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Abstract
Around the world, human health and animal health are closely linked in terms of the OneHealth concept by ticks acting as vectors
for zoonotic pathogens. Animals do not only maintain tick cycles but can either be clinically affected by the same tick-borne
pathogens as humans and/or play a role as reservoirs or sentinel pathogen hosts. However, the relevance of different tick-borne
diseases (TBDs) may vary in human vs. veterinary medicine, which is consequently reflected by the availability of human vs.
veterinary diagnostic tests. Yet, as TBDs gain importance in both fields and rare zoonotic pathogens, such as Babesia spp., are
increasingly identified as causes of human disease, a One Health approach regarding development of new diagnostic tools may
lead to synergistic benefits. This review gives an overview on zoonotic protozoan, bacterial and viral tick-borne pathogens
worldwide, discusses commonly used diagnostic techniques for TBDs, and compares commercial availability of diagnostic tests
for humans vs. domestic animals, using Germany as an example, with the aim of highlighting existing gaps and opportunities for
collaboration in a One Health framework.
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Tick-borne diseases in the One Health
perspective

Ticks represent a major threat for human and animal health
worldwide due to their vector function for a variety of zoonot-
ic protozoan, bacterial and viral pathogens. These pathogens
often circulate unnoticed in nature in enzootic tick-vertebrate
cycles but may cause significant morbidity and mortality
when spilling over to humans or domestic animals (Jahfari
a n d Sp r o ng 2016 ) . F o r e x amp l e , Anap l a sma
phagocytophilum mainly circulates between ticks and wild-
life, but certain strains may cause granulocytic anaplasmosis
in humans, dogs and horses as well as so-called tick-borne
fever in domestic ruminants (Jaarsma et al. 2019). Similarly,
small wild mammals constitute the main reservoir for tick-

borne encephalitis virus (TBEV), whichmay cause neurologic
disease in humans, as well as dogs and horses (Pfeffer and
Dobler 2011). Additionally, domestic animals may represent
an infection reservoir for tick-borne diseases (TBDs) in
humans, such as cattle for Babesia divergens (Zintl et al.
2003) and dogs for Ehrlichia canis (Rar and Golovljova
2011).

Many tick species transmit zoonotic pathogens; however,
some are exceptional due to their vector function for a number
of different zoonotic pathogens. Thus, both the tick species
infesting different hosts at the wildlife-domestic animal-hu-
man interface and the pathogens transmitted by them are of
significant One Health importance. Among the particularly
important tick vectors are Ixodes ricinus, Ixodes persulcatus
and Ixodes scapularis, which belong to the so-called Ixodes
ricinus complex, a group of 14 Ixodes species with almost
worldwide distribution (Keirans et al. 1999; Xu et al. 2003).
Ticks of the I. ricinus complex are confirmed vectors of zoo-
notic protozoa (Babesia spp.), a number of bacteria (e.g.
Borrelia spp. and Rickettsiales) as well as three different
flaviviruses (TBEV, Louping ill and Powassan virus).
Furthermore, Dermacentor andersoni, Dermacentor
variabilis and Amblyomma americanum are of particular
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One Health significance in North America (Sonenshine 2018)
due to their vector function for a number of zoonotic bacterial
(e.g. Rickettsia spp. and Ehrlichia spp.) and viral (e.g.
Powassan and Heartland virus) pathogens.

While most zoonotic TBDs are transmitted by hard ticks,
soft ticks may also play a role as vectors (Dantas-Torres et al.
2012). Several Ornithodoros spp. may transmit relapsing fe-
ver borreliae (Talagrand-Reboul et al. 2018), and this tick
genus might be implicated in the transmission of Coxiella
burnetii (Duron et al. 2015) and Alkhurma fever virus
(Sawatsky et al. 2014).

Tick-borne zoonotic protozoans

Among tick-borne pathogens,Babesia spp. constitute the only
zoonotic protozoans (Table 1), which are transmitted to
humans by Ixodes ricinus (Fig. 1) and Ixodes scapularis and
are thus restricted to the range of these tick species in Eurasia,
Northern Africa and North America. Babesia spp. are usually
highly host-specific and the natural vertebrate hosts for
Babesia divergens, Babesia venatorum and Babesia microti
are cattle, wild ungulates and rodents, respectively, whereas
humans are mainly affected if immunocompromised (Gray
et al. 2010). Interestingly, although Babesia microti occurs
in both Europe and North America, symptomatic human in-
fections have so far only been acquired in North America
(Azagi et al. 2020).

Tick-borne zoonotic bacteria

In contrast to protozoans, a wide variety of zoonotic bacterial
pathogens are tick transmitted (Table 2). Some of these are of
major importance due to their wide geographic distribution and/
or the severity of the disease caused in humans and/or animals.

For example, Borrelia burgdorferi sensu lato (s.l.), the causative
agent of Lyme borreliosis, and A. phagocytophilum occur
throughout the Northern Hemisphere as both are transmitted by
ticks of the Ixodes ricinus complex. Furthermore, spotted fever
group rickettsiae comprise a large group of species associated
with zoonotic human disease or of unknown pathogenicity,
which are transmitted by different species (Fig. 2) of several hard
tick genera around the world (Parola et al. 2013). Some
rickettsioses are associated with high case fatality rates in
humans, especially Rocky Mountain spotted fever caused by
Rickettsia rickettsii and transmitted mainly by D. andersoni,
D. variabilis (Fig. 2a) and Rhipicephalus sanguineus s.l. (Fig.
2b), and Mediterranean spotted fever caused by Rickettsia
conorii and transmitted mainly by R. sanguineus s.l. (Parola
et al. 2013).

In addition, ticks may play a role in the transmission of
severe diseases such as tularemia, caused by Francisella
tularensis, and so-called Q fever due to C. burnetii infection.
Although other transmission routes are regarded as epidemio-
logically more important, several hard tick species, including
D. andersoni in North America and I. ricinus (Fig. 1) as well
as Dermacentor marginatus (Fig. 3a) in Eurasia, have been
identified as competent vectors for both of these pathogens
(Telford III and Goethert 2020; Duron et al. 2015).

Tick-borne zoonotic viruses

Compared to bacteria, none of the tick-borne viruses are dis-
tributed worldwide (the same applies to protozoans, cf.
Table 1), but rather often restricted to particular geographic
regions (Table 3). However, many of them cause life-
threatening disease in humans. Among tick-borne viruses,
the highly pathogenic Crimean-Congo haemorrhagic fever vi-
rus (CCHFV), transmitted mainly by Hyalomma spp. (Fig.

Table 1 Tick-borne protozoan pathogens, their vectors and reservoir hosts

Pathogen Tick vector(s)1 Geographical
distribution

Vertebrate
reservoir(s)

Cell tropism in the
vertebrate host

Comment(s) References

Babesia
divergens

Ixodes ricinus Europe, North
Africa, Russia

Cattle Intracellular:
erythrocytes

Reviewed by Zintl
et al.
(2003) and
Gray
et al. (2019b)

Babesia
microti

I. ricinus, Ixodes
scapularis

Eurasia, North
America

Rodents Intracellular:
erythrocytes

So far, only North
American strains
involved in
human cases

Reviewed by Gray
et al.
(2019b); Azagi
et al. (2020)

Babesia
venatorum

I. ricinus Europe Roe deer,
possibly sheep

Intracellular:
erythrocytes

Reviewed by Gray
et al. (2019b);
Gray et al.
(2019a)

1Main tick vectors responsible for human infections; other tick vectors may be relevant in tick-reservoir cycles
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3c), has the widest distribution as it occurs in Africa, through-
out Asia and in Eastern Europe (IZS “G. Caporale” 2009).
Likewise, TBEV has a rather wide distribution, with different
subtypes circulating in Ixodes ticks in Europe, Siberia and far-
eastern Asia (Dobler et al. 2012). Examples of highly patho-
genic tick-borne viruses with a more restricted geographical
distribution include Omsk haemorrhagic fever virus, transmit-
ted by D. marginatus (Fig. 3a) and D. reticulatus (Fig. 3b)
(Růžek et al. 2010) in Russia, and Kyasanur Forest virus,
transmitted by Haemaphysalis spinigera (Shah et al. 2018)
in India.

Human and veterinary relevance of tick-borne zoo-
notic pathogens

The relevance of different tick-borne pathogens varies in the
fields of human vs. veterinary medicine. For example, tick-
borne encephalitis (TBE) cases occur mostly in humans and
only rarely in domestic animals, which are mainly regarded as
sentinels of virus occurrence (Imhoff et al. 2015). However,
domestic ruminants are epidemiologically important as
sources of alimentary human TBEV infections (Dobler et al.
2012) and dogs as well as horses may develop severe neuro-
logical signs when contracting TBE (Pfeffer and Dobler 2011;
Waldvogel et al. 1981). Regarding the numerous tick-
transmitted Rickettsia spp., which are relevant globally as
agents of human disease (Parola et al. 2013), evidence of
pathogenicity in domestic animals is limited to Rickettsia
conorii and Rickettsia rickettsii in dogs (Keenan et al. 1977;
Solano-Gallego et al. 2006).

In contrast, B. divergens is primarily a parasite of cattle,
causing haemolytic anaemia with high case fatality rates in
naïve cattle herds (Springer et al. 2020; Zintl et al. 2003),
whereas human B. divergens cases mainly involve
splenectomised or immunosuppressed patients (Azagi et al.

2020). Nevertheless, cases in immunocompetent persons have
also recently been reported (Martinot et al. 2011). Similarly,
Ehrlichia canis is of major veterinary relevance as the causa-
tive agent of canine monocytic ehrlichiosis, whereas human
ehrlichiosis cases due to this pathogen are very rare (Rar and
Golovljova 2011). Similarly, A. phagocytophilum is a fre-
quent cause of disease in dogs, horses and ruminants in
Europe (Silaghi et al. 2011; Kohn et al. 2008), whereas human
cases are rarely reported on the continent (Azagi et al. 2020).
In North America on the other hand, human granulocytic an-
aplasmosis cases are numerous but tick-borne fever in rumi-
nants has never been confirmed (Dugat et al. 2015). These
epidemiological differences are attributed to different circulat-
ing strains of A. phagocytophilum (Dugat et al. 2015).

Finally, Lyme borreliosis is sometimes (subjectively)
regarded as equally important in both fields, especially by
dog owners, although pathogenicity for dogs has only been
proven for B. burgdorferi sensu stricto (s.s.) and remains ques-
tionable for other genospecies of the B. burgdorferi s.l. com-
plex (Littman et al. 2018).

Commonly used diagnostic methods for TBDs
in human and veterinary medicine

The differences in clinical relevance of zoonotic TBDs are
reflected by the availability of commercially manufactured
human vs. veterinary diagnostic tests. However, as TBDs gain
importance in both fields and rare zoonotic pathogens, such as
Babesia spp., are increasingly identified as causes of human
TBDs, a One Health approach in TBD diagnostics may lead to
synergistic benefits. In the following, commonly used diag-
nostic techniques for TBDs in both fields and comparison of
commercial availability of tests for humans vs. domestic ani-
mals are discussed, with the aim of highlighting gaps and

Fig. 1 Ixodes ricinus, confirmed
vector of Babesia divergens,
Babesia microti and Babesia
venatorum, among numerous
other pathogens (left: female,
right: male). Photographs were
taken under an OPTIKA SLX-2
stereomicroscope (OPTIKA
S.r.l., Ponteranica, Italy)
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opportunities for collaboration between medical and veteri-
nary scientists.

Direct detection methods

Traditionally, microscopy, culture of the pathogen or xenodi-
agnosis was widely used for direct detection of tick-borne
pathogens in patient samples, but nowadays, nucleic acid–
based methods are more commonly employed. Nevertheless,
microscopic examination of stained blood smears is still the
method of first choice for diagnosis of acute Babesia infec-
tions, in both human and veterinary medicine (Ord and Lobo
2015; Solano-Gallego et al. 2016). Furthermore, blood smear
analysis is helpful to demonstrate intracellular morulae during
anaplasmosis and ehrlichiosis (Schotthoefer et al. 2013). This
method is relatively fast and low-cost; however, sensitivity
depends on the level of parasitaemia and pathogen species
differentiation is not always possible (Ord and Lobo 2015).
Therefore, diagnosis should be corroborated by molecular
techniques (Solano-Gallego et al. 2016).

Pathogen culture can be difficult and time consuming, may
require special biosafety conditions and is therefore often per-
formed by specialised laboratories only. Many tick-borne

pathogens grow slowly and require special media or cell cul-
tures. For example, the time to positive culture may span sev-
eral weeks for B. burgdorferi s.l. (Eldin et al. 2019) and up to
30 days for Rickettsia spp. (Portillo et al. 2017). Challenges
associated with culturing tick-borne pathogens are further il-
lustrated by the example of Neoehrlichia mikurensis, which
was only recently successfully cultured in human and tick cell
lines, although the pathogen has been known since 2004
(Wass et al. 2019).

Nucleic acid amplification techniques are often more
sensitive than the aforementioned methods and consider-
ably faster than pathogen culture, improving diagnostic
efficiency (Korber et al. 2017). In routine diagnostic set-
tings, real-time quantitative PCR (qPCR) is often used
due to increased sensitivity and speed as compared to
conventional PCR. Additionally, real-time qPCR allows
quantification by the gene copy numbers of the given
pathogen or cycle threshold (Ct) values and can therefore
also be useful for monitoring the course of infection (Che
et al. 2019). However, it should be kept in mind that
detection of DNA does not necessarily indicate that viable
pathogens are present, and false-positive results may be
obtained after successful treatment (Kuleš et al. 2017).

Fig. 2 Important vectors of
zoonotic tick-borne bacteria (left:
females, right: males). a
Dermacentor variabilis, con-
firmed vector of Ehrlichia canis,
Rickettsia rickettsii and
F. tularensis. b Rhipicephalus
sanguineus s.l., confirmed vector
of E. canis, Rickettsia conorii and
R. rickettsii. c Amblyomma
hebraeum, confirmed vector of
Ehrlichia ruminantium and
Rickettsia africae. Photographs
were taken under an OPTIKA
SLX-2 stereomicroscope
(OPTIKA S.r.l., Ponteranica,
Italy)
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Adaptations of the real-time qPCR method include digital
PCR (dPCR), which allows detection and quantification of
rare target sequences by partitioning the sample into many
parallel PCR reactions, thus improving test sensitivity. This
technique has recently been successfully applied for
B. burgdorferi s.l. identification in patient blood, which was
previously hindered by extremely low numbers of circulating
spirochaetes (Das et al. 2020).

Aside from singleplex PCRs, multiplex assays may be used
as screening tests. For example, multiplex assays combining
real-time qPCR detection of A. phagocytophilum with
Ehrlichia spp. or B. burgdorferi s.l. are available (e.g.
Courtney et al. 2004; Reller and Dumler 2018), while a
broad-panel system for the simultaneous detection of nine
tick-borne pathogens is currently available for research use
only (Buchan et al. 2019). For patients suspected of sepsis,

multiplex real-time qPCRs for simultaneous amplification of a
wide range of pathogens have been developed (Guido et al.
2016); however, not all of them detect tick-borne pathogens.
Recently, multiplex PCR followed by electrospray ionisation
mass spectrometry (PCR/ESI-MS) has been used to diagnose
early B. burgdorferi s.s. (Eshoo et al. 2012), Ehrlichia spp.
and R. ricket ts i i (Eshoo et al . 2010) as well as
A. phagocytophilum (Lagler et al. 2017) infections. This tech-
nique provides the advantage of identifying and genotyping
pathogens in a short time, but it was only adopted by a few
hospitals in Europe and was discontinued by the manufacturer
in 2017, probably due to economic reasons (Özenci et al.
2017).

In general, PCR requires expensive equipment, which may
be a problem in less-developed countries or in field settings.
Loop-mediated isothermal amplification (LAMP) is a low-

Fig. 3 Important vectors of
zoonotic tick-borne viruses (left:
females, right: males). a
Dermacentor marginatus, con-
firmed vector of Crimean-Congo
haemorrhagic fever virus
(CCHFV) and Omsk
haemorrhagic fever virus
(OHFV). b Dermacentor
reticulatus, confirmed vector of
OHFV and tick-borne encephali-
tis virus. c Hyalomma rufipes,
confirmed vector of CCHFV.
Photographs were taken under an
OPTIKA SLX-2 stereomicro-
scope (OPTIKA S.r.l.,
Ponteranica, Italy)
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cost DNA amplification technique that works at a constant
temperature and thus does not require a thermocycler
(Becherer et al. 2020). LAMP assays to detect tick-borne path-
ogens have mainly been developed not only for veterinary
applications (e.g. Faggion et al. 2013; Singh et al. 2019;
Wang et al. 2017) but also for detection of TBEV (Hayasaka
et al. 2013) and severe fever with thrombocytopenia syn-
drome virus (SFTSV) (Baek et al. 2018) in human patients
in resource-limited settings.

Mass spectrometry–based approaches, e.g. matrix-assisted
laser desorption ionisation time-of-flight (MALDI-TOF), are
routinely used to identify cultured pathogens in microbiolog-
ical laboratories, based on comparison of protein signatures to
existing databases. Although not yet routinely used for diag-
nosis of TBDs, applicability for identification and typing of
cultured B. burgdorferi s.l. has recently been demonstrated
(Neumann-Cip et al. 2020). Mass spectrometry also offers
new opportunities to identify biomarkers of specific diseases
in patient samples, as shown, for example, for Babesia microti
infections in an experimental hamster model (Magni et al.
2020). Similarly, MALDI-TOF analysis of canine serum sam-
ples may aid in the diagnosis of Babesia canis infections in
dogs (Adaszek et al. 2014).

Indirect detection methods: detection of humoral
immune response

In some TBDs, direct pathogen detection is particularly diffi-
cult. For example, B. burgdorferi s.l. spirochaetes are only
present at transient and low levels in patient blood (Schutzer
et al. 2018). Similarly, direct detection of TBEV is only pos-
sible in the early, viraemic phase of the disease (Girl et al.
2020). Therefore, serological tests are commonly employed
in TBD diagnosis. However, it has to be kept in mind that
there is usually a time lag of several days to weeks between
disease onset and development of antibody and, furthermore,
that elevated antibody levels indicate pathogen exposure, but
not necessarily current infection. Therefore, positive titres
should always be interpreted in conjunction with the clinical
presentation (Portillo et al. 2017; Sanchez et al. 2016). Acute
infections may be detected by seroconversion or a rise in an-
tibody titres. Therefore, testing of sequential samples taken
several weeks apart is often recommended (e.g. Portillo et al.
2017; Solano-Gallego et al. 2016). IgM antibody titres are the
first to rise and may therefore be targeted during early phases
of the infection. However, IgM antibody tests are particularly
prone to produce false-positive results and should thus be
accompanied by other methods, e.g. direct pathogen detection
or documentation of IgG seroconversion (Landry 2016;
Seriburi et al. 2012). IgG avidity testing represents an addi-
tional approach to determine the stage of an infection, as IgG
binding avidity increases as the infection progresses. For TBE,
IgG avidity testing may be useful to rule out false-positive

results due to cross-reactive IgM antibodies induced by other
flaviviruses or in cases of atypical antibody responses, e.g.
when IgM antibodies are persistently elevated past the acute
phase of infection (Vilibic-Cavlek et al. 2016). For Lyme
borreliosis, a recently developed IgG avidity Western blot
has shown promising first results to identify disease stage
(Mavin et al. 2018).

The most frequently used serologic methods include the
enzyme-linked immunosorbent assay (ELISA), immunofluo-
rescence antibody test (IFAT) and immunoblotting. ELISA
tests can be performed with high sample throughput but may
suffer from lower specificity as compared to other tests.
Therefore, a two-tiered approach is often recommended,
confirming positive or borderline ELISA tests with more spe-
cific techniques such as immunoblotting (e.g. in Lyme
borreliosis, Sanchez et al. 2016) or seroneutralisation tests
(e.g. in TBE, Reusken et al. 2019).

Modifications of the ELISA technique include magnetic
bead–based multianalyte assays, which are characterised by
high sensitivity even if antibody titres are low. Bead-based
assays have been developed, for example, for the detection
of anti-B. burgdorferi s.l. antibodies in humans (Gerritzen
and Brandt 2012) as well as in horses and dogs (Wagner
et al. 2011a; Wagner et al. 2011b).

For rickettsial diseases, the IFAT is considered the serolog-
ical reference method (Portillo et al. 2017). IFATs are also
commonly employed to detect and quantify anti-Babesia
(Sanchez et al. 2016; Solano-Gallego et al. 2016) as well as
anti-Ehrlichia antibodies (Dumler et al. 2007). However, the
technique is relatively labour intensive as compared to ELISA
and can be somewhat subjective as it involves microscopic
evaluation of antigen-coated glass slides.

In addition, rapid immunochromatographic tests are com-
mercially available for non-laboratory settings. These tests are
easy to use; however, they offer only a positive/negative re-
sult, allowing no quantification of antibody titres.
Furthermore, some commercially available rapid tests suffer
from low sensitivity, as shown e.g. for Lyme borreliosis (Liu
et al. 2018; Smit et al. 2015).

Sensitivity and specificity of serologic tests greatly depend
on the antigen(s) used. Use of purified or recombinant anti-
gens as well as synthetic peptides rather than whole-cell ly-
sates may improve specificity. For example, ELISA tests
based on a synthetic C6 peptide, a highly invariant region of
the B. burgdorferi s.l. VlsE (variable major protein-like se-
quence, expressed) protein, have superior specificity as op-
posed to whole-cell antigen ELISAs (Waddell et al. 2016).
However, cross-reactivity with sera from Borrelia
miyamotoi–infected patients has recently been described
(Molloy et al. 2017). In dogs, for which B. burgdorferi s.s.
and s.l. (Borrelia afzelii and Borrelia garinii) vaccines are
available, use of the C6 peptide in serological tests allows
discrimination between vaccinated and infected animals
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(Pantchev et al. 2015). In human TBDs, discrimination be-
tween infection-induced and vaccination-induced antibodies
is relevant for TBE. For this purpose, an ELISA based on
the non-structural protein 1 (NS1) of TBEV has recently been
developed, which is exclusively indicative of natural infection
and also allows significant discrimination from other flavivi-
rus infections (Girl et al. 2020).

Similar to direct tests, serological assays such as immuno-
blots and rapid immunochromatographic tests are also avail-
able in multiplex formats. For example, a rapid test frequently
employed in veterinary medicine allows the simultaneous de-
tection of canine antibodies against B. burgdorferi s.l.,
Ehrlichia spp. and Anaplasma spp., in addition to canine
heartworm antigen (Chandrashekar et al. 2010).

Indirect detection methods: detection of cellular
immune response

Aside from antibody production, many tick-borne pathogens
induce specific T cell responses. T cell–based assays might be
helpful to bridge the gap between infection and onset of anti-
body production ormight be employed as confirmatory tests to
rule out false-positive serology results (Jin et al. 2013). The
enzyme-linked immunospot assay (ELISPOT) is a sensitive
method to measure the cytokine response of T cells upon an-
tigen stimulation (Kalyuzhny 2005). ELISPOT assays have
been developed for a variety of TBDs; however, their utility
is controversially discussed, especially regarding Lyme
borreliosis. ELISPOT assays developed for Lyme borreliosis,
which exclusively measure interferon-γ release, show a wide
range of sensitivity and specificity and poor reproducibility
and are therefore currently not recommended for routine diag-
nostic use (Raffetin et al. 2020). Similarly, lymphocyte trans-
formation tests (LTTs) assess the proliferative response of T
cells upon stimulation with specific antigens. LTTs are offered
by some laboratories for diagnosis of active Lyme borreliosis
in humans; however, current guidelines do not recommend
these tests due to low specificity (Dessau et al. 2014).

Cytokines and chemokines as evidence of a cellular im-
mune response may also be measured directly in patient sam-
ples. For example, the chemokine CXCL13 in cerebrospinal
fluid constitutes a sensitive and specific marker of acute Lyme
neuroborreliosis in humans (Raffetin et al. 2020).

Relevant zoonotic TBDs and commercial
availability of diagnostic test kits
by the example of Germany

In Germany, as in other central European countries, I. ricinus
is the most relevant vector of zoonotic tick-borne pathogens,
i n c l u d i ng B . bu r gdo r f e r i s . l . , B . m i y amo t o i ,
A. phagocytophilum, Rickettsia helvetica, B. divergens,

B. microti, Babesia venatorum and TBEV (Rizzoli et al.
2014). With an estimate of 60,000–100,000 total and 7500
hospitalised cases annually, Lyme borreliosis is regarded as
the most frequent human TBD in Germany (Lohr et al. 2015).
However, since only certain manifestations of Lyme
borreliosis are reportable in some, but not all, federal states,
this number may be inaccurate (Lohr et al. 2015). In contrast,
TBE is notifiable in all parts of Germany and annual case
numbers ranged between 195 and 584 in the period 2001–
2019 (Robert Koch-Institut 2020). Less is known regarding
other TBDs in Germany, but human cases of neoehrlichiosis
(von Loewenich et al. 2010) and babesiosis due to
B. venatorum (Häselbarth et al. 2007) and B. microti
(Hildebrandt et al. 2007) have been reported during the past
decades. With regard to Rickettsia spp., R. helvetica is the
predominant species, but Rickettsia monacensis, Rickettsia
slovaca and Rickettsia raoultii also occur in Germany
(Dobler and Pfeffer 2012). In addition, travellers returning
from other countries may be infected with non-endemic tick-
borne pathogens, e.g. Rickettsia africae (Antal et al. 2013),
necessitating appropriate diagnostic possibilities.

Regarding veterinary medicine, no estimates of annual
TBD incidence exist. However, granulocytic anaplasmosis is
regarded as the most important TBD in dogs, whereas Lyme
borreliosis may be overdiagnosed (Gerber et al. 2009).
Furthermore, A. phagocytophilum is relevant as the causative
agent of granulocytic anaplasmosis in horses (Silaghi et al.
2011) and tick-borne fever in ruminants (Nieder et al. 2012).
In ruminants, redwater fever due to B. divergens occurs spo-
radically and may lead to significant mortality in naïve cattle
herds (Springer et al. 2020). In addition, sporadic clinical
cases of TBE have been described in German dogs (Reiner
and Fischer 1998; Saenger et al. 2013).

Commercially available diagnostic kits, taking Germany as
an example, were identified by Google Search using combi-
nations of the following keywords: Anaplasma, Babesia,
Borrelia, Rickettsia, Ehrlichia, TBE, FSME, IgG, IgM,
PCR, ELISA, ELISPOT, IFAT, serology and kit.
Furthermore, a list of available diagnostic tests for
B. burgdorferi s.l. and TBEV was obtained from the
German National Reference Center for Borrelia and the
German National Consiliary Laboratory for TBEV, respec-
tively. In addition, the German Diagnostics Industry
Association contributed a list of relevant manufacturers,
whose websites were searched for relevant test kits.

In Table 4, the relative quantities of commercially available
diagnostic test kits for human vs. veterinary use for each path-
ogen are shown. Only tests designed for patient samples were
included, i.e. tests for pathogen detection in ticks were not
considered, since a positive result in the detached tick is not
a reliable indicator of human or animal infection. In-house
tests and research-use only tests were also not considered.
No absolute numbers are shown, because we cannot guarantee
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that the search was exhaustive and, furthermore, the market is
subject to frequent changes.

Results indicate that a multitude of serologic kits and, to a
lesser extent, nucleic acid detection kits are available for di-
agnosis of Lyme borreliosis and TBE in humans in Germany
(Table 4). A rather large number of kits was also retrieved for
Lyme borreliosis in animals, but only few for TBE, although
domestic animals have proven useful as sentinels of human
disease risk (Imhoff et al. 2015). In addition, most veterinary
serology kits for B. burgdorferi s.l. detect IgG antibodies only,
whereas an equal amount of IgG and IgM tests exists for
humans. This can be explained by the fact that animals usually
do not develop acute disease after B. burgdorferi s.l. exposure,
and IgM testing is thus not recommended (Littman et al.
2018). However, a positive IgG titre is not an indicator of
active infection and it can be extremely difficult to determine
whether clinical disease in animals is actually due to Borrelia
infection (Divers 2013; Littman et al. 2018). To reduce un-
necessary antibiotic use, reliable tests indicative of active in-
fection would be extremely helpful in both disciplines. As
highlighted above, IgG avidity testing or improved PCR pro-
cedures, such as digital PCR, could be promising approaches.

RegardingA. phagocytophilum, a similar amount of serologic
aswell as nucleic acid detection kits was identified for the human
medical as well as the veterinary market, probably because
A. phagocytophilum plays an important role in veterinary medi-
cine, affecting several species as described above. The number of

available veterinary serology kits for Ehrlichia spp. even
exceeded the amount available for use in human medicine, but
no direct detection kits for Ehrlichia spp. were identified for
veterinary use. Ticks transmitting zoonotic Ehrlichia spp.
(Rhipicephalus sanguineus s.l., A. americanum) are not endemic
in Germany; thus, ehrlichioses are only relevant as imported
diseases. E. canis is a major threat to canine health worldwide
(Rar and Golovljova 2011), including in Mediterranean Europe
from where many dogs are imported to Germany and other
Central or Northern European countries. In contrast, human ehr-
lichiosis cases are rather rare, occurringmainly in North America
(Rar and Golovljova 2011), and are thus more rarely imported to
Germany than canine cases. Consequently, the available veteri-
nary kits were mostly designed for E. canis antibody detection.

In contrast, only few kits for the diagnosis of rickettsioses
in animals were identified, probably because it is unknown
whether Rickettsia spp. cause disease in animals, with the
exception of R. conorii and R. rickettsii in dogs (Keenan
et al. 1977; Solano-Gallego et al. 2006). Neither of these spe-
cies is endemic in Germany (Dobler and Pfeffer 2012).
Regarding humans, several serologic as well as direct detec-
tion kits for tick-borne Rickettsia spp. were identified, mainly
designed for R. rickettsii and R. conorii detection.

Particularly few diagnostic kits were identified regarding in-
fections with zoonotic Babesia spp., both in the human medical
and in the veterinary sector. This may be due to the fact that
Babesia infections are often diagnosed by blood smears and/or

Table 4 Relative quantity of commercially available diagnostic tests for zoonotic tