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Abstract
Blastocystis is a ubiquitous, widely distributed protist inhabiting the gastrointestinal tract of humans and other animals. The 
organism is genetically diverse, and so far, at least 28 subtypes (STs) have been identified with ST1–ST9 being the most 
common in humans. The pathogenicity of Blastocystis is controversial. Several routes of transmission have been proposed 
including fecal–oral (e.g., zoonotic, anthroponotic) and waterborne. Research on the latter has gained traction in the last 
few years with the organism having been identified in various bodies of water, tap water, and rainwater collection contain-
ers including water that has been previously filtered and/or chlorinated. Herein, we assessed the resistance of 11 strains 
maintained in culture, spanning ST1–ST9 to various chlorine and hydrogen peroxide concentrations for 24 h, and performed 
recovery assays along with re-exposure. Following the treatment with both compounds, all subtypes showed increased 
resistance, and viability could be visualized at the cellular level. These results are hinting at the presence of mechanism of 
resistance to both chlorine and hydrogen peroxide. As such, this pilot study can be the platform for developing guidelines 
for water treatment processes.
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Introduction

Blastocystis is one of the most commonly encountered 
microbial eukaryotes in the gastrointestinal tract of humans 
and a wide range of other animals (Alfellani et al. 2013b; 

Tsaousis et al. 2020). The organism is distributed globally 
having been identified in both developed and developing 
countries in rural and urban settings (Scanlan et al. 2014; 
Udonsom et al. 2018).

Blastocystis exhibits remarkable genetic diversity, and at 
least 28 subtypes (STs, ST1-ST17, ST21, ST23–32) – argu-
ably species – have been identified in humans, other mam-
mals, and birds, based on genetic heterogeneity across the 
small subunit rRNA (SSU rRNA) gene (Maloney et al. 2020; 
Stensvold and Clark 2020; Higuera et al. 2021). Of these 
subtypes, ST1–ST9, ST10, ST12, ST14, ST16, and ST23 
have been found in humans, with ST1–ST3 being the three 
most prevalent and globally distributed (Yoshikawa et al. 
2004; Meloni et al. 2011; Forsell et al. 2012; Khaled et al. 
2020; Jinatham et al. 2021; Osorio-pulgarin et al. 2021). 
However, these subtypes have also been found in several 
other hosts, indicating the lack of host specificity of Blasto-
cystis (Stensvold and Clark 2016), at least at subtype level. 
The exception appears to be ST9, which has so far been 
exclusively isolated from humans. Zoonotic transmission of 
the organism has been suggested (Abe et al. 2003; Stensvold 
et al. 2009).
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It has been speculated that Blastocystis can remain in the 
intestine for weeks, months, or even years though this has 
yet to be conclusively demonstrated (Scanlan et al. 2014). 
Nonetheless, its pathogenicity remains unclear. Blastocystis 
infection has been linked to gastrointestinal symptoms, the 
main ones being watery or loose stools, diarrhea, excessive 
gas, abdominal pain, anal itching, and weight loss (Booroom 
et al. 2008; Stensvold et al. 2011). Links to irritable bowel 
syndrome and inflammatory bowel disease have also been 
postulated though not conclusively established (Domínguez-
márquez et al. 2009; Roberts et al. 2013; Salvador et al. 
2016; Peña et al. 2020; Shirvani et al. 2020). However, Blas-
tocystis is also very common in the gut of people with no 
gastrointestinal symptoms (Nagel et al. 2012; Scanlan et al. 
2015; Yowang et al. 2018; Jinatham et al. 2021). Hence, it 
is possible that Blastocystis colonization in general is not 
harmful, but rather specific subtypes or strains within sub-
types might be the ones potentially causing symptomology.

Although the transmission dynamics of Blastocystis 
remain blurry, it is widely understood that the organism 
enters the host via the fecal–oral route (Tan 2004). The pre-
cise contribution of the various forms (i.e., cyst, granular, 
vacuolar and amoeboid) of the organism to transmission and 
colonization/infection is unknown. Several factors have been 
linked with increased occurrence of Blastocystis with water-
borne transmission featuring prominently (Anuar et al. 2013; 
Deng et al. 2020; Salazar-Sanchez et al. 2021). Blastocystis 
has been detected in drinking water (Leelayoova et al. 2008), 
tap water (Eroglu and Koltas 2010; Jinatham et al. 2022), 
rainwater tanks (Waters et al. 2019; Jinatham et al. 2021), 
bodies of freshwater (Khalifa et al. 2014), drinking water 
treatment facilities (Richard et al. 2016; Freudenthal et al. 
2022), and wastewater (Stensvold et al. 2020) worldwide.

