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Abstract
Trichinellosis is a cosmopolitan zoonosis that is caused mainly by Trichinella spiralis infection. The human disease ranges from 
mild to severe and fatality may occur. The treatment of trichinellosis still presents a challenge for physicians. Anti-inflammatory 
drugs are usually added to antiparasitic agents to alleviate untoward immuno-inflammatory responses and possible tissue damage but 
they are not without adverse effects. Thus, there is a need for the discovery of safe and effective compounds with anti-inflammatory 
properties. This study aimed to evaluate the activity of β-glucan during enteral and muscular phases of experimental T. spiralis 
infection as well as its therapeutic potential as an adjuvant to albendazole in treating trichinellosis. For this aim, mice were infected 
with T. spiralis and divided into the following groups: early and late β-glucan treatment, albendazole treatment, and combined 
treatment groups. Infected mice were subjected to assessment of parasite burden, immunological markers, and histopathologi-
cal changes in the small intestines and muscles. Immunohistochemical evaluation of NF-κB expression in small intestinal and 
muscle tissues was carried out in order to investigate the mechanism of action of β-glucan. Interestingly, β-glucan potentiated the 
efficacy of albendazole as noted by the significant reduction of counts of muscle larvae. The inflammatory responses in the small 
intestine and skeletal muscles were mitigated with some characteristic qualitative changes. β-glucan also increased the expression 
of NF-κB in tissues which may account for some of its effects. In conclusion, β-glucan showed a multifaceted beneficial impact 
on the therapeutic outcome of Trichinella infection and can be regarded as a promising adjuvant in the treatment of trichinellosis.
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Introduction

Trichinellosis is a helminthozoonosis that affects people all 
around the world (Gottstein et al. 2009). According to esti-
mates, up to 11 million people worldwide are infected with 

Trichinella species, and many more are at risk of acquir-
ing the infection (Dupouy-Camet 2000). The main source 
of infections for humans is Trichinella spiralis (T. spiralis), 
and pork that has been undercooked is the main source of 
infection. Numerous mammalian hosts, including mice, pigs, 
bears, and humans, are susceptible to the infection (Jasmer 
1993). This parasite has two exceptional characteristics that 
influence the host immune reaction: first, it completes the 
life cycle in the same host, and second, both the adult worms 
and the larvae inhabit two different intracellular niches. The 
adult worms colonize the intestinal epithelium while the lar-
vae reside in the skeletal muscle fibers (Fabre et al. 2009).

The severity of the human disease ranges from moderate 
to severe, and deaths may supervene. However, as there have 
been no prospective, controlled clinical trials of treatment 
for this infection, therapy continues to be difficult and con-
troversial (Watt and Silachamroon 2004). Empirically, the 
majority of experts advise using corticosteroids in addition 

Section Editor: Christoph Grevelding

 * Ahmad A. Othman 
 ahmed_ali44@hotmail.com; 

ahmed.osman1@med.tanta.edu.eg

1 Medical Parasitology Department, Faculty of Medicine, 
Tanta University, Tanta, Egypt

2 Pathology Department, Faculty of Medicine, Tanta 
University, Tanta, Egypt

3 Medical Biochemistry and Molecular Biology Department, 
Faculty of Medicine, Tanta University, Tanta, Egypt

4 College of Medicine, Sulaiman AlRajhi University, 
51942 Albukairiyah, Saudi Arabia

http://crossmark.crossref.org/dialog/?doi=10.1007/s00436-023-07964-7&domain=pdf


2808 Parasitology Research (2023) 122:2807–2818

1 3

to diffusible anthelmintics. The treatment outcomes, how-
ever, are not always satisfactory (Dupouy-Camet 2000).

Treatment of trichinellosis is still a dilemma for the 
physicians. One of the biggest issues is that the timing of 
administration is crucial to the effectiveness of anthelmin-
thic drugs in treating trichinellosis. In fact, when given 
early, while adult worms are still in the small intestine, or 
when larvae are migrating to the muscles, anthelmintics are 
very effective. In contrast, the majority of patients present 
at a late stage of the illness, when the skeletal muscle fib-
ers have already been thoroughly colonized by the larvae 
(Gottstein et al. 2009). Another challenge is the limited 
bioavailability of the existing anthelmintics due to their 
low water solubility and diffusibility. Low levels of the 
medications are therefore attainable around the encapsu-
lated larvae with less than adequate response within a safe 
therapeutic range (Casulli et al. 2006).

Furthermore, T. spiralis infection is characterized by 
significant inflammatory alterations in the affected tissues. 
Inadvertently, the death of parasites within the tissues by 
the action of anthelmintics has the potential to exacerbate 
the inflammatory reactions, which is particularly harmful 
in vital organs like the heart or brain. Anti-inflammatory 
medications are thus regarded as an integral component in 
the treatment of this infection (Shimoni et al. 2007). Anti-
inflammatory agents, whether non-steroidal or steroidal, 
have a number of adverse effects and contraindications that 
may limit their usefulness (Barnes 2014; Badri et al. 2016; 
Oray et al. 2016). Finding new, safe, and effective agents 
with anti-inflammatory activity is therefore mandatory.

β-glucans are potent immunomodulatory agents that have 
the power to alter immune responses (Leung et al. 2006). 
The primary source of β-glucans in nature is fungi, particu-
larly yeast and mushrooms (Wakshull et al. 1999). They are 
also prepared from plants, such as cereal grains such as bar-
ley and oat, and from bacteria and algae (Vetvicka and Yvin 
2004; McIntosh et al. 2005). Briefly, β-glucans are found in 
a wide range of natural sources belonging to various taxo-
nomic groups among prokaryotes and eukaryotes (Volman 
et al. 2008). It is frequently used as an over-the-counter 
nutraceutical with a large safety margin.

Neutrophils, B cells, T cells, and natural killer cells could 
all be stimulated by β-glucans, but macrophages and den-
dritic cells are generally regarded to be their main target 
cells (Vetvicka 2011). As they increase the ability of mac-
rophages, neutrophils, and natural killer cells to respond to 
and attack a variety of pathogens such as viruses, bacteria, 
fungi, and parasites, they boost the body’s immune system 
defense against external invaders (Rondanelli et al. 2009). 
Some studies have shown enhanced efficacy of antiparasitic 
therapy when β-glucans are added (Dymon and Papir 2004), 
such as in cases of toxocariasis (Hrckova et al. 2007) and 
acute toxoplasmosis (Büyükbaba Boral et al. 2012).

This study aimed to evaluate the immunomodulatory 
activity of β-glucan during enteral and muscular phases of 
experimental T. spiralis infection as well as its potential as 
an adjuvant to albendazole in the treatment of Trichinella 
infection. We have found that β-glucan has a multifaceted 
beneficial impact on the therapeutic outcome of Trichinella 
infection and can be considered a promising adjuvant in the 
treatment of trichinellosis.

Material and methods

Parasites and animals

According to Dunn and Wright’s (1985), T. spiralis L1 lar-
vae were used to infect mice. A total of 200 larvae were 
given orally to each animal in a single dose. The Trichinella 
species used in this investigation was genotyped as T. spi-
ralis (ISS6158) by the Superior Institute of Health, Rome, 
Italy’s European Union Reference Laboratory for Parasites. 
We utilized male Swiss albino mice that were 6–8 weeks 
old and weighed 25–30 g apiece. Animals were provided 
by Theodore Bilharz Research Institute (Giza, Egypt) and 
were thereafter housed and handled in accordance with the 
institutional and national guidelines.

Drugs

A commercial preparation of albendazole (Alzental) suspen-
sion (Eipico, Egypt) which contains 20 mg/ml was used. The 
required dose (50 mg/kg body weight/day for 14 successive 
days) according to Li et al. (2012) was administered orally to 
each mouse. As regards β-1,3-glucan, a commercial prepara-
tion of the drug, yeast-free β-glucan (Agaricus mushroom) 
(Paradise Herbs & Essentials, Inc., USA) which contains 
250 mg/capsule was used. The required dose (5 mg/kg body 
weight/day for 14 successive days) according to Büyükbaba 
et al. (2012) was administered orally to each mouse after the 
appropriate dilution with sterile distilled water.

Experimental design

Mice were divided into six groups: group I (20 mice): 
uninfected control; group II (25 mice): T. spiralis-infected 
untreated control; group III (20 mice): infected mice that 
were treated with albendazole starting on the 21st day p.i. 
for 14 successive days; group IV (25 mice): infected mice 
that were treated with β-glucan starting on the 1st day p.i. for 
14 successive days; group V (20 mice): infected mice that 
were treated with β-glucan starting on the 21st day p.i. for 14 
successive days; and group VI (20 mice): infected mice that 
were treated with both β-glucan and albendazole starting on 
the 21st day p.i. for 14 successive days.



2809Parasitology Research (2023) 122:2807–2818 

1 3

Fourteen days post-infection (p.i.), 5 mice from both 
group II and group IV were euthanized, and their small 
intestines were taken for assessment of adult worm counts. 
At 35–37 days p.i., 20 mice from each group were eutha-
nized and subjected to the following: total larval count in 
muscles, estimation of cytokines in intestinal homogenates 
and in sera, and histopathological and immunohistochemical 
study on the small intestine and skeletal muscle samples.

Parasitological assay

Assessment of adult worm counts

Five animals of infected control and early β-glucan treat-
ment groups were euthanized 14 days p.i., and adult worm 
counts in the small intestines were determined as described 
by Wakelin and Lloyed (1976).

Assessment of total larval counts

Infected mice’s total muscle larval numbers were calculated 
using the Dunn and Wright (1985) method.

