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Abstract 
Plasmodium knowlesi is a simian malaria parasite that causes significant zoonotic infections in Southeast Asia, particularly 
in Malaysia. The Plasmodium thrombospondin-related apical merozoite protein (TRAMP) plays an essential role in the inva-
sion of the parasite into its host erythrocyte. The present study investigated the genetic polymorphism and natural selection 
of the full length PkTRAMP from P. knowlesi clinical isolates from Malaysia. Blood samples (n = 40) were collected from P. 
knowlesi malaria patients from Peninsular Malaysia and Malaysian Borneo. The PkTRAMP gene was amplified using PCR, 
followed by cloning into a plasmid vector and sequenced. Results showed that the nucleotide diversity of PkTRAMP was 
low (π: 0.009). Z-test results indicated negative (purifying) selection of PkTRAMP. The alignment of the deduced amino 
acid sequences of PkTRAMP of Peninsular Malaysia and Malaysian Borneo revealed 38 dimorphic sites. A total of 27 hap-
lotypes were identified from the amino acid sequence alignment. Haplotype analysis revealed that there was no clustering 
of PkTRAMP from Peninsular Malaysia and Malaysian Borneo.
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Introduction

The World Health Organization (WHO) reported approxi-
mately 224 million malaria cases and 627,000 malaria death 
cases globally in 2020 (WHO 2021). Plasmodium knowlesi 
is endemic in Southeast Asia with the majority cases being 
reported from Malaysia (Luchavez et al. 2008; Ng et al. 
2008; Van den Eede et al. 2009; Chin et al. 2020). Malaysia 

is vulnerable to transmission of malaria due to the tropical 
climate and its location in the humid equatorial region. In 
Malaysia, most of the cases of human P. knowlesi malaria 
have been reported in Malaysian Borneo. In the period 
2013–2017, 77.1% of malaria cases in Malaysian Borneo 
were P. knowlesi malaria. Furthermore, the average malaria 
death rate in Malaysian Borneo is higher than in Peninsular 
Malaysia (Hussin et al. 2020). The reasons for the disparity 
in case numbers and severity between Peninsular Malaysia 
and Malaysian Borneo are unknown. However, genetically 
distinct haplotypes of some P. knowlesi genetic markers 
were detected in these two regions (Peninsular Malay-
sia and Malaysian Borneo) such as Duffy binding protein 
(PkDBPαII), cytochrome c oxidase subunit I (PkCOXI), 
type A small subunit ribosomal 18S RNA (PkA-type 18S 
rRNA), and apical membrane antigen-1 (PkAMA-1) (Fong 
et al. 2015; Yusof et al. 2016; Ng et al. 2021).

P. knowlesi malaria is a potentially life-threatening 
disease due to the parasite’s much shorter (i.e., 24 h) 
asexual erythrocytic stage development than other medi-
cally important malaria parasites (Knowles and Gupta 
1932; Cox-Singh et al. 2008). The erythrocytic cycle 
of the parasite is responsible for the manifestation of 

Handling Editor: Una Ryan

 *	 Mun Yik Fong 
	 fongmy@um.edu.my

1	 Department of Parasitology, Faculty of Medicine, Universiti 
Malaya, Kuala Lumpur, Malaysia

2	 Vector Borne Disease Sector, Disease Control Division, 
Ministry of Health Malaysia, Putrajaya, Malaysia

3	 Sarawak Health Department, Ministry of Health Malaysia, 
Kuching, Sarawak, Malaysia

4	 Sabah Health Department, Ministry of Health Malaysia, Kota 
Kinabalu, Sabah, Malaysia

5	 Public Health Laboratory Kota Kinabalu, Ministry of Health 
Malaysia, Kota Kinabalu, Sabah, Malaysia

/ Published online: 15 November 2022

Parasitology Research (2023) 122:195–200

http://crossmark.crossref.org/dialog/?doi=10.1007/s00436-022-07716-z&domain=pdf


1 3

symptoms suffered by malaria patients. The invasion of 
erythrocytes by Plasmodium merozoites involves mul-
tiple steps which includes initial attachment, followed 
by apical reorientation of the merozoite. A tight junc-
tion is subsequently formed, and the junction moves to 
the posterior of erythrocytes powered by actin-myosin 
motor. This is followed by the entry of the merozoite 
into a parasitophorous vacuole in the erythrocyte (Cow-
man and Crabb 2006).

