to AHs 
gradually evolved from fully susceptible to fully resistant 
to different drugs and at different speeds. Compared with 
the development of antibiotic resistance in bacteria, resist-
ance to anthelmintic drugs in nematodes has been slower 
to develop under field conditions (MSD Veterinary Manual 
2022). The β-tubulin isotype 1 gene mutations at positions 
167, 198, and 200 cause genetic resistance to BZ drugs in 
veterinary nematodes, thus lowering their susceptibility to 
treatment (Erez and Kozan 2018; Haftu et al. 2020). Small 
ruminants (Beleckė et al. 2021; Claerebout et al. 2020; Hin-
ney et al. 2020; Potârniche et al. 2021) and horses (Nielsen 
et al. 2020; Reinemeyer 2012) are the most affected livestock 
hosts. It is worth noting that there is rising concern regarding 
the emergence of multi-drug resistance to BZs and MLs in 
canine hookworms (A. caninum) mainly in the United States 
of America (USA) (Castro et al. 2021; Jimenez Castro et al. 
2019; Kitchen et al. 2019). Elsewhere, in Canada, the wide-
spread use of antiparasitic drugs without the assessment of 
efficacy increased A. caninum prevalence in various Cana-
dian provinces, and the importation of dogs, mostly from 
the USA, with a history of persistent A. caninum infections 
is considered a possible factor that may lead to the develop-
ment of resistant isolates (Nezami et al. 2023). Resistance 
in other AH groups is only partially understood. Mutations 
in ligand-gated chloride channels and protein transporters, 
notably P-glycoproteins (Pgps), have been linked to ML 
resistance in livestock, as highlighted in a review by Verma 
et al. (2018). In human STHs, the presence of similar SNPs 
might be the cause for potential resistance emergence in 
T. trichiura (Diawara et al. 2013) and N. americanus (Orr 
et al. 2019; Rashwan et al. 2016). More concerns regarding 
resistance in clinical settings are compounded by reports 
of decreasing response to treatment with BZs (Farias et al. 
2023; Vlaminck et al. 2019; Walker et al. 2021). Further-
more, the resistance patterns in veterinary species provide 
compelling evidence of the possibility of widespread resist-
ance in related human species, especially with the current 
community-wide MDA programs. Although there is no 
conclusive evidence of AH resistance in human STH spe-
cies, many questions still linger as to whether there is any 
link between the isotype-1 β-tubulin SNPs and the possible 
emergence of BZ resistance in human STHs (Furtado et al. 
2019; Grau-Pujol et al. 2022; Matamoros et al. 2019; Orr 
et al. 2019; Zuccherato et al. 2018). However, since some of 
the parasites are zoonotic and capable of producing patent 
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infections in people, the prospect of AR developing in clini-
cal settings cannot be disregarded any longer.

One-Health is an integrated, unifying approach that aims 
to sustainably balance and optimize the health of people, 
animals, and ecosystems (OHHLEP 2021). This approach 
recognizes that the health of humans, domestic and wild 
animals, plants, and the wider environment (including eco-
systems) is closely linked and interdependent (OIE 2023). 
This is because the health of animals and the environment 
strongly depend on human activities and human relationship 
with nature. Similarly, the health of animals and the envi-
ronment also determine human health (OIE 2023). There-
fore, embracing partnerships and engaging with experts 
from multiple sectors contribute to protecting health, while 
also addressing other health issues of concern, including 
antimicrobial resistance (AMR), communicable and non-
communicable diseases, shortages of fresh potable water, 
pollution, environmental contaminants, and climate change 
(OHHLEP 2021). STHs are a One-Health issue because 
their transmission is highly dependent on contaminated 
environments (soils, through irrigation with untreated sew-
age) with infective eggs/larvae, reviewed by Amoah et al. 
(2018), and the presence of vertebrate animals near human 
dwellings that serve as reservoir hosts and influence the risk 
of zoonotic STH transmission. Similarly, resistance to AHs 
can rapidly spread among humans, animals, and the envi-
ronment, owing to the excessive use of AHs in agriculture, 
livestock husbandry, and human medicine, contaminating 
plants, fresh waterways, and soils, thus underlining the rel-
evance of One-Health in tackling this global health problem. 
In this review, we have extensively discussed the use of AHs 
in veterinary parasites and the possible connection with the 
emergence of resistance in human-related STH species. We 
have highlighted the similarity in AHs used and the occur-
rence of resistance-associated SNPs in both settings. Finally, 
we have proposed integrated approaches to minimize the use 
of AHs, thus protecting current and future AHs, as well as 
human, animal, and environmental health.

Method of literature search

A review of peer-reviewed literature for topics on STHs, OR 
zoonotic infections, OR drug resistance, OR One-Health, 
was conducted through a search of PubMed, Google Scholar, 
and Science Direct. Table 1 shows additional search phrases 
that were utilized.

To ensure that all published articles about the topic were 
included in the search results, every query was limited to 
the English language without any limitations on the date of 
publication. The bibliographies of the articles found through 
the search were checked for any other articles relevant to 
the topic. The search was expanded to include articles from 
organizational publications and “grey” literature, such as the 
World Bank, Centers for Disease Control and Prevention, 
World Health Organization, and European Centre for Dis-
ease Prevention and Control, the British Veterinary Associa-
tion, and veterinary manuals.