Histopathological evaluation

After being promptly fixed by immersion in 10% formalin, 
tissue samples from the small intestine (1 cm from the mid-
dle of the jejunum) and skeletal muscles (pieces from the 
diaphragm and thigh muscles) of the study groups under-
went routine histological processing, paraffin embedding, 
and microtomy. Slides were randomly selected and evaluated 
blindly and independently by 2 examiners.

Differential assessment of cells of the inflammatory 
infiltrate in the intestine

Based on the number of cells, a semi-quantitative score of 
five grades was given to each case as follows: ( −): absent, 
( +): mild, (+ +): moderate, (+ + +): strong, and (+ +  + +): 
marked. Each histological section had 20 high-power 
fields (× 40) examined in order to evaluate the preceding 
histopathological parameters. The average score was then 
determined.

Image analysis for evaluation of intestinal and skeletal 
muscle pathology

This was done using an image analyzer (LEICA DFG 290 
HD) at the central laboratory of Tanta Faculty of Medicine, 
Tanta, Egypt. For evaluation of the previous histopatho-
logical parameters, an examination of 20 high-power fields 
(× 40) in each histological section was done, and the average 

score was calculated. Moreover, a blind assessment was car-
ried out where the specimens were randomized and coded 
before examination by 2 pathologists.

Assessment of immunological parameters

Preparation of samples for ELISA measurements

Utilizing serum separator tubes, samples were centrifuged 
for 15 min at 1000 × g after clotting for 2 h at room tem-
perature or overnight at 4°C. The serum was taken out and 
kept at − 70°C.

Small intestinal homogenates

A 100 mg washed clean piece of the mid-intestinal region 
was homogenized in 1 ml of PBS, refrigerated overnight 
at − 20°C, and then rinsed with PBS. The homogenates 
were centrifuged for 5 min at 5000 g, 2‒8°C, following two 
freeze–thaw cycles that were used to rupture the cell mem-
branes. The fluid from the supernatant was taken out and 
kept at − 70°C. Before the assay, the samples were centri-
fuged once more after thawing.

Estimation of levels of interleukin‑5 (IL‑5)

This was done in small intestinal homogenates and in serum 
using platinum ELISA kits for quantitative detection of 
mouse IL-5 (eBioscience, CA, USA).

Estimation of levels of transforming growth factor‑β 
(TGF‑β)

This was done in small intestinal homogenates and in serum 
using platinum ELISA kits for quantitative detection of 
mouse TGF-β (eBioscience, CA, USA).

Immunohistochemistry for assessment of NF‑κB 
expression

Immunohistochemistry was carried out for the demonstra-
tion of NF-κB -expressing cells using rabbit anti-phospho-
NF-κB p65 ser276 antibody (NF kappa B p65) (henceforth 
pp65, Cell Signaling, Danvers, MA). After peroxidase 
blockage and microwave antigen retrieval (using citrate 
buffer at pH 6.0), 3–5 μm tissue sections were incubated 
with the primary antibody overnight at 4°C. For the nega-
tive control, the primary antibody was replaced with PBS. 
Rabbit anti-mouse horseradish peroxidase-conjugated sec-
ondary antibody was added followed by incubation for 40 
min at room temperature. The color was developed using 
diaminobenzidine as a chromogen. Slides were extensively 
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washed with PBS after each step. Finally, they were coun-
ter-stained with Mayer’s hematoxylin.

Immunoreactivity of NF-κB appeared as brown 
cytoplasmic and nuclear staining of varying degrees 
of intensity in epithelial and inflammatory cells. For 
negative control, the primary antibody was replaced 
by PBS. For the estimation of the number of NF-κB 
positive cells, image analysis was performed on 
immuno-stained sections to measure the number of 
NF-κB-positive cells whether nuclear or cytoplasmic. 
Ten random non-overlapping fields in each slide were 
examined and digitally imaged at a magnification 
of × 400 (Ashour et al. 2015).

Statistical analysis

Quantitative data were presented as mean ± standard devi-
ation. The probability of significant differences among 
groups was determined by the Kruskal–Wallis test, a 
one-way ANOVA test followed by Tukey’s post-hoc test. 
Differences were considered significant when P-value 
was < 0.05. The statistical analyses were processed 
according to the conventional procedures using Statisti-
cal Package of Social Sciences (SPSS Inc., Chicago, IL, 
USA) software for Windows, version 10.0.

Results

Parasite burden in the small intestines and muscles

There was no statistically significant difference (P > 0.05) in 
adult worm counts in the small intestine between the early 
β-glucan treatment group (36.0 ± 4.53) and the infected con-
trol group (41.0 ± 2.92). As regards the total larval counts in 
the skeletal muscles, the results are shown in Table 1. There 
was a significant reduction in larval counts in albendazole 
treatment, early β-glucan treatment, and combined treatment 
groups in comparison with the control group (P = 0.001). 
Moreover, a significant difference was found between larval 
counts in albendazole treatment and combined treatment 
groups (P = 0.001). However, no significant difference in 
larval counts was noted between late glucan treatment and 
infected control groups.