The P. knowlesi thrombospondin-related apical mero-
zoite protein (PkTRAMP) is a 360-amino acid invasion-
related protein that is part of a protein family containing 
the thrombospondin structural homology repeat (TSR) 
domain (Thompson et al. 2004). These TSR-containing 
proteins are known to play a crucial role in cell adhesion 
and cell interactions during cell migration (Adams and 
Tucker 2000). The essential role of TRAMP in merozo-
ite invasion and the parasite blood-stage development 
has been shown in previous studies, where TRAMP 
specific-induced antibodies have been shown to inhibit 
parasite invasion in vitro (Uchime et al. 2012; Siddiqui 
et al. 2013). However, the genetic diversity of TRAMP 
is yet to be fully investigated.

P. knowlesi is presently the main cause of human malaria 
infection in Malaysia, and there are higher case numbers 
and malaria mortality rate reported in Malaysian Borneo 
compared with Peninsular Malaysia. The aim of the present 
study, therefore, is to conduct a comparative analysis on the 
genetic polymorphism and natural selection of PkTRAMP 
in Malaysian P. knowlesi isolates. This is the first study on 
TRAMP sequences from P. knowlesi malaria clinical sam-
ples, and the findings will be beneficial in understanding the 
level of polymorphism in PkTRAMP for future functional 
and vaccine development studies.

Materials and methods

Human blood samples and DNA extraction

Blood samples from P. knowlesi malaria patients were col-
lected from hospitals in the Peninsular Malaysia (n = 20) 
states of Johor, Pahang, Kedah, Johor, Kelantan, Negeri 
Sembilan, Perak, Terengganu, Selangor, and Federal Ter-
ritory of Kuala Lumpur, as well as the Malaysian Borneo 
(n = 20) states of Sabah and Sarawak. Most of the blood 
samples for this study were obtained in 2019–2020. The 
presence of P. knowlesi in the samples was screened by 
microscopic examination of thick and thin blood smears 
and nested polymerase chain reaction (PCR) based on 
the Plasmodium 18S rRNA locus (Snounou et al. 1993; 
Imwong et al. 2009). Plasmodium DNA was extracted 

from the blood samples using the QIAGEN Blood and 
Tissue Kit (QIAGEN, Hilden, Germany). One hundred μl 
of blood was used for DNA extraction, and 50 μl of EB 
Buffer was used for DNA elution. The DNA was stored at 
-20 °C until use.

Polymerase chain reaction (PCR) amplification 
of PkTRAMP gene

PCR of the PkTRAMP gene was carried out using forward 
primer PkTRAMPfull-F: 5’-GGA​TCC​ATG​CGG​AGC​
TTC​ACC​TTC​ATA-3’ and reverse primer PkTRAMPfull-
R: 5’-GGA​TCC​TTA​ATC​GTA​CAT​AAA​TCA​TCC​AGC​
CAC-3’. Approximately 0.5 μg of genomic DNA was 
used in a final amplification volume of 25 μl containing 
2 mM MgCl2, 0.2 mM of dNTPs, 0.25 μM of forward 
and reverse primers, 1 unit of GoTaq® DNA polymerase, 
and 1X GoTaq® buffer (Promega, Madison, Wisconsin, 
USA). Cycling conditions for PCR were 95 °C for 3 min, 
followed by 35 cycles of 94  °C for 1 min, 53  °C for 
1 min, and 72 °C for 100 s and a final extension at 72 °C 
for 10 min. The PCR products were subjected to electro-
phoresis on a 1% agarose gel stained with SYBR® Safe 
DNA gel stain (Invitrogen, Eugene, USA). PCR products 
were ligated into the pGEM-T® TA cloning vector (Pro-
mega, Madison, Wisconsin, USA), followed by transfor-
mation into Escherichia coli TOP10F’ competent cells 
using heat-shock method. The transformation colonies 
were screened for the presence of PkTRAMP DNA frag-
ment. Positive recombinant plasmids were extracted and 
then sent to a commercial laboratory (Apical Scientific 
Sdn. Bhd., Malaysia) for DNA sequencing. For each iso-
late, three recombinant plasmid clones were sequenced 
to ensure that the PkTRAMP sequence obtained was 
consistent.