The epidemiology of STHs

The most prevalent parasitic helminths found in animal and 
human guts are nematodes (roundworms), cestodes (tape-
worms), and trematodes (flatworms) (Salam et al. 2021). 
Intestinal helminth parasites of humans, also known as 
geohelminths or STHs, are divided into four species: A. 
lumbricoides (roundworm), T. trichiura (whipworm), A. 
duodenale, and N. americanus (Hookworms) (Goshu et al. 
2021; Salam et al. 2021; WHO 2023a; Wit et al. 2021). Nor-
mally, these parasites are addressed as a group because they 
need similar diagnostic procedures and respond to the same 
medicines. An estimated 1.5 billion people, approximately 
24% of the world’s population, are infected (WHO 2023a), 
usually with one or several species (Ahiadorme and Morhe 
2020). The majority of the infections occur in tropical and 
subtropical regions of the world, with Sub-Saharan Africa, 

Table 1   The search terms used in literature search

Domain Search term

Drug resistance Anthelmintic resistance, gastrointestinal nematodes, OR parasitic resistance, OR nematode resistance, AND A. 
lumbricoides, OR Ascaris suum, OR A. caninum, OR A. duodenale, OR T. trichiura, OR Trichuris suis, AND 
small ruminants, OR farmed ruminants, OR grazing ruminants, OR horses, OR cattle

Zoonoses Zoonosis, OR zoonotic infections, OR cross infections, OR zoonotic cSTHs, AND intestinal nematodes, OR intes-
tinal parasites, OR intestinal helminths, AND A. lumbricoides, OR A. suum, OR A. caninum, OR A. braziliense, 
OR T. canis, OR A. duodenale, OR T. trichiura, OR T. suis, OR A. ceylanicum, OR U. stenocephala

Soil-transmitted helminths Intestinal helminthes, OR gastrointestinal helminths, OR intestinal parasites, OR cSTHs, OR geo-helminths, AND 
A. lumbricoides, OR A. suum, OR A. caninum, OR A. duodenale, OR A. caninum, OR A. ceylanicum, OR A. 
braziliense, OR T. trichiura, OR T. suis, OR T. canis, OR U. stenocephala

One-Health One-Health, AND One-Health approach, OR One-Health concept, OR One-Health triad, AND zoonotic STHs
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the Americas, China, and East Asia recording the highest 
prevalences (Leta et al. 2020; WHO 2023a).

Warm temperatures and adequately moist soils pro-
mote the survival, multiplication, and propagation of these 
parasites, whereas poverty, inadequate sanitation, and 
hygiene (Allan et al. 2020; Leta et al. 2020; Mpaka-Mbatha 
et al. 2023) are major risk factors for infection. Similarly, 
because of its subtropical weather, high prevalences of 
helminth infections among vulnerable communities have 
been recorded in KwaZulu-Natal, South Africa (Kjetland 
et al. 2020; Mpaka-Mbatha et al. 2023; Sacolo-Gwebu et al. 
2019). Worm eggs present in the feces of infected humans 
contaminate soils in which they mature to become infec-
tive and are transmitted via ingestion of the embryonated 
eggs (Ascaris and Trichuris spp.) or skin penetration by the 
hatched L3 larvae (hookworm spp.). In addition to percuta-
neous infection, A. duodenale can be transmitted through the 
ingestion of larvae (CDC 2020). Incidences of human infec-
tions with the zoonotic hookworm A. ceylanicum are becom-
ing more common among residents or travelers to the Asia-
Pacific region (Colella et al. 2021), with more reports of 
autochthonous transmissions in South America and Europe 
(Del Giudice et al. 2019; Sears et al. 2022). Although rare, 
the canid Trichuris vulpis and pig Trichuris suis are the only 
ones that can cause persistent active infections in humans 
(Dunn et al. 2002; Márquez-Navarro et al. 2012), with the 
possibility for cross-infections of T. suis in humans occur-
ring in sympatric settings (Nissen et al. 2012). B. procy-
onis is widespread among raccoons in the USA (California, 
Washington, Minnesota, New York) and Canada, as well as 
in humans in these regions, although trade of live raccoons 
has led to its introduction in many parts of Europe, China, 
and Japan (CDC 2019a).

Burden and impact of STH infections

Given that fecal contamination of soil is essential for STH 
life cycles, the burden of infection is higher in underdevel-
oped nations where sanitary facilities are sparse and hygiene 
practices are poor (Mekonnen et al. 2020). The burden of 
STHs is projected to be 3.3 million disability-adjusted life 
years (DALYs) (WHO 2023a), which is a measure of years 
of life lost from premature death (YLL) and years of life 
lived with disability (YLD) of specified severity and dura-
tion (WHO 2023b). Morbidity and the burden of the dis-
ease resulting from STH infection are directly related to the 
intensity of the infection and its chronic nature (Zeynudin 
et al. 2022). As a consequence, moderate and heavy infection 
intensity, in addition to chronic STH infection, can cause 
and contribute to anemia, malnutrition, growth stunting, 
low birth weight, physical and cognitive impairment, and 
decreased school performance, and so have a detrimental 
impact on economic development (Blouin et al. 2018; Goshu 

et al. 2021; Pabalan et al. 2018). PSACs, SACs, and WRA 
(WHO 2023a; Zeynudin et al. 2022) are more prone to infec-
tions and suffer adverse health effects (Djuardi et al. 2021; 
Pabalan et al. 2018; WHO 2023a). In puppies, traumatic 
lesions to the intestinal mucosa caused by hematophagous 
hookworm parasites can result in anemia, which might prove 
fatal if not treated promptly (Raza et al. 2018). In animal 
husbandry, a heavy infestation of parasitic GINs in calves 
affects growth, causes gastrointestinal disorders, and may 
result in death (Baiak et al. 2019; Kelleher et al. 2020). On 
the contrary, light-intensity infections are usually asymp-
tomatic. The common clinical manifestation is CLM or 
“creeping eruptions” (CDC 2019b), described as a linear or 
serpiginous cutaneous track that is slightly elevated, erythe-
matous, and mobile, usually self-limiting, caused by migra-
tion of the immature larvae of mainly Ancylostoma brazil-
iense, and occasionally, Ancylostoma caninum or Uncinaria 
stenocephala in the patient’s epidermis (CDC 2019b; Daba 
et al. 2021; Del Giudice et al. 2019).