Assessment of immunological parameters

Table 2 shows levels of IL-5 in small intestinal homogenates 
and in sera of animals. Regarding IL-5 levels in intestinal 
homogenates, there was a significant increase in infected 
control mice versus uninfected controls (P < 0.001). On the 
other hand, there was a significant reduction in levels of 
IL-5 in both early and late β-glucan treatment groups as 

Table 1  Larval counts in the 
skeletal muscles of infected 
groups (n = 20)

G II, infected control; G III, albendazole treatment group; G IV, early β-glucan treatment group; G V, late 
β-glucan treatment group; G VI, combined treatment group. S, significant difference. Identical superscript 
letters denote non-significant differences while different superscript ones show statistically significant 
results. P was considered significant at < 0.05
Reduction (%) = [(N − n) / N] × 100, where N is the average number of larvae in the infected control group, 
and n is the average number of larvae in treated groups

G II G III G IV G V G VI Overall P 
value

Mean ± SD 12,183 ±  378a 2906 ±  255b 10,905 ±  86c 12,400 ±  297a 528 ±  157d  < 0.0001 S

Reduction % –––––– 76.1% 10.4% –––––- 95.6%  < 0.0001 S

Table 2  Comparison of the immunological parameters (n = 10)

G I, normal control; G II, infected control; G III, albendazole treatment group; G IV, early β-glucan treatment group; G V, late β-glucan treat-
ment group; G VI, combined treatment group
Data are presented as means ± SD. S, significant difference. P value was calculated by one way ANOVA test followed by Tukey’s post-hoc test. 
Identical superscript letters denote non-significant differences while different superscript ones show statistically significant results. P was consid-
ered significant at < 0.05

G I G II G III G IV G V G VI Overall P 
value

Intestinal IL-5 (pg/gm tissue) 258.4 ± 30.8a 308.7 ± 14.8b 231.5 ± 28.2a 114.1 ± 21.4c 113.9 ± 22.8c 112.9 ± 16.8c  < 0.0001 S
Serum IL-5 (pg/ml) 62.5 ± 7.3a 126.2 ± 13.1b 126.0 ± 10.8b 28.2 ± 9.3c 31.2 ± 8.8c 26.3 ± 12.1c  < 0.0001 S
Intestinal TGF-β (pg/gm tissue) 1422.5 ±  159a 1850.6 ± 116.1b 1481.7 ±  235a 862.6 ± 80.9c 937.6 ± 65.1c 898.6 ± 75.0c  < 0.0001 S
Serum TGF-β (pg/ml) 1143.5 ± 50.9a 1589.6 ± 115.7b 1388.3 ± 210.7c 914.1 ± 44.6d 891.1 ± 79.3d 917.4 ± 49.3d  < 0.0001 S
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well as the combined treatment group in comparison with 
the infected control group (P = 0.001). Furthermore, there 
was a significant decrease in levels of IL-5 in both β-glucan 
treatment groups, compared with the albendazole treatment 
group (P = 0.001). Levels of IL-5 in sera show the same pat-
tern as in intestinal homogenates.

As regards the levels of TGF-β in small intestinal 
homogenates and sera of animals, the results are shown in 
Table 2. There was a significant increase in infected control 
mice compared to normal controls (P = 0.001). Meanwhile, 
there was a significant reduction of levels of TGF-β in both 
β-glucan treatment groups, compared with the albendazole 
treatment group (P = 0.001). Moreover, there was a signifi-
cant decrease in levels of TGF-β in both β-glucan treatment 
groups as well as the combined treatment group versus the 
infected control group (P < 0.001). The same pattern was 
observed for TGF-β levels in the sera of animals.

Histopathological changes in the small intestine

Histopathological examination of sections from the infected 
control group showed intense inflammatory cellular infiltrate 
in the submucosa and the core of the villi. The infiltrate was 
composed mainly of plasma cells, lymphocytes, eosinophils, 
neutrophils, and fibroblasts. Additionally, there was ulcera-
tion of the mucosa together with goblet cell hyperplasia 
(Fig. 1A). The differential assessment of the components of 
the inflammatory cellular infiltrate is summarized in Table 3.

Examination of sections from either early or late β-glucan 
treatment groups, compared to the infected control group, 
revealed a mild to moderate reduction in the intensity of 
inflammation as well as a reduction in the number of eosin-
ophils and an increase in the numbers of both histiocytes 
and lymphocytes (Table 3). Sections from the albendazole 
treatment group, compared to the infected control, revealed 
moderate improvement in the histopathological changes. 
Meanwhile, sections from the combined treatment group, 
compared to the infected control, revealed marked improve-
ment in all the histopathological changes and the small intes-
tine became almost normal in appearance (Fig. 1B).

Fig. 1  Photomicrographs of 
histopathological changes in 
T. spiralis-infected mice at 
5 weeks p.i.: A a small intes-
tinal section from the infected 
control group shows surface 
ulceration (thin arrows) and 
marked inflammatory cel-
lular infiltration (thick arrow) 
(H&E × 400), B a small intesti-
nal section from the combined 
treatment group shows restora-
tion of the normal mucosal 
architecture (H&E × 100), C a 
muscle section from the infected 
control group shows intra-
muscular larva with intense 
perilarval inflammatory cellular 
infiltration, mainly eosinophils, 
macrophages and lymphocytes 
(H&E × 400), D a muscle sec-
tion from the combined treat-
ment group shows giant cells 
(thin arrows) with remnants of a 
larva (thick arrow) (H&E × 400)

A B

C D

Table 3  Differential estimates of the intestinal inflammatory cellular 
infiltrate (n = 20)

G I, normal control; G II, infected control; G III, albendazole treat-
ment group; G IV, early β-glucan treatment group; G V, late β-glucan 
treatment group; G VI, combined treatment group
( −): absent; ( +): mild; (+ +): moderate; (+ + +): strong; (+ +  + +): 
marked

Neutrophil Eosinophil Histiocyte Lymphocyte

G I  +  −  +  +  + 
G II  +  +  +  +  +  +  +  +  +  +  + 
G III  +  +  +  +  +  +  +  +  + 
G IV  +  +  +  +  +  +  +  +  +  +  + 
G V  +  +  +  +  +  +  +  +  +  +  + 
G VI  +  +  +  +  +  +  +  +  +  +  + 
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The results of the comparison between the intensities of 
inflammatory cellular reactions in the small intestine studied 
by image analysis in the different groups are illustrated in 
(Fig. 2A). It shows a significant reduction in the severity of 
inflammation in the albendazole treatment (P = 0.001), and 
the combined treatment groups (P < 0.001) compared with 
the infected control group. Furthermore, there was a signifi-
cant reduction in the intensity of inflammatory infiltration in 
the combined treatment group compared to the albendazole 
treatment group (P < 0.05).

Histopathological changes in the skeletal muscles

Histopathological examination of the skeletal muscle 
sections from the infected control group showed numer-
ous larval depositions. The larvae were surrounded by 
basophilic cells with hypertrophied oval nuclei and were 
enclosed by collagen capsules (nurse cells). The collagen 
capsule was surrounded by an intense inflammatory reaction 

consisting of mixed cell types (histiocytes, eosinophils, lym-
phocytes, and plasma cells) (Fig. 1C).

Examination of sections from either early or late 
β-glucan treatment groups, compared to the infected 
control group revealed changes in the components of the 
inflammatory cellular infiltrate: there was a reduction in 
the number of acute inflammatory cells, namely eosino-
phils and an increase in the numbers of both histiocytes 
and lymphocytes. Examination of sections from the com-
bined treatment group compared to the infected control 
group revealed a reduction both in the number of depos-
ited larvae and in the inflammatory cellular infiltrate. 
Moreover, numerous giant cells were detected (Fig. 1D).

A comparison of the intensities of the inflammatory reac-
tions in the skeletal muscles studied with image analysis is 
illustrated in Fig. 2B. We found a significant reduction in 
the severity of inflammatory infiltration in the albendazole 
treatment (P = 0.001) and the combined treatment (P < 0.001) 
groups compared to the infected control. Furthermore, a sig-
nificant reduction in the intensity of inflammatory infiltration 

Fig. 2  Image analysis mean val-
ues of the number of the inflam-
matory cells in: A the small 
intestines, and B the skeletal 
muscles of the infected groups. 
Vertical bars represent the mean 
(± SD) of these results for each 
group. “a” indicates a signifi-
cant difference versus group II, 
“b” indicates a significant 
difference versus group III, “c” 
indicates a significant difference 
versus group IV, “d” indicates 
a significant difference versus 
group V, and “e” indicates a sig-
nificant difference versus group 
VI. Differences were significant 
when P < 0.05
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in the combined treatment group relative to the albendazole 
treatment group (P < 0.05) was observed. Additionally, there 
was a significant reduction in the severity of inflammatory 
reaction in the early β-glucan treatment group (P < 0.05), 
compared to the infected control group, whereas this reduction 
was not significant (P > 0.05) in the late β-glucan treatment.

Immunohistochemical study

NF‑κB immunostaining in the small intestine

Immunohistochemical assessment of NF-κB reactivity 
showed a non-significant difference (P > 0.05) between 
infected control and albendazole-treated groups versus 
normal control. In contrast, there was a significant increase 
in NF-κB expression by small intestinal tissues in the 

early and late β-glucan treatment as well as in combined 
treatment groups (P = 0.001, P = 0.001, and P < 0.001, 
respectively) in comparison to the infected control group 
(Fig. 3A‒D; Table 4).