Chlorine is one of the most widely used reagents for dis-
infection of water. A single study showed the potential of 
Blastocystis to resist chlorine; however, this study preceded 
the implementation of the subtyping system (Zaki et al. 

1996). Hence, it is unknown whether chlorine resistance 
might be subtype- or strain-specific. The longevity of the 
organism in the environment and how it deals with oxidative 
stress has also been subject to investigation. Previous stud-
ies have shown that Blastocystis has mechanisms to with-
stand oxidative stress; however, these were based on in silico 
predictions or were performed experimentally in a limited 
number of strains (Tsaousis et al. 2012; Eme et al. 2017; 
Gentekaki et al. 2017). In this pilot study, a resazurin-based 
assay was used to test the resistance of eleven Blastocys-
tis isolates representing ST1 through ST9 to chlorine and 
hydrogen peroxide.

Materials and methods

Blastocystis spp. isolates

Eleven different Blastocystis isolates from nine subtypes 
(Table 1) were used to test resistance to chlorine and hydro-
gen peroxide. Both xenic and axenic cultures were used. 
Xenic refers to mono-eukaryotic (containing only Blasto-
cystis) cultures with bacteria, while axenic refers to cultures 
that only contain Blastocystis.

Blastocystis spp. cell culturing

Blastocystis isolates were cultured in an anaerobic chamber 
at 37 °C in Iscove’s Modified Dulbecco’s Media (IMDM) 
(Gibco) supplemented with 10% (v/v) heat-inactivated horse 
serum (hiHS) (Thermo Fisher Scientific). Cultures were 
maintained in sterile 14-mL round-bottom polystyrene tubes 
(Thermo Scientific) in a GasPak™ EZ Anaerobe Container 
System (GasPak™ jar crystal with GasPak™ Anaerobe 
sachets) (Ho et al. 1993; Clark and Diamond 2002).

Cells were maintained by passages – 1-mL gently 
homogenized culture to 9-mL fresh medium – every 4 to 

Table 1  Blastocystis isolates 
and subtypes used to test 
resistance to chlorine and 
hydrogen peroxide

a Sus scrofa; bVarecia variegate

Isolate Subtype Culture Source Country Reference

NUH9 1 Axenic Human Singapore Wong, Kenneth H.S. et al. 2008
HJ96-1 2 Xenic Human Japan Yoshikawa, H. et al. 2003
HJ96A-26 3 Xenic Human Japan Yoshikawa, H. et al. 2000
S1 4 Xenic Rodents Singapore Tan, 2008
WR1 4 Axenic Rodents Singapore Chen, X.Q. et al. 1997
SY94-3 5 Xenic Piga Japan Yoshikawa, H. et al. 1998
HJ96AS-1 6 Xenic Human Japan Yoshikawa, H. et al. 2000
H 7 Axenic Human Singapore Ho, L.C. et al. 1994
B 7 Axenic Human Singapore Ho, L.C. et al. 1994
MJ99-132 8 Xenic Primateb Japan Abe, N. et al. 2003
HJ00-4 9 Xenic Human Japan Yoshikawa, H. et al. 2004
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7 days, depending on their growth. Fresh medium was de-
gassed and warmed to 37 °C a minimum of 48 h before 
the cultures were passaged. Cultures were routinely evalu-
ated using light microscopy for growth, morphology, and 
contaminants. For the assays described below, cultures at 
the logarithmic phase were used (primarily vacuolar and 
secondarily granular forms).

Exposure to chlorine and hydrogen peroxide 
and resazurin‑based viability assays

Resistance of Blastocystis to chlorine and hydrogen per-
oxide was assessed using 96-well flat-bottom microtiter 
plates by seeding 5 ×  105 Blastocystis cells/well and after 
addition of the reagents to be tested in 200 µL/well vol-
umes in IMDM supplemented with 10% (v/v) hiHS under 
anaerobic conditions at 37 °C. Cell concentration was 
determined quantitatively by the trypan blue dye exclu-
sion method (Roberts et al. 2015; Mokhtar et al. 2019), 
using an automatic cell counter (EVE, NanoEntek). Chlo-
rine and hydrogen peroxide were serially diluted to reach 
final concentrations ranging from 5000 to 2 mg/L (ppm) 
and from 10 to 0.001% (w/w) in plates, respectively. The 
source of chlorine was a sodium hypochlorite (NaoCl) 
solution containing 10% of the elemental compound. 