Treatment of STH infections

Infections with STHs are accompanied by various clinical 
complications and sequelae in humans as well as animals, 
resulting in significant morbidities and economic losses. The 
inability to break these parasites’ life cycles has been ham-
pered by a lack of effective vaccines and inadequate sani-
tation and hygiene facilities, particularly in poor endemic 
areas, where these infections are prevalent. Accordingly, to 
reduce the morbidity and mortality associated with these 
infections, the continuous and routine use of chemical treat-
ment with AHs (pharmacotherapy) becomes necessary. The 
use of AHs has been a major strategy for decades to control 
these infections in humans and animals (Kalkal et al. 2020; 
Peña-Espinoza 2018; Sangster et al. 2018; WHO 2023a; 
Zajíčková et al. 2020). Anthelmintic chemicals are divided 
into groups based on their identical chemical structure and 
mechanisms of action (Mphahlele et al. 2019a), but they ulti-
mately exhibit selective toxicity to parasites (Bereda 2022) 
(Table 2). These mechanisms of action allow AHs to selec-
tively target and eliminate parasites while minimizing harm 
to the host. By specifically targeting the parasite’s essential 
metabolic processes or structures, AHs disrupt their ability 
to survive and reproduce, ultimately leading to their eradica-
tion. Additionally, the pharmacokinetic properties of AHs 
enable them to accumulate in higher concentrations within 
parasite cells, further enhancing their efficacy against the 
parasites (MSD Veterinary Manual 2022).

Until recently, there are three main broad-spec-
trum AH groups in the market for veterinary animals: 
the BZs (e.g., fenbendazole, albendazole), the MLs 
(e.g., ivermectin, moxidectin, eprinomectin), and the 
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tetrahydropyrimidines-imidazothiazoles (e.g., levamisole) 
(Bereda 2022; Kelleher et al. 2020; Zajac and Garza 2020). 
Monepantel, a member of the aminoacetonitrile derivatives 
(AADs), is classified as the fourth group. Derquantel which 
belongs to the spiroindole group is the fifth AH group and is 
found in the market as a combination with abamectin. Clos-
antel, a member of the salicylanilide compounds, is a nar-
row-spectrum AH in group 6 (Zajac and Garza 2020). Most 
of these AHs are applied in veterinary animals mainly due to 
their efficacy against a variety of intestinal parasitic nema-
todes as well as ectoparasites, and a few, majorly the BZs, 
have been optimized for human STHs. The development of 
new drugs is limited by high costs and modest global mar-
kets for antiparasitic drugs and chemicals (Abongwa et al. 
2017).

In 2001, the World Health Assembly unanimously 
endorsed a resolution (WHA54.19) urging endemic coun-
tries to start seriously tackling worm-related morbidities, 
including those by STHs, through periodic treatment by 
MDA to at-risk groups in endemic areas (WHO 2023a). 
This is in addition to health and hygiene education to reduce 
transmission and reinfection by encouraging healthy behav-
iors, provision of adequate sanitation facilities, and access 
to clean water. MDA has had a significant influence on mor-
bidity reduction; nevertheless, the efficacy of AHs varies 
significantly among individual STH species, and re-infection 
occurs promptly following treatment, necessitating regu-
lar deworming. Thus, access to the usage of clean potable 
water and basic sanitation and hygiene are regarded to be 

critical for morbidity control (Okoyo et al. 2021). AH drugs 
not only benefit humans and animals by reducing infection 
intensities and morbidities, but they also play a crucial role 
in preventing the transmission of zoonotic STH infections. 
By decreasing soil contamination with infective eggs/lar-
vae, these drugs effectively minimize the risk of humans 
contracting these infections, particularly in areas where vet-
erinary services are limited and animals have unrestricted 
movement. This highlights the significant impact of AH 
drugs on human-animal-environment health and emphasizes 
their importance in STH control and prevention, especially 
with the current slow pace in the development of new AHs.

In the absence of vaccines for most STH species, their 
control will continue to rely on AH drugs. As a consequence, 
vigilance in detecting drug resistance in parasite populations 
and the efficacy of current AHs is required.

Resistance to AHs

The introduction of AH medications enabled levels of live-
stock parasite control previously unattainable, resulting in 
considerable gains to animal health and production (Gilleard 
et al. 2021; Kelleher et al. 2020). The drug’s remarkable 
effectiveness, general good safety margin, broad-spectrum 
nature, and affordable price led to its widespread adoption 
and utilization. AR is an inheritable trait that is selected 
for when susceptible nematode parasite species survive 
treatment, reproduce, and pass resistance genes to their 

Table 2   Anthelmintic drug classes, modes of action, and the mechanism of resistance

Drug class Mode of action Mechanism of resistance References

Benzimidazoles Inhibiting polymerization of 
microtubules

Altered target structure (β-tubulin 
isotype 1 mutation), β-tubulin 
isotype 2 mutations, deletion, 
altered metabolism and/or 
uptake

(Bereda 2022; Fourriere et al. 2020; 
MSD Veterinary Manual 2022; 
Erez and Kozan 2018)

Macrocyclic lactones (MLs) Allosteric modulators of the 
glutamate-gated chloride chan-
nels (GluCls)

Mutations in GluCl and/or 
GABA-R genes, overexpression 
of P-glycoproteins, altered target 
(structure of GluCl channel & 
subunits)

(Bereda 2022; Martin et al. 2021; 
Moreno et al. 2021; MSD Veteri-
nary Manual 2022)

Tetrahydropyrimidines-imidazo-
thiazoles

Agonists of the nicotinic acetyl-
choline receptor (nAChR)

Changes in nicotinic acetylcholine 
receptors

(Bereda 2022; MSD Veterinary 
Manual 2022)

Aminoacetonitrile derivatives 
(AADs)

Agonists, allosteric modulators of 
the MPTL-1 channel belong-
ing to nicotinic acetylcholine 
receptor

Unknown (Bereda 2022; MSD Veterinary 
Manual 2022)

Spiroindoles An antagonist of B-subtype, 
nAChR; inhibits 45-pS channels

Unknown (Bereda 2022; MSD Veterinary 
Manual 2022; Ruiz-Lancheros 
et al. 2011)