NF‑κB immunostaining in the skeletal muscles

Immunohistochemical assessment of NF-κB reactivity in the 
skeletal muscle tissues showed a non-significant difference 
(P > 0.05) between infected control and albendazole-treated 
groups versus normal control. In contrast, there was a sig-
nificantly upregulated NF-κB expression by muscle tissues 
in the early and late β-glucan treatment as well as in com-
bined treatment groups (P = 0.001, P = 0.001, and P < 0.001, 
respectively) in comparison to the infected control group 
(Fig. 3E, F; Table 4).

Fig. 3  Photomicrographs of 
NF-κB immunostaining at 
5 weeks p.i. in the small intes-
tine (A‒D) and skeletal muscles 
(E, F): A the infected control 
group shows moderately posi-
tive immunoreaction for NF-κB 
in the nuclei and cytoplasm of 
enterocytes and inflammatory 
cells, B late β-glucan-treated 
group shows strongly positive 
immunoreaction in the nuclei 
and cytoplasm of enterocytes 
and inflammatory cells, C 
the albendazole group shows 
moderately positive immu-
noreaction, D the combined 
treatment group shows strongly 
positive immunoreaction, E the 
infected control group shows 
moderately positive immunore-
action for NF-κB in the nuclei 
and cytoplasm of inflammatory 
cells, F the combined treatment 
group shows strongly positive 
immunoreaction. (PAP × 400)

A B

E F

C D
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Discussion

β-glucan is considered one of the biological response modi-
fiers. Its immune-modulating activities are linked to the 
capability of binding to definite receptors on the human 
neutrophils and macrophages. Activation of macrophages is 
the first line by which it enhances the host’s defense against 
microorganisms. Once the macrophages are activated, they 
have the ability to stimulate the secondary line of host 
defense including humoral and cellular responses. Further-
more, the release of lysosomal enzymes and leukotrienes by 
monocytes and the activation of the alternative complement 
pathway have been reported as effective host immune mech-
anisms induced by β-glucan (Novak and Vetvicka 2008).

Unsurprisingly, β-glucan has been widely used for 
enhancing host defense against infections. It showed effec-
tiveness against both parasitic and bacterial infections 
including antibiotic-resistant bacteria. For example, it had 
been effectively used in experimental infections with Toxo-
plasma gondii (Bousquet et al. 1988), Trypanosoma cruzi 
(Williams et al. 1989), Plasmodium berghei (Maheshwari 
and Siddiqui 1989), Leishmania major (Goldman and Jaffe 
1991), Toxocara canis (Hrckova et al. 2007), and Staphylo-
coccus aureus (Kaiser and Kernodle 1998).

In the present work, we found that there was no signifi-
cant difference in adult worm counts in the small intestine 
of infected control and early β-glucan treatment groups. This 
can be explained by the fact that β-glucan is actually not an 
antiparasitic drug but it has immunomodulating activities 
that potentiate the efficacy of some antiparasitic drugs when 
used as an adjuvant.

On the other hand, compared to the albendazole treat-
ment group, there was a noticeable decrease in the number 
of larvae in the combined treatment group. These findings 
concur with those of Hrckova et al. (2007) who found that 
the addition of β-glucan significantly improved the effective-
ness of benzimidazole carbamate anthelmintics in the treat-
ment of dormant Toxocara canis larvae during late infections 
in mice. The potential of β-glucan to stimulate the immune 
system and thus increase the number of macrophages in the 
inflammatory cellular infiltrate around the larvae explains 

these outcomes. This increased phagocytic activity may 
result in larval injury and death. Moreover, these phago-
cytic cells have the ability to non-specific uptake of drugs 
such as albendazole. They might serve as additional drug 
reservoirs, slowly releasing the medication back into the 
body and greatly increasing its bioavailability (Ellens et al. 
1982; Roerdink et al. 1984). Therefore, β-glucan appears to 
offer a low-cost method of enhancing the effectiveness of 
antiparasitic medications.

In addition, the early β-glucan treatment group had a sig-
nificantly lower larval count than the infected control group, 
whereas the decrease was not significant in the late β-glucan 
treatment group in comparison with the infected control 
group. This could be explained by the effect of β-glucan on 
the mucosal immune system, which improved the function 
of the intestinal barrier and increased resistance to the new-
born larvae. Likewise, Borosková et al. (1998) reported that 
β-glucan administered to animals infected with Toxocara 
canis eggs at the beginning of the infection resulted in a sig-
nificant stimulation and restoration of the parasite-induced 
suppression of the lymphoproliferative response, and the 
ability of T. canis larvae to migrate within the tissues was 
reduced by about 27%.

Examination of small intestinal sections from either early 
or late β-glucan treatment groups compared to the infected 
control group revealed moderate amelioration of the severity 
of inflammation. These findings were confirmed by image 
analysis. Furthermore, sections from the combined treat-
ment group compared to the infected control group revealed 
marked improvement in all the histopathological changes 
and the small intestine looks nearly normal. These findings 
might extrapolate in humans as an improvement of enteric 
symptoms such as diarrhea and abdominal pains as well as 
prevention of complications such as fluid loss, electrolyte 
deficiency, and bacteremia.

Interestingly, compared to the infected control group, 
histopathological examination of the skeletal muscle sec-
tions from β-glucan treatment groups revealed modifica-
tions in the type of cells in the inflammatory cellular infil-
trate: there was a reduction in the number of eosinophils 
and an increase in the numbers of both macrophages and 

Table 4  Image analysis score of NF-κB immunostaining in tissues (n = 20)

G I, normal control; G II, infected control; G III, albendazole treatment group; G IV, early β-glucan treatment group; G V, late β-glucan treat-
ment group; G VI, combined treatment group
Data are presented as means ± SD. S, significant difference. P value was calculated by one way ANOVA test followed by Tukey’s post-hoc test. 
Identical superscript letters denote non-significant differences while different superscript ones show statistically significant results. P was consid-
ered significant at < 0.05

G I G II G III G IV G V G VI Overall P 
value

Small intestine 81.89 ± 14.32a 84.94 ± 15.32a 83.16 ± 16.82a 132.17 ± 13.98b 133.2 ± 15.94b 140.6 ± 15.74b  < 0.0001 S
Skeletal muscles 83.14 ± 7.85a 85.89 ± 7.93a 84.40 ± 7.84a 120.30 ± 15.79b 118.26 ± 8.12b 116.53 ± 15.78b  < 0.0001 S
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lymphocytes. These observations are in accordance with the 
previous findings about the immunomodulating effects of 
β-glucan (Kerékgyártó et al. 1996). Additionally, examina-
tion of skeletal muscle sections from the combined treatment 
group compared to the infected control revealed a reduction 
in both the number of deposited larvae and the intensity of 
inflammation. Notably, numerous giant cells were detected. 
The presence of giant cells denotes the enhanced phagocytic 
activity of macrophages that may help in larval killing and 
engulfment. These findings are in accordance with Hrckova 
and Velebný (2001) who concluded that β-glucan potenti-
ates the effects of albendazole in the treatment of Toxocara 
canis infection.

Interleukin-5 (IL-5) is a key growth and differentiation 
agent for eosinophil granulocytes. It is not only connected 
to the formation and differentiation of eosinophils but may 
also stimulate basophils. Its effect on eosinophil produc-
tion is almost immediate as the formation and survival of 
eosinophils almost completely stop when IL-5 expression is 
inhibited by medications or gene deletion (Stein and Munitz 
2010). Kang et al. (2012) demonstrated that IL-5 levels 
were upregulated from the start of T. spiralis infection and 
remained elevated even in the chronic stage of the infection.

In the present work, there is a significant reduction in 
levels of IL-5 in β-glucan treatment groups compared with 
the infected control and albendazole treatment groups. These 
results are in accordance with those of Kirmaz et al. (2005) 
who reported similar effects of β-glucan administration in a 
mouse model of allergic rhinitis. These results explain the 
reduction in the number of eosinophils in the inflamma-
tory cellular infiltrate whether in the gut mucosa or around 
the encapsulated larvae. Attenuation of the eosinophilic 
response of the Trichinella-induced hypersensitivity-medi-
ated reactions in the intestine may again alleviate gastroin-
testinal manifestations and complications.

Transforming growth factor-beta is a multifunctional 
polypeptide hormone that influences various cell processes, 
such as controlling cell division, differentiation, and death; 
regulating immunity; controlling the inflammatory response; 
and promoting regrowth and healing (Fiocchi 2001). At the 
cellular level, TGF-β influences nearly every stage of the 
chronic inflammatory and fibrotic processes. The transcrip-
tion of numerous extracellular matrix elements, including 
collagen, fibronectin, glycosaminoglycans, and metallopro-
teinases and their inhibitors, are regulated by TGF-β (Mon-
teleone et al. 2001).

TGF-β is also a cytokine that is essential for controlling 
immune cell activity. It inhibits the proliferation of B and 
T lymphocytes and promotes homeostasis (Kehrl 1991). It 
is also involved in tissue remodeling that follows infections 
and injuries. Interestingly, this cytokine appears to have 
dual functions as it facilitates the development of Th17 
and T-regulatory lymphocytes, which play vital roles in the 

activation and suppression of immune responses, respec-
tively, against parasite infections (Karimi-Googheri et al. 
2014). TGF-β levels in the jejunum are found to be higher 
during T. spiralis infection. This increase begins two weeks 
p.i., and it is accompanied by an increase in IL-17 and Th17 
cells. At eight weeks p.i., its levels then return to normal (Fu 
et al. 2009). Furthermore, Beiting et al. (2007) proved that 
the combined deficiency of TGF-β and IL-10 was associated 
with the death of encapsulated muscle larvae. Thus, TGF-β 
seems to synergize with IL-10 in the control of local inflam-
mation, and their lack leads to a more severe inflammatory 
response in muscles.