Blanks (containing only phosphate-buffered saline [PBS]), 
negative (containing only culture medium), and positive 
(untreated cells) growth controls were also included. A 
30% commercially available hydrogen peroxide solution 
was used (ACROS organics). After 24 h of incubation, 
20 µL of a 0.125-mg/mL resazurin sodium salt solution 
(Sigma-Aldrich) was added into each well with subse-
quent anaerobic incubation for further 3–5 h at 37 °C 
(Mirza et al. 2011; Yason et al. 2018). Finally, 20 µL of 
20% (w/v) sodium dodecyl sulfate (SDS) was added, and 
after 20 min, cell viability was assessed by fluorescence 
measurements at 544/590 nm (ex/em) wavelengths using 
a FLUOstar® Omega microplate reader.

Relative fluorescence units (RFU) were converted into 
viability percentages: negative control values, which are 
taken as 0% growth, were subtracted from the rest of the 
fluorescence values; later, viability percentages were cal-
culated with respect to positive controls, which are taken 
as 100% growth. These viability percentages were used 
to perform nonlinear regression analyses using GraphPad 
Prism 6 to determine the  IC50,  IC90, and  IC99 values, i.e., 
the concentrations required to result in 50%, 90%, and 99% 
growth inhibition. Experimental minimum inhibitory con-
centrations (MICs) were also determined. Each reagent 
concentration was tested in triplicate in three separate 
determinations.

Fig. 1  Dose–response curves for each Blastocystis isolate against chlorine using GraphPad Prism 5 software. Each reagent concentration was 
tested in triplicate in three separate determinations (averaged)
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Recovery assays

Recovery of Blastocystis to chlorine and hydrogen perox-
ide was assessed using 96-well flat-bottom microtiter plates 
by seeding 5 ×  105 Blastocystis cells/well after addition of 
the reagents to be tested in 200-µL/well volumes in IMDM 
supplemented with 10% (v/v) hiHS under anaerobic condi-
tions at 37 °C. Chlorine and hydrogen peroxide were serially 
prepared as described above. Blanks, negative, and positive 
(untreated) growth controls were also included.

After a 24-h incubation, plates were centrifuged at 
1,200 × g for 5 min and carefully washed three times with 
200-μL/well volume pre-warmed IMDM, followed by a 24-h 
incubation without reagent treatments in IMDM supple-
mented with 10% (v/v) hiHS under anaerobic conditions at 
37 °C. Finally, cell viability was determined by fluorescence 
measurements as described above (Mirza et al. 2011; Yason 
et al. 2018).  IC50,  IC90, and  IC99 values were determined, 
as well as experimental minimum lethal concentrations 

(MLCs) (Roberts et al. 2015). Each reagent concentration 
was tested in triplicate in three separate determinations.

Fluorescence live‑cell imaging

To provide representative images of Blastocystis, random 
microscopic fields were captured from untreated and treated 
cultures of Blastocystis S1 (ST4, xenic), WR1 (ST4, axenic), 
H (ST7, axenic), and B (ST7, axenic). In short, Blastocystis 
STs were seeded at 1 ×  106 cells/well in 12-well plates after the 
addition of the reagents at the  IC50 final concentrations in 2-mL 
volumes in IMDM supplemented with 10% (v/v) hiHS under 
anaerobic conditions at 37 °C. Untreated cultures were also 
included. After a 24-h incubation, cells were centrifuged at 
800 × g for 10 min, carefully washed three times with PBS, and 
resuspended in PBS containing 200-nM MitoTracker™ Red 
CMXRos, a mitochondrion-specific stain that has been used 
previously on Blastocystis (Stensvold et al. 2007; Tsaousis 
et al. 2012). Finally, Blastocystis cells were incubated anaero-
bically for 40 min in the dark, and images were taken through 
bright and red filters using the JuLI™ Stage System for live-
cell imaging. The same software was used to automatically 
count the fluorescent cells versus the total number of cells.

Results

Chlorine resistance assays

Figure 1 shows the dose–response curves, and Table 2 
summarizes the IC and MIC values for each Blastocys-
tis isolate against chlorine after 24 h of treatment and 
recovery. After 24 h of treatment, all isolates showed  IC50 
concentrations (≥ 7.4 ppm) higher than the chlorine con-
centrations used to disinfect water (up to 5 ppm) (Zaki 
et al. 1996; Yang et al. 2018; Centers for Disease Control 
and Prevention 2020; Karim et al. 2020). With regard to 
disinfection, the  IC99 concentrations are the relevant ones, 
with values considerably higher (≥ 140 ppm) for all the 
isolates tested. When MIC concentrations are considered, 
these values increased to higher than 300-ppm chlorine 
after 24 h of treatment. Notably, ST8 showed the highest 
sensitivity to chlorine, with an  IC99 value of 140.3 ppm. 
In contrast, ST1 showed the highest resistance to chlorine, 
showing an  IC99 value of 1,268 ppm, followed by ST7 
strain B at 1,079 ppm.

Recovery assays were performed to determine the 
static or cidal activity of chlorine against Blastocys-
tis. All isolates showed recovery after 24 h of incuba-
tion without chlorine treatment (Fig. 1), suggesting that 
resistance forms (cysts) are developed during treatment 

Table 2  Activity of chlorine (ppm) against the Blastocystis isolates

IC, inhibitory concentration; MIC, minimum inhibitory concentra-
tion. Axenic cultures in blue; xenic cultures in red

24-h treatment

Isolate Subtype IC50 
(ppm)

IC90 
(ppm)

IC99 
(ppm)

MIC (ppm)

NUH9 1 94.5 327.1 1268.0 2500.0
HJ96-1 2 12.9 48.8 208.7 312.5
HJ96A-26 3 15.4 44.9 145.3 156.3
S1 4 26.9 67.4 183.6 312.5
WR1 4 45.4 96.8 221.0 312.5
SY94-3 5 20.6 96.3 228.6 312.5
HJ96AS-1 6 19.8 81.1 156.8 312.5
H 7 14.2 66.4 356.6 625.0
B 7 49.1 215.2 1079.0 1250.0
MJ99-132 8 23.3 55.0 140.3 156.3
HJ00-4 9 7.4 39.4 243.6 312.5
24-h recovery
Isolate Subtype IC50 

(ppm)
IC90 

(ppm)
IC99 

(ppm)
MIC (ppm)

NUH9 1 167.9 524.4 1817.0 5000.0
HJ96-1 2 53.1 145.9 439.7 625.0
HJ96A-26 3 49.4 189.0 791.7 1250.0
S1 4 66.1 146.0 346.5 625.0
WR1 4 89.7 192.8 444.6 625.0
SY94-3 5 33.3 151.4 353.7 625.0
HJ96AS-1 6 32.5 89.1 178.6 312.5
H 7 54.6 158.1 504.6 625.0
B 7 175.5 666.2 2857.0 5000.0
MJ99-132 8 66.8 169.7 469.9 625.0
HJ00-4 9 43.1 177.7 833.4 1250.0
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and subsequently allow Blastocystis recovery. Concentra-
tions ranging from 178 to higher than 2,857 ppm were 
required to completely eliminate any chance of recovery 
(Table 2, 24-h recovery) of the studied strains. Similar 
to the treatment assays, ST1 and ST7 showed the high-
est resistance to chlorine with IC99 at 1,817 ppm and 
2,857 ppm, respectively.

Hydrogen peroxide resistance assays

Figure 2 shows the dose–response curves, and Table 3 sum-
marizes the IC and MLC values for each Blastocystis isolate 
against hydrogen peroxide after 24 h of treatment and recovery. 
All isolates exhibited  IC50 concentrations ranging from 8.5 ppm 
to 113.8 ppm after 24 h of treatment and  IC99 disinfectant con-
centrations ranging from 72.8 to 946.6 ppm. The MLC concen-
trations ranged from 156 to 1250 ppm. Of note, ST5 showed 
the highest sensitivity to hydrogen peroxide, with an  IC99 of 
72.8 ppm. In contrast, ST9 was the strain that was most resistant 
to hydrogen peroxide, showing an  IC99 of 946.6 ppm, followed 
by ST6 at 650.9 ppm and ST1 at 641.9 ppm.

Recovery after 24 h of incubation without hydrogen 
peroxide treatment exhibited higher IC values than that 
of those corresponding to the 24-h treatment assay, sug-
gesting that resistance forms (cysts) are also developed 
during hydrogen peroxide treatment (Fig. 2). Hence, the 
effective hydrogen peroxide concentrations are even higher 

than those previously indicated (Table 3, 24-h recovery). 
All Blastocystis isolates showed resistance to hydrogen 
peroxide, with concentrations ranging from 103 ppm to 
3,338 ppm for 24 h to completely eliminate any chance of 
recovery (Table 3, 24-h recovery). Herein, both ST8 and 
ST9 showed the highest resistance to hydrogen peroxide.

Fluorescence live‑cell imaging

To visualize the effect of these treatments at the cellular level, we 
randomly generated and collected microscopic images of Blas-
tocystis treated at  IC50 concentrations of chlorine and hydrogen 
peroxide for 24 h (Fig. 3). Live Blastocystis cells were stained 
with MitoTrackerTM Red CMXRos. Images showed that both 
the number of total cells and the percentage of live (stained) cells 
were lower in the treated cultures than in the control (untreated) 
cultures for all isolates tested.

Discussion

Water is a common vehicle for transmission of many patho-
genic and nonpathogenic organisms, including Blastocystis 
(Jinatham et al. 2021, 2022). Chlorine is one of the most 
widely used reagents for water disinfection. Concentrations 
of 0.2–1.0 ppm (0.2–1.0 mg/L) of chlorine are effective for 
eradicating most pathogens, while levels up to 5.0 ppm are 

Fig. 2  Dose–response curves for each Blastocystis isolate against hydrogen peroxide using GraphPad Prism 5 software. Each reagent concentra-
tion was tested in triplicate in three separate determinations (averaged)
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considered safe in drinking water (Centers for Disease Con-
trol and Prevention 2020). In instances of over chlorination 
(8.0–10.0 ppm), the World Health Organization (WHO) 
recommends implementation of dechlorination treatment to 
make it suitable for human consumption (Zaki et al. 1996). 
In this respect, countries treat drinking water with chlorine 
up to 0.2–5.0 ppm, depending on local drinking water regu-
lations (Karim et al. 2020). In swimming pools, chlorine 
levels are regulated to be within the range of 0.3–5.0 ppm in 
several countries (Yang et al. 2018). However, health institu-
tions and agencies, including the WHO and the Centers for 
Disease Control and Prevention (CDC), report that chlorina-
tion is not as effective against protozoa and fungi (WHO. 
World Health Organization 1982; Centers for Disease Con-
trol and Prevention 2022). Thus, higher concentrations of 
chlorine than those considered safe for human consumption 
should be used in order to eradicate them. In this regard, 

it would be interesting to investigate whether the approved 
levels of chlorination affect Blastocystis viability.

Low concentrations of chlorine (< 5  ppm) have a 
biocidal effect on a number of bacteria – 25  ppm on 
Mycoplasma, 100 ppm on Bacillus atrophaeus spores, 
200 ppm on a number of viruses, and 500 ppm on Can-
dida spp.; higher concentrations are required to eliminate 
Mycobacterium tuberculosis (1,000 ppm) or inactivate 
Clostridium difficile spores (5,000 ppm) (Centers for Dis-
ease Control and Prevention, National Center for Emerg-
ing and Zoonotic Infectious Diseases (NCEZID) 2016). 
In this study, we demonstrated that all Blastocystis iso-
lates included were highly resistant to chlorine, requir-
ing concentrations ranging from 175 ppm to higher than 
1,800 ppm to eliminate any chance of recovery. Among 
the nine Blastocystis subtypes investigated herein, ST1 
(strain NUH9) and ST7 (strain B) were the most resistant 
to chlorine during treatment and recovery. Notably, ST1 is 
among the most prevalent and widely distributed subtype 
in humans globally, while ST7 is common in poultry and 
quite common in some human populations (Alfellani et al. 
2013a). Previous findings suggesting water as a prominent 
transmission route of Blastocystis along with the chlorine 
resistance identified in the present study might help explain 
how these two subtypes persist in the environment. Moreo-
ver, among the rest of the subtypes, all, except ST6, show 
elevated resistance post recovery suggesting the presence 
of a resistance mechanism against chlorine in the genus. 
It is worth noting that most of the cultures are xenic, and 
while the values could be associated with the overall cul-
ture microbiome, we have not observed any consistent dif-
ferences between xenic versus axenic subtypes.

In parallel, hydrogen peroxide has biocidal effect against 
a wide range of viruses, bacteria, protozoa, and fungi. 
Hydrogen peroxide at 5,000 ppm has virucidal and fungi-
cidal effects after 5 min of exposure and a broad bacteri-
cidal effect after 60 min. A concentration of 30,000 ppm 
eliminates Bacillus spp. spores after 150 min of exposure. 
However, the same concentration is ineffective against 
vancomycin-resistant enterococci and Acanthamoeba cysts 
after 120 min of exposure (Centers for Disease Control and 
Prevention, National Center for Emerging and Zoonotic 
Infectious Diseases (NCEZID) 2016). In this study, we 
demonstrated that all Blastocystis isolates studied were 
slightly resistant to hydrogen peroxide, requiring concen-
trations ranging from 103.3 ppm to 3,338.0 ppm for 24 h 
to eliminate any chance of recovery. These results suggest 
that hydrogen peroxide at concentrations usually used for 
disinfection against many other microorganisms is more 
than adequate for the effective treatment of surfaces, tools, 
or fabrics against Blastocystis. At the level of subtypes, 
ST9, ST6, and ST1 showed the highest resistance to the 
reagent. In our previous study, using hydrogen peroxide 

Table 3  Activity of hydrogen peroxide (ppm) against the Blastocystis 
isolates

IC, inhibitory concentration; MLC, minimum lethal concentration. 
Axenic cultures in blue; xenic cultures in red

24-h treatment

Isolate Subtype IC50 
(ppm)

IC90 
(pmm)

IC99 
(ppm)

MLC 
(ppm)

NUH9 1 79.6 216.0 641.9 1250.0
HJ96-1 2 22.2 163.5 380.2 625.0
HJ96A-26 3 65.0 113.0 154.2 312.5
S1 4 46.9 125.4 367.1 625.0
WR1 4 36.1 97.3 287.8 312.5
SY94-3 5 8.5 33.7 72.8 156.3
HJ96AS-1 6 113.8 347.9 650.9 1250.0
H 7 21.1 44.3 99.2 312.5
B 7 43.1 83.8 121.9 156.3
MJ99-132 8 101.3 326.1 627.9 1250.0
HJ00-4 9 105.5 430.4 946.6 1250.0
24-h recovery
Isolate Subtype IC50 

(ppm)
IC90 

(ppm)
IC99 

(ppm)
MLC 

(ppm)
NUH9 1 118.7 344.5 1101.0 2500.0
HJ96-1 2 69.7 206.7 501.4 1250.0
HJ96A-26 3 77.0 129.7 173.6 312.5
S1 4 99.9 252.2 692.6 1250.0
WR1 4 83.9 207.0 554.9 1250.0
SY94-3 5 35.3 357.5 1310.0 2500.0
HJ96AS-1 6 307.1 1243.0 2724.0 5000.0
H 7 30.4 54.6 103.3 312.5
B 7 59.9 84.1 172.8 312.5
MJ99-132 8 357.5 1438.0 3138.0 5000.0
HJ00-4 9 591.6 1793.0 3338.0 5000.0
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exposure in ST1 (strain NandII), we showed similar find-
ings along with upregulation of genes related to oxygen 
stress (Tsaousis et al. 2012). At the genomic level resist-
ance to oxygen stress has been predicted in silico in various 
subtypes (Denoeud et al. 2011; Eme et al. 2017; Gentekaki 
et al. 2017).

Future studies should focus on investigating the 
molecular mechanisms of additional subtypes and strains 
within subtypes in developing resistance to both chlorine 
and hydrogen peroxide but also on the strategies that 
Blastocystis cells have evolved to initiate both encysta-
tion and excystation and how these do affect the trans-
mission of the organism. Moreover, the use of additional 
contact times and incubation in different temperatures 
(e.g., ambient temperature) should also be considered 
in the future. One limitation of the study herein is the 
lack of information regarding the amount of cyst forms 
in each condition, but this is due to the unavailability of 
markers to confirm this stage.

Collectively, the biochemical and cell biological results 
herein suggest that other water treatment processes, either 
chemical or physical, should be applied to eliminate 

Blastocystis in water. For instance, prechlorination treatment 
stages such as sedimentation, coagulation, flocculation, and 
filtration should be used in the water disinfection procedure. 
In rural areas, where it is often not possible to include these 
necessary treatment stages, Blastocystis remains in the water 
maintaining transmission cycles.
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