Salicylanilides Inhibits energy metabolism by 
uncoupling oxidative phospho-
rylation

Unknown (Zajac and Garza 2020)
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subsequent offspring (Mphahlele et al. 2019a). The resist-
ance genes are initially uncommon in parasite populations 
or may occur as a result of mutations, but as selection pro-
gresses, their fraction in the population increases, as does the 
number of resistant parasites (Kotze et al. 2020). Most nota-
bly, for the BZs and MLs, extensive AR has been recorded 
(Gilleard et al. 2021; Mickiewicz et al. 2021; Potârniche 
et al. 2021; Vadlejch et al. 2021) in cattle, sheep, goat, and 
equine gastrointestinal nematodes. Over the years, there has 
been an upsurge in the prevalence of AR of varying degrees 
across the majority of livestock AH classes globally, posing 
a challenge to livestock farming’s sustainability (Haftu et al. 
2020; Kotze and Prichard 2016; Mphahlele et al. 2019a; 
Potârniche et al. 2021; Vadlejch et al. 2021).

Since AHs within each drug class have the same mecha-
nism of action, resistance to one AH in a given drug class is 
likely to be accompanied by resistance to others, of that same 
class (side resistance) (Abongwa et al. 2017). For instance, 
Fissiha and Kinde (2021) observed that resistance among 
BZs is considered an example of side resistance. There is 
also the likelihood of the development of cross-resistance 
from AHs of one drug class to those of another if the two 
drug classes share similar targets (Abongwa et al. 2017).

Genetic studies in livestock parasites have linked BZ 
resistance to SNPs in the β-tubulin isotype 1 gene, pheny-
lalanine-to-tyrosine substitution at positions 200 (F200Y) 
and 167 (F176Y), and glutamic acid-to-alanine substitution 
at position 198 (G198Y/E198A) (Aboelhadid et al. 2021; 
Atanásio-Nhacumbe et al. 2019; Bartley et al. 2021; Fávero 
et al. 2020). In clinical practice, there is no definitive evi-
dence of resistance; nonetheless, reduced drug efficacy 
(Vlaminck et al. 2019; Walker et al. 2021) is a major concern 

(Zeleke et al. 2020). Studies conducted using nucleic acids 
derived from a variety of sources, including adult worms, 
dissected or concentrated eggs, or stool samples, to detect 
SNPs in human STHs, are indicated in Table 3. The presence 
of the common resistance markers in human STHs further 
provides compelling evidence for how patterns of resistance 
in veterinary parasites can emerge in related human parasites 
(O'Halloran 2021). What is currently uncertain is whether 
any of these SNPs are influencing BZ efficacy against human 
STHs (Furtado et al. 2019; Grau-Pujol et al. 2022; Matam-
oros et al. 2019; Orr et al. 2019; Zuccherato et al. 2018). 
However, Diawara et al. (2013) concluded that ALB exerts 
selection pressure on the β-tubulin gene at position 200 in 
T. trichiura, which could explain the moderate ALB efficacy 
against human trichuriasis.

Given the current increase in pharmacological pressure 
by MDA projects, there is a reason to be concerned that 
AR may spread to the human species. This imminent threat 
needs ongoing research to understand the mechanisms of 
resistance and develop innovative techniques to tackle the 
fundamental issue of helminthiasis that minimize the usage 
of chemical control.

Drivers of resistance

According to Kebede (2019), it is critical to distinguish 
between decreased efficacy and AR; however, (1) doing so, 
in reality, is difficult, (2) many potential confounding factors 
may affect an AH’s efficacy and should be eliminated before 
assuming AR, and (3) the confounding factors have been 
extensively investigated in veterinary intestinal nematode 

Table 3   Review of referenced studies for the detection of putative resistance SNPs in human STHs

x means SNP was not detected

Codon position Technique STH spp. Frequency of 
SNP occur-
rence

Country References

1. F200Y ARMS-PCR A. lumbricoides Low Brazil (Furtado et al. 2019)
2. E198A SmartAmp2 N. americanus x – (Rashwan et al. 2016)
3. E198A & F200Y Nested PCR and PCR-

RFLP
N. americanus Low Brazil (Zuccherato et al. 2018)

4. F167Y & E198A A. lumbricoides x Brazil (Zuccherato et al. 2018)
5. F167Y, F200Y, E198A PCR and sequencing N. americanus Low Ghana (Orr et al. 2019)
6. F167Y, F200Y, E198A PCR and pyrosequencing T. trichiura, N. americanus x Mozambique (Grau-Pujol et al. 2022)
7. F167Y, E198A, E198L, 

F200Y
Deep amplicon sequencing A. lumbricoides, A. suum x Ethiopia, 

Tanzania, 
Belgium

(Roose et al. 2021)

8. F167Y, F200Y, E198A Pyrosequencing T. trichiura, N. americanus x
Low

Mozambique (Gandasegui et al. 2021)

9. F167Y, F200Y, E198A Semi-nested PCR, 
sequencing

A. lumbricoides, T. 
trichiura

x Honduras (Matamoros et al. 2019)
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infections, but less so among species infecting humans. 
Fissiha and Kinde (2021) added that AR development is 
a highly multifaceted process that is affected by the host, 
the parasite, the type of AH and its usage pattern, animal 
management, and climatic characteristics. Therefore, to limit 
its effects or slow its spread while effectively controlling 
helminthiasis, a thorough understanding of the conditions 
that predispose to AR is critical.

Frequency of drug administration

The frequency of treatment plays a significant role in the 
development of drug resistance, especially if the same group 
of drugs is frequently administered. A higher drug pressure 
results in a faster selection of resistant helminth strains 
(Fissiha and Kinde 2021; Kaplan 2020). The fundamental 
principle for selection is that regular treatment offers the 
surviving parasites a reproductive and replication advantage 
over the susceptible parasites. High treatment frequency was 
found to be responsible for thiabendazole (TBZ) and ALB 
resistance recorded in sheep in Limpopo Province, South 
Africa (Mphahlele et al. 2021). As a result, the question of 
whether this is likely to occur in human STHs arises. This is 
especially significant given that the rapidly expanding MDA 
programs for human STHs rely almost entirely on BZs for 
treatment (WHO 2023a).

The use of anthelmintics in sub‑optimal doses

Improper weighing to estimate the dose rate of an anthelmin-
tic in particular and a drug in general in veterinary medicine 
can result in underdosing, allowing heterozygous resistant 
worms to survive and therefore contribute to the selection 
of resistance strains (Fissiha and Kinde 2021). One study, in 
particular, noted that none of the sheep flocks under study 
had adequate weight estimation for calculating the correct 
AH dose but relied solely on the visual appraisal of ani-
mals to determine their weight, which represented a high 
risk for underdosing (Mphahlele et al. 2019b). In the find-
ings of Mphahlele et al. (2019b), drenching practices, com-
monly practiced in resource-poor farmers, may have had 
an immense contribution to the development of AR in the 
Limpopo farm.

Human therapeutic regimens are frequently sub-optimal: 
AHs are administered in single doses and do not always 
achieve 100% efficiency, an approach frequently utilized 
in public health helminth control programs to lower the 
expenses of treatment campaigns in developing countries 
(Moser et al. 2019; Partridge et al. 2020). As a result, the 
small percentage of resistant parasites released into the envi-
ronment contaminate soil and pasture, leading to the devel-
opment of the bulk of resistant generations and, ultimately, 
the spread of AR.

Other factors

Some other factors that can also contribute towards the 
development of AR include introducing resistant para-
sites through animals transported from country to country. 
Furthermore, factors like the number of genes involved in 
resistance and their dominance or recessiveness, frequency 
of resistance alleles in the initial untreated population, and 
biological fitness of unselected worms may also contribute 
to the development of resistance (Kotze et al. 2020).

The concept of One‑Health

The One-Health approach or concept is a worldwide strategy 
that refers to a collaborative and interdisciplinary approach 
at local, national, and global levels to improve the health of 
people, animals, and the environment (OHHLEP 2021; Riley 
et al. 2021). In recent years, One-Health has gained appeal 
as a strategy for dealing with emerging infectious illnesses 
of public health relevance, including zoonoses, supported 
by the WHO, the Food and Agriculture Organization of the 
United Nations (FAO), and the World Organization for Ani-
mal Health (OIE) (WHO 2017). Figure 1 depicts the One-
Health High-Level Expert Panel (OHHLEP)’s integrated and 
unifying definition of One-Health (OHHLEP 2021). This 
derives from the knowledge that animal health and the envi-
ronment in which they live are inextricably interconnected 
(OHHLEP 2021), and also that the majority of human dis-
eases originate from animal sources (CDC 2022; Overgaauw 
et al. 2020). Furthermore, drivers such as changes in climate 
and land use, unsustainable agricultural practices, globaliza-
tion, and the wildlife trade provide multiple opportunities for 
pathogens to evolve into new forms, making spillover events 
from animals to humans more frequent and intense (OIE 
2023). With this in mind, mobilizing experts from human 
health, animal health, environmentalists, and other areas of 
expertise, health threats can be better monitored and con-
trolled through enhanced coordination, collaboration, and 
communication, with the ultimate goal of achieving optimal 
health outcomes for all (CDC 2022).

STHs are examples of diseases that must be addressed 
through One-Health efforts. This is because STHs mainly 
affect populations in places with sanitation challenges as 
STH transmission particularly occurs through contact with 
soil contaminated with helminth eggs or larvae (WHO 
2023a). Contributing factors of animal, environmental, 
and human origin may affect multiple aspects associated 
with STH infections. For instance, vertebrate animals such 
as dogs living near humans in regions lacking veterinary 
services significantly influence the risk of zoonotic canine 
hookworm transmission (Colella et al. 2021; Massetti et al. 
2020; Traub et al. 2021; Zendejas-Heredia et al. 2021), 
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T. trichiura (Areekul et al. 2010), A. duodenale (Fetouh 
2003), and N. americanus (Boyko et al. 2020). Table 4 lists 
zoonotic STHs, their risk of transmission, and their impact 
on human health. The lack of adequate sanitary and hygiene 
facilities exacerbates the contamination of soil, food, and 
clean water with infective eggs/larvae, increasing infection 
risks. When infected hosts defecate on soils (beaches, back-
yards, children’s playgrounds), the spread of infective para-
site stages and the risk of infection increases (Delaluna et al. 
2020; Ngcamphalala et al. 2020; Traub et al. 2021). Human 
factors such as age may influence the pathogenesis of disease 
caused by STH infection (high Ascaris, Trichuris, and Toxo-
cara worm loads lead to more severe illnesses in children) 
(Else et al. 2020). Aside from coevolution, greater human 
occupancy in animal habitats and close contact or affilia-
tion with pets and domestic animals in human dwellings, 
augmented by individual variables and behaviors, allow 
for zoonotic pathogen exposure (Kajero et al. 2022; WHO 
2020). Pet ownership is increasing in many households, and 
too close contact or association can be harmful to pet owners 
(Kamani et al. 2021), particularly in areas where the owners 
are unaware of the associated zoonotic disease risks and thus 
do not take the necessary precautions to avoid any potential 
health hazards (Moro and Abah 2019).

With groundwater levels dwindling, wastewater treatment 
and utilization have become critical in small- and large-scale 
agricultural areas. However, the extremely high levels of 
STH eggs found in wastewater and sludge from developing 

countries reviewed by Amoah et al. (2018) far exceed lim-
its set in the WHO guideline for wastewater/sludge reuse 
(≤ 1 helminth egg per gram or liter of sludge or wastewa-
ter) intended for unrestricted agriculture (WHO 2006), 
endangering the health of communities in contact with the 
wastewater/sludge via various exposure routes (Amoah et al. 
2018). Scientific evidence shows the presence of traces of 
AHs in plants, waterways, and soils (Li et al. 2020; Mesa 
et al. 2020; Mooney et al. 2021; Navrátilová et al. 2021; 
Porto et al. 2021), and even promote drug resistance devel-
opment in sheep GINs (Dimunová et al. 2022). As a result, 
understanding the spread of resistance in the environment 
and its influence on human health is critical.

One‑Health approach to anthelmintic drug 
resistance

The One-Health approach ensures that health concerns are 
addressed in an integrated and holistic manner, offering a 
more comprehensive awareness of the issues from a human-
animal-environment standpoint and presenting potential 
solutions that would be unattainable if the issues were to 
be tackled individually. AR is linked to humans, animals, 
and the environment because AHs have been excessively 
utilized in many fields of agriculture, livestock husbandry, 
and human medicine, contaminating plants, fresh waterways, 
and soils, potentially promoting the development of AR in 

Fig. 1   Pictorial definition of One-Health by OHHLEP (2021)
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humans and animals following long periods of exposure. As 
therapeutics and prophylactics, AHs are important in human 
and animal health. However, with the current escalated AR 
in animal husbandry and the emergence in clinical medicine, 
the future of STH control is unknown. Thus, to protect cur-
rent and future AHs, a shift regarding how AHs are used 
ought to be executed. To incorporate One-Health concepts 
into addressing the problem of AR, stakeholders from vari-
ous sectors such as human and animal health, agriculture, 
and environmental conservation need to come together to 
develop and implement integrated approaches that address 
the root causes of AR. This section goes into detail about 
some ways.

Implementing targeted deworming protocols

The AR problem in livestock has had significant financial 
consequences. While this is horrendous by itself, widespread 
AR in humans, if it occurs, would become a “serious public 
health problem” with increased illness and mortality among 
at-risk groups (Tinkler 2020). Implementing measures such 
as selective drug use only when required (to treat severely 
sick individuals) aims to slow the pace of resistance devel-
opment, hence extending the lifetime of currently effective 
AHs. For example, where Haemonchus contortus, the major 
killing parasite of sheep and goats, is the predominant GIN, 
the FAMACHA program allows individual animal assess-
ment to determine the development or severity of anemia in 
the flock or herd (Cintra et al. 2019; Prashanth et al. 2020; 
Senoamadi et al. 2022), thereby deworming only the ani-
mals showing symptoms of heavy parasite infection, rather 
than the “blanket” or mass treatment. Such targeted selective 
anthelmintic treatment (TST) procedures not only reduce 
the use of AHs and the number of animals dewormed but 
also chemical residues in meat animals and any associated 
environmental health problems (Höglund et al. 2013). By 
limiting the use of AHs in this way, the selective pressure 
on parasites to evolve resistance is reduced. Additionally, 
targeted deworming of only sick/infected individuals/popu-
lations slows the spread of AR by limiting the likelihood of 
resistant parasites spreading to uninfected populations.

Despite the possibility of generating resistant helminths, 
repeated mass treatment programs, known as PCs, that typi-
cally employ a single class of medications, BZs, adminis-
tered to children attending school, currently expanded to 
community-wide level, remain the cornerstone for combat-
ing human STHs (Pilotte et al. 2022; Tinkler 2020; WHO 
2023a). This was demonstrated to contribute more than 
a 50% reduction in the amount of DALYs lost each year 
(WHO 2023a), with others forecasting as much as 75% of all 
morbidity averted, if current treatment targets (< 2% morbid-
ity) are met (Walson 2021; WHO 2019a). However, previ-
ous research has indicated that just treating schoolchildren 

is unlikely to result in transmission cessation because the 
untreated adult population would continue to contribute to 
the reservoir of infectious agents, sustaining the cycle of 
reinfection (Pilotte et al. 2022). As a result, increasing focus 
has been placed on implementing selective treatment of all 
infected persons to attain appropriate prevalence thresh-
olds below which helminth parasite populations cannot 
continue transmission, resulting in transmission termina-
tion (Werkman et al. 2018a, 2018b). Additional measures, 
such as a reduction in poverty (Walson 2021) and signifi-
cant improvements in access to clean water, sanitation, and 
hygiene (WASH) (Pilotte et al. 2022; WHO 2023a; Zeng 
et al. 2019), will reduce reinfections and the need for fre-
quent deworming.

Incorporating alternative control methods

The rising prevalence of AR especially in animal husbandry 
has raised questions regarding the long-term viability of 
the existing chemotherapeutic strategy in treating STHs in 
humans and animals. In this regard, the search for alterna-
tive/novel parasite management approaches to reduce para-
site transmission and dependency on AHs is deemed critical 
in curbing the spread of AR. Thus, the goal is to keep host-
parasite contact to a minimum such that helminths have a 
minimal influence on host well-being and/or performance. 
Rotating 2-month-old weaning sheep and goats through safe 
pastures ahead of the adults, for example, would reduce their 
exposure to high numbers of infective larvae (Zekarias and 
Toka 2019). Keeping animals under a zero grazing system 
restricts their access to any vegetation, thus lowering the 
risk of parasitism and preventing reinfection. As parasite 
species differ between host species, multi-species grazing 
and/or alternate grazing of cattle or horses with sheep or 
goats offers important benefits to parasitic nematode control 
(Bambou et al. 2021; Verma et al. 2018). Provision of clean 
water free from fecal matter, proper drainage in the animal 
shed, avoiding overstocking in pastures and pens, and isola-
tion of newly acquired animals to be aggressively dewormed 
to prevent the introduction of drug-resistant worms are some 
management practices for sustainable parasite control. Using 
host genetics to produce parasite-resistant and robust breeds 
like Red Maasai (Benavides et al. 2015) and the Brazilian 
Morada Nova (Marei et al. 2020) sheep is expected to be 
a long-term defense against internal parasites, such as the 
hematophagous H. contortus spp. Aside from targeting 
parasitic stages within the animal, biological control target-
ing free-living infective larvae on pasture by use of certain 
micro-fungi, particularly Duddingtonia flagrans, dung bee-
tles, and earthworms, aims to reduce the number of infective 
stages available to susceptible grazing livestock (Canhão-
Dias et al. 2020; Mendoza-de Gives et al. 2018; Szewc 
et al. 2021). Vaccination has been proposed as a promising 
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alternative control method for STHs. Although no vaccines 
are currently available for human STHs, vaccines, such as 
Barbervax (Nisbet et al. 2016), were developed for H. con-
tortus, a voracious blood-sucking nematode of small rumi-
nants causing high morbidity and hitting hard the economy 
of sheep farming worldwide (Singh et al. 2019). Overall, 
these alternative control methods help promote the princi-
ples of the One-Health approach by minimizing incidences 
of parasite infections in humans and animals, while reducing 
parasite stages in the environment, thus improving and pro-
tecting the health and well-being of the entire communities. 
Additionally, these methods are more sustainable and have 
a lower environmental impact than the traditional chemical 
approach, thus protecting the environment.

Developing and promoting the use of effective 
diagnostic tools

Diagnostic tools are essential in identifying nematode para-
site infections as well as determining drug resistance lev-
els. Technology advancements such as Smartphone appli-
cations (Saeed and Jabbar 2018) and FECPAKG2 (Rashid 
et al. 2018) have enabled on-farm sample processing and 
parasite detection. In this case, large numbers of samples can 
be prepared and then later analyzed. Further digital images 
remain available for referencing and auditing purposes. On 
the other hand, molecular techniques such as qPCR exhibit 
high sensitivity and can differentiate human and animal spe-
cies based on their DNA/RNA sequences (Dos Santos et al. 
2022; Furtado et al. 2020; Ngcamphalala et al. 2020; Palma 
et al. 2019; Xu et al. 2021; Zhou et al. 2021), significantly 
improving diagnostic sensitivity and offering the prospect 
of diagnosing even very low-level infection intensities (Ben-
jamin-Chung et al. 2020; Dunn et al. 2020). This enables 
better monitoring of parasite infections and their response 
to treatment. Additionally, the advent of next-generation 
sequencing (NGS) technologies has revolutionized the use of 
molecular techniques for understanding complex microbial 
communities, in fecal (Kirstahler et al. 2022) and a variety 
of other sample matrices including environmental samples 
such as wastewater (Azli et al. 2022; Brumfield et al. 2022; 
Garner et al. 2021; Grundy et al. 2023; Li 2019).

Detecting the presence of AR is crucial in reducing its 
severity (Kotze et al. 2020). Phenotypic techniques, such as 
the larval development test (LDT) and the fecal egg count 
reduction test (FECRT), are extensively employed to detect 
AR in livestock GIN parasites (Bosco et al. 2020; Kelleher 
et al. 2020; Mphahlele et al. 2021; Potârniche et al. 2021) 
and for assessment of drug efficacy in terms of egg reduc-
tion rate (ERR) for human STH (Olliaro et al. 2022; Subba 
and Singh 2020). Similarly, genotypic approaches based on 
PCR have been significantly refined for the detection of BZ 
resistance (Nath et al. 2022; Roose et al. 2021; Sargison 

et al. 2019), and recently levamisole (Araújo-Filho et al. 
2021), by amplifying the specific genetic mutations associ-
ated with resistance. As a result, targeted treatment/interven-
tions can be implemented. Additionally, molecular tools can 
be used to monitor the spread of resistant helminth strains. 
This allows for current and informed decisions regarding 
drug usage, as well as the development of effective control 
measures. However, each technique has benefits and draw-
backs in terms of accuracy (Sangster et al. 2018), reproduc-
ibility, cost, and time spent (Kotze et al. 2020). Overall, the 
use of molecular techniques in the fight against anthelmintic 
resistance is a promising approach that can help preserve 
the efficacy of these important drugs and protect human and 
animal health.

Nonetheless, the detection of AR in animals and humans 
has received more attention than the environmental aspect 
of AR. Water-based epidemiology (WBE) approaches, 
for example, can provide an overview of a community’s 
overall health by monitoring the presence of biological or 
chemical indicators dissipated in a pooled sample of sew-
age/sludge or wastewater (O’Keeffe 2021). Environmental 
sampling can inform and improve prevention, intervention, 
and control (Larsson and Flach 2022; O’Keeffe 2021; Prieto 
Riquelme et al. 2022; Sims and Kasprzyk-Hordern 2020), 
before spillover into humans, especially in this era of rapid 
population growth and environmental changes. However, the 
absence of data on the existence and quantities of AR genes 
in environmental samples makes it impossible to establish 
their impact on human health. Similarly, further research is 
needed to detect the existence and quantities of AR genes in 
environmental samples, particularly in light of the increasing 
incidence of AR in livestock and the high possibility of its 
emergence in human STHS.

Encouraging responsible use of AHs among farmers, 
veterinarians, and stakeholders

Due to many years of unethical and unregulated use, anthel-
mintic drug resistance threatens to collapse animal agribusi-
ness. Responsible and prudent use of AHs is one way to 
slow down resistance. This calls for a concerted effort by 
all stakeholders involved in handling medicines containing 
anthelmintic compounds.

Education plays a crucial role in promoting the responsi-
ble use of veterinary drugs and preventing drug resistance. 
Proper understanding and training on the appropriate use 
of veterinary drugs can enhance their effectiveness in treat-
ing animal illnesses while minimizing the development of 
drug resistance. Regular training creates awareness among 
veterinarians, animal owners, and other stakeholders who 
become familiar with current scientific thinking on the cor-
rect choice, use/administration of anthelmintic chemicals, 
as well as current issues regarding AR and its diagnostic 
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methods. While engaging with farmers regarding animal 
health plans, competent veterinarians will provide sound 
animal husbandry methods such as good sanitation and 
hygiene practices which help minimize incidences of ani-
mal illnesses, as well as non-chemical parasite control meth-
ods, thus diminishing the need for anthelmintic chemicals. 
Additionally, animal owners and veterinarians should be 
informed of the potential impact of AR on animal health and 
the potential risks to human health. This can help to moti-
vate stakeholders to adopt responsible drug use practices 
and to take steps to prevent the development of resistance. 
The veterinarians have a role on the front line in detecting 
and reporting safety and efficacy issues to the competent 
authority and testing for and providing localized accounts of 
AR. Possible training programs should be readily available 
to individual large- and small-scale food animal producers 
as they have a direct role in the responsible and prudent use 
of anthelmintic chemicals in their animals, hence promot-
ing animal health and food safety. Post-training monitoring 
is important, especially to evaluate the correct use of non-
chemical farming approaches (Maia et al. 2015).

National and municipal governments may adopt interna-
tional-compliant laws and guidelines for the use and distri-
bution of AH medicines. This necessitates the implemen-
tation of proper regulatory controls and procedures at the 
national, international, or regional levels, as well as coor-
dination by the respective authorities, to prevent the unau-
thorized manufacture, importation, distribution, storage, and 
use of unlicensed, substandard, or fraudulent AH products 
(British Veterinary Association 2023; European Medicines 
Agency 2021; Vinny and Hayley 2019). Clear guidelines on 
the dosages, administration methods, and withdrawal peri-
ods for different animal species, and manufacture and expiry 
dates should be indicated on medicine containers. Further-
more, by regular inspections and penalties for noncompli-
ance, governments can monitor and enforce compliance with 
these regulations and recommendations. Governments may 
help to ensure that AH medicines are used ethically and 
sustainably, lowering the possibility of drug resistance and 
enhancing the health and welfare of the environment, ani-
mals, and humans, as well as ensuring the safety of the food 
chain, through the implementation of these measures.

Conducting ongoing anthelmintic resistance 
monitoring and surveillance

Monitoring and surveillance are critical components in 
the management and control of AR. These activities help 
to detect diminishing drug efficacy due to the develop-
ment of AR in specific hosts and parasites, as well as 
track trends in AR, hence providing a global pattern and 

informing future measures to combat the problem. Moni-
toring involves the regular collection and analysis of data 
on anthelmintic efficacy, while surveillance involves tar-
geted data collection to identify emerging AR trends and 
risk factors. One of the essential tools for monitoring and 
surveillance of AR is the FECRT, which measures the 
efficacy of anthelmintics in reducing the number of para-
site eggs in fecal samples. High levels of egg reduction 
indicate high efficacy, while low levels indicate reduced 
efficacy and the potential development of resistance. Other 
tools for monitoring and surveillance include molecular 
techniques that detect genetic markers associated with 
AR, such as mutations in the beta-tubulin gene associated 
with BZ resistance. Monitoring is concentrated in veteri-
nary settings (Avramenko et al. 2020; Dauparaitė et al. 
2021; Hinney et al. 2020; Queiroz et al. 2020), and only 
one project, the Starworms (STop Anthelmintic Resistant 
WORMS), has been piloted for human STHs, to meas-
ure drug efficacy and further investigate the presence and 
distribution of AR-related SNPs (Vlaminck et al. 2020). 
Thus, the efficacy of clinical antihelminthics and the pres-
ence of AR in human STH species are currently unknown.

Environmental contamination with anthelmintic resi-
dues is a One-Health concern. AHs are often excreted into 
the environment in relatively high amounts (Mooney et al. 
2021), with parent drugs or their transformation products 
(TPs) detected in various environmental settings (Li et al. 
2020; Mesa et al. 2020; Mooney et al. 2021; Navrátilová 
et al. 2021; Porto et al. 2021), yet insufficient monitor-
ing and surveillance limits information available on the 
environmental occurrence of AR genes, and the possible 
spillover to exposed humans and animals. Thus, the true 
scale and potential burden of AR may be underestimated. 
This is important, considering that wastewater may con-
tain sewage from livestock farms and wet markets, active 
hotspots for amplification of infectious agents, including 
zoonotic pathogens (Xiao and Zhang 2023), antimicrobial-
resistant (AMR) organisms, and genes.

By regularly monitoring and surveying for AR, pub-
lic health officials can identify areas with high levels of 
resistance and target interventions, such as the use of alter-
native anthelmintics or non-chemical control measures. 
This approach can help reduce the spread of resistance and 
preserve the efficacy of existing AHs, as well as prevent 
environmental contamination. In addition, monitoring and 
surveillance can inform future measures to combat AR by 
identifying emerging trends in resistance and risk factors, 
enabling researchers to develop new AHs with different 
modes of action, implement targeted breeding programs, 
or develop alternative control measures such as vaccines 
or biological control agents.
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Conclusion and recommendations

In conclusion, the use of AHs in control of STHs and other 
GINs remains the cornerstone approach, and hence, it is 
crucial to use the current effective AHs carefully to mini-
mize the impact of AR. It is recommended that One-Health 
strategies, such as targeted deworming, precise diagnosis 
of specific parasites and level of resistance, expanding the 
monitoring and surveillance of AR to environmental matri-
ces such as wastewater, raising awareness through education, 
and employing alternative control methods, be adopted to 
reduce overreliance on anthelmintic chemicals while also 
sustainably reduce parasite burdens across humans, animals, 
and the environment, thereby slowing down the develop-
ment of AR. The monitoring and surveillance of AR through 
drug efficacy trials in clinical settings must be intensified to 
establish the link between AR-related SNPs, response to AH 
treatment, and AR. Strict measures ensuring the ethical and 
sustainable use of AHs are implemented by governments to 
ensure the safety of food and promote the health of humans, 
animals, and the environment. More research should look 
into understanding the spread of resistance in the environ-
ment and its influence on human and animal health.

Abbreviations  AHs:  anthelmintics; AR:  anthelmintic resistance; 
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acetylcholine receptor; Pgps: P-glycoproteins; STHs: soil-transmitted 
helminths
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