In the present work, there was a significant increase in 
levels of TGF-β in small intestinal homogenates and in sera 
of infected control mice compared to uninfected controls. 
On the other hand, there was a significant decrease in lev-
els of TGF-β in β-glucan treatment groups compared with 
the infected control and albendazole treatment groups. This 
downregulation of the levels of TGF-β could be considered 
beneficial in the treatment of trichinellosis as it may help 
mitigate the inflammatory response in the intestine and 
induce parasite demise in the skeletal muscles.

In an attempt to explore one of the pathways of action of 
β-glucan and to explain, at least partly, its immunomodu-
lating potential, an immunohistochemical assessment by 
NF-κB immunoreactivity was done. NF-κB is a transcription 
factor that controls various processes such as inflammation, 
wound healing, stress response, apoptosis, and angiogenesis. 
Additionally, it is a key transcription factor regulating genes 
implicated in T-cell development, maturation, and prolif-
eration (Livolsi et al. 2001). It is evidently stimulated in 
inflamed intestinal tissues, particularly in macrophages and 
epithelial cells. The degree of its activation correlates with 
the degree of bowel inflammation (Ashour et al. 2015).

In this work, there was a significant increase in NF-κB 
expression by small intestinal tissues and skeletal muscle 
tissues in the β-glucan treatment groups in comparison to 
other groups. These results are similar to those of Volman 
et al. (2010) who found that β-glucan-treated mice showed 
an increased intestinal NF-κB transactivation in leukocytes 
and enterocytes, particularly in the proximal part of the 
small intestine.

According to some in vitro experiments, excretory‒secre-
tory antigens from T. spiralis strongly suppress NF-κB in 
activated macrophages (Bai et al. 2012). On the other hand, 
it was shown that NF-κB activation aided in infection eradi-
cation by triggering Th2 cytokine responses (mostly IL-9 
and IL-13) (Else et al. 1994; Helmby et al. 2001). Our results 
showed that there was upregulated expression of NF-κB in 
small intestinal and skeletal muscle tissues in β-glucan-
treated mice, and this may explain the enhancement of some 
components of the innate system, e.g., the macrophages and 
neutrophils. Moreover, activation of NF-κB in the skeletal 
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muscles may affect the process of nurse cell formation via 
its effects on inflammation, apoptosis, and angiogenesis—a 
notion that needs further evaluation. Thus, NF-κB activation 
may be one of the pathways through which β-glucan exerts 
its functions.

Interestingly, there is an association between TGF-β and 
NF-κB; TGF-β usually suppresses NF-κB activity in nor-
mal cells, whereas NF-κB activation induces Smad7 expres-
sion, which sequentially inhibits TGF-β signaling via Smads 
(proteins inside cells that transmit TGF-ligand extracellular 
signals to the nucleus, where they stimulate downstream 
gene transcription) (Hong et al. 2007; Lee et al. 2010). Our 
results were in agreement with these studies as we found that 
under the effect of β-glucan treatment, there was a signifi-
cant increase in NF-κB expression and a significant decrease 
in TGF-β levels. Other possible mechanisms of action of 
β-glucan have to be explored in further research.

Interestingly, two recent studies pointed out the protective 
role of β-glucans against experimental T. spiralis infection. 
Liu et al. (2021) showed that β-glucan can be considered a 
promising adjuvant when combined with T. spiralis recom-
binant antigen in a vaccine. β-glucan enhanced the immune 
effector mechanisms such as antibody production and Th1/
Th2 cytokine production in immunized mice. In another con-
text, Jin et al. (2022) found that β-glucan facilitated worm 
expulsion during T. spiralis infection in mice and attributed 
the protective effect to the expansion of gut microbiota, par-
ticularly Akkermansia muciniphila. The latter reinforced the 
function of the intestinal mucus layer via interaction with 
toll-like receptor 2. The results of these studies may be rel-
evant to the data observed in our study in one way or another.

In conclusion, β-glucan can be considered an effective 
adjuvant in the treatment of trichinellosis. Combined with 
albendazole, β-glucan was able to mitigate the inflamma-
tory reactions in the small intestine and skeletal muscles 
and to improve the immunological parameters. Surpris-
ingly, it potentiated the antiparasitic activity of albendazole 
as evidenced by the reduction of muscle larval burden in 
combined treatment. Overall, our data indicate the beneficial 
multifaceted impact of β-glucan on the therapeutic response 
during experimental trichinellosis. Therefore, human studies 
are worthwhile to determine the best therapeutic strategy 
combining both antiparasitic agents and β-glucan.
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