Genetic diversity analysis of PkTRAMP gene

DnaSP ver 6 (Rozas et al. 2017) was used to perform poly-
morphism analysis on the ~ 1020 bp sequences (n = 40). 
Information such as nucleotide diversity (π) and haplo-
type diversity (Hd) was calculated. The natural selection 
of PkTRAMP was determined by the Z-test (P < 0.05) in 
MEGA7 software based on Nei and Gojobori’s method 
with Jukes and Cantor correction (Nei and Gojobori 
1986). Multiple nucleotide and deduced amino acid 
sequence alignments of generated PkTRAMP sequences 
including a reference sequence (P. knowlesi strain H, 
GenBank Accession Number XM_002262219) were 
performed using BioEdit sequence alignment editor ver 
7.2.0. The haplotype network of PkTRAMP amino acid 
sequences was constructed using NETWORK program ver 
4.6.1 (Bandelt et al. 1999).
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Results

All newly generated PkTRAMP sequences (n = 40) from 
Peninsular Malaysia and Malaysian Borneo were depos-
ited in the GenBank database under Accession Numbers 
ON892606-ON892645. The genetic diversity and natural 
selection pressure index of the full length PkTRAMP for 
whole Malaysia, Peninsular Malaysia, and Malaysian Bor-
neo are presented in Table 1.

The overall nucleotide diversity of PkTRAMP from 
Malaysia was low (π = 0.009). The nucleotide diversity 
of PkTRAMP from Peninsular Malaysia and Malay-
sian Borneo was very similar (π = 0.008 and π = 0.007, 
respectively). Meanwhile, the overall haplotype diversity 
of PkTRAMP from Malaysia was high (Hd = 0.999). The 
haplotype diversity of PkTRAMP from Peninsular Malay-
sia and Malaysian Borneo was high (Hd = 1.000 and 
Hd = 0.995, respectively).

A sliding window plot with a window length of 100 bp 
and a step size of 25 bp was used to determine nucleo-
tide diversity along the entire PkTRAMP sequence. The 

nucleotide diversity of PkTRAMP from Peninsular Malay-
sia and Malaysian Borneo ranged from 0.000 to 0.027 
(Fig. 1a) and from 0.001 to 0.016 (Fig. 1b), respectively. 
For PkTRAMP from Peninsular Malaysia, the most con-
served regions (π = 0.000) were within nucleotide positions 
551–650, whereas the highest peak diversity (π = 0.027) 
was within nucleotide positions 826–925. In contrast, the 
same nucleotide position (826–925) was the most con-
served region (π = 0.001) for PkTRAMP from Malaysian 
Borneo, whereas the highest peak diversity (π = 0.016) was 
within nucleotide positions 201–300. The Z-test revealed 
purifying (negative) selection on the PkTRAMP across 
Malaysia, Peninsular Malaysia, and Malaysian Borneo 
(dN < dS, P = 0.000).

The PkTRAMP sequences (including strain H) were 
translated into amino acid sequences for analysis of 
haplotype polymorphism (Fig. 2). In the analysis, the 
PkTRAMP amino acid sequence of strain H was used 
as reference. Close examination identified 38 polymor-
phic sites, and all 38 were dimorphic. Overall, the amino 
acid sequences could be categorised into 27 haplotypes 

Table 1   Estimates of genetic 
diversity and natural selection 
of the full length of PkTRAMP 
(1020 bp) from Malaysian P. 
knowlesi malaria patients

π nucleotide diversity, Hd haplotype diversity, SD standard deviation, dN nonsynonymous mutation rate, 
dS synonymous mutation rate; *significance at P < 0.05

Location Nucleotide diversity
(π ± SD)

Haplotype diversity
(Hd ± SD)

Z-test P values

Positive selec-
tion dN > dS

Negative 
selection 
dN < dS

Malaysia 0.009 ± 0.001 0.999 ± 0.006 1.000 0.000*

Peninsular Malaysia 0.008 ± 0.001 1.000 ± 0.016 1.000 0.000*

Malaysian Borneo 0.007 ± 0.001 0.995 ± 0.018 1.000 0.000*

(a)

10005000
0

0.01

0.02

0.03

Nucleo�de Posi�on

(b)

10005000
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0.005

0

0.01

0.015

0.02 PiPi

Fig. 1   Sliding window plot of the nucleotide diversity (π) along the 
PkTRAMP, generated with a window length of 100 bp and step size 
of 25 bp. a Nucleotide polymorphism in the PkTRAMP from Penin-

sular Malaysia. b Nucleotide polymorphism in the PkTRAMP from 
Malaysian Borneo
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(H1-H27). Haplotype H1 had the highest frequency 
(n = 14), thus being the most predominant in the popula-
tion. Haplotype network analysis (Fig. 3) of the PkTRAMP 
did not reveal any specific separation between Peninsular 

Malaysia and Malaysian Borneo. The largest node was H1, 
which contained members from both Peninsular Malay-
sia and Malaysian Borneo. All other haplotypes basically 
originated from H1.

Fig. 2   Amino acid sequence 
polymorphism in PkTRAMP 
from Peninsular Malaysia and 
Malaysian Borneo. Polymorphic 
amino acid residues are listed 
for each haplotype. Amino acid 
residues identical to those of 
the reference sequence [strain 
H (haplotype 1)] are marked 
by dots. Dimorphic amino acid 
positions are marked in yellow 
shading. Haplotype frequency 
for each haplotype is listed in 
the right panel

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3
1 2 2 3 4 5 5 6 6 6 7 7 7 7 8 9 9 0 1 2 2 2 3 5 6 7 7 9 0 5 5 6 6 8 9 0 1 2 Haplotype

Haplotype 1 2 4 5 0 0 8 0 1 2 3 7 8 9 4 4 7 2 8 0 5 9 9 9 6 3 7 5 6 7 8 1 6 0 3 6 9 8  Frequancy
H1 (Strain H) L N K L N C L Q A P L Y M V Q Y K K V S E I S P S I T A K R K N C P S I F E 14

H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G 1
H3 . . . . . . . K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
H4 . . . F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
H5 . . . . . . . . . . . . . . . . . . . . . . . L . . . . R . . . . . . . . . 1
H6 . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . 1
H7 . . . . . . . . . . . . . . . . . . . . . V . . . . . . . . . . . . . . . . 1
H8 . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . R . . . . . . . 1
H9 . . E . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . 1
H10 . . . . . . . . . . . . . . . . . . . . . . . . . M . . . . . . . . . . . . 1
H11 . . . . D . P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
H12 . . . . . . . . . . Y . . . . . . . . . . . . . . . . . . G . . . . . . . . 1
H13 . . . . . . . . . . . . . . . . . . . . . . G . . . . . . . . . R . . . . . 1
H14 . . . . . . . . P . . . . A . . . . . . . . . . . . A . . . . . . . . . . . 1
H15 . . . . . . . . . . . . . . . . . . . . V . . . . . . . . . . . . . . . . . 1
H16 . . . . . . . . P . . . . A . . . . . . . . . . . . A . . . . . . . . . L . 1
H17 . S . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
H18 P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
H19 . . . F . . . . . . . . R . . . . . . . . . . . . . . . . . . . . . . . . . 1
H20 . . . . . . . . P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
H21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P . . . 1
H22 . . . . . . . . . . . . . . . . R . . G . . . . . . . . . . . S . . . . . . 1
H23 . . . . . R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
H24 . . . . . . . . . A . . . . . . . R . . . . . . . . . . . . . . . . . . . . 1
H25 . . . . . . . . . . . . . . R . . . . . . . . . F . . . . . . . . L . M . . 1
H26 . . . . . . . . . . . . . . . . R . . . . . . . . . . . . . . . . . . . . . 1
H27 . . . . . . . . P . . . . . . . . . A . . . . . . . . . . . . . . . . . . . 1

Fig. 3   Network analysis of 
27 haplotypes of PkTRAMP. 
Red nodes indicate Malaysian 
Borneo haplotype members, 
and yellow nodes indicate 
Peninsular Malaysia haplotypes. 
The size of each node reflects 
the number of isolates in each 
haplotype
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Discussion

In the current study, the nucleotide diversity of PkTRAMP 
(π = 0.009) was found to be lower than that of other P. 
knowlesi genes such as merozoite surface protein 7D 
(MSP7D) (π = 0.052) (Ahmed and Quan 2019), merozoite 
surface protein 3 (MSP3) (π = 0.046) (De Silva et al. 2017), 
and circumsporozoite protein (csp) (π = 0.020) (Chong et al. 
2020), but almost similar to other low polymorphism genes 
such as AMA-1 (π = 0.006) (Ng et al. 2021) and merozoite 
surface protein 4 (MSP4) (π = 0.007) (Ahmed et al. 2019). The 
haplotype diversity of PkTRAMP (Hd = 0.999) was similar to 
other P. knowlesi genes such as AMA-1 (Hd = 1.000) (Ng et al. 
2021) and MSP3 (Hd = 0.999) (De Silva et al. 2017).

The identification of high haplotype diversity but low 
nucleotide diversity in PkTRAMP sequences was similar to 
those of other P. knowlesi genes such as AMA-1 (Ng et al. 
2021), rhoptry-associated protein 1 (RAP-1) (Rawa et al. 
2016), and MSP4 (Ahmed et al. 2019). This may suggest 
that the population may have undergone a recent expan-
sion (Grant and Bowen 1998). Although haplotype diver-
sity was high, the low nucleotide diversity values indicate 
minor variations between haplotypes. This is supported 
by the haplotype network analysis, which revealed mostly 
single or minor differences between haplotypes (Fig. 3).

The haplotype network revealed no distinct geographi-
cal separation of PkTRAMP between Peninsular Malaysia 
and Malaysian Borneo. This is similar to P. knowlesi pro-
teins such as the PkCSP (Chong et al. 2020) and PkMSP7D 
(Ahmed and Quan 2019). However, some P. knowlesi genetic 
markers such as PkDBPαII (Fong et al. 2015), PkAMA-1 
(Ng et al. 2021), PkCOXI, and PkA-type 18S rRNA (Yusof 
et al. 2016) showed distinct geographical separation.

The Z-test for natural selection on PkTRAMP indicated 
that PkTRAMP was under negative (purifying) selection, 
which is similar to other P. knowlesi genes (Fong et al. 
2015; Rawa et al. 2016; Ahmed et al. 2019; Ng et al. 2021). 
This could possibly be due to functional constraints of the 
proteins that limit diversity since these genes have been 
shown to play important roles in the parasite’s invasion 
into host erythrocyte. Another possible explanation could 
be that the P. knowlesi samples collected in these studies 
originated from human infections. Previous studies have 
shown that P. knowlesi invasion into macaque and human 
erythrocytes differs. For example, the P. knowlesi Duffy 
binding protein (DBP) has been shown to be crucial for 
human erythrocyte invasion but not macaque erythrocyte 
invasion (Dankwa et al. 2016). Thus, in theory, there would 
be a greater selection pressure towards certain P. knowlesi 
proteins in the human host rather than the macaque host, 
resulting in an increased representation of these haplotypes 
in the parasite population infecting humans.

Conclusion

The present study revealed low polymorphism of PkTRAMP 
and an absence of geographical clustering of the protein. In 
addition, PkTRAMP was found to be undergoing negative 
selection. Future genetic studies involving larger number of 
samples and immuno-characterisation of PkTRAMP should 
be carried out to validate the protein as a vaccine candidate 
for P. knowlesi malaria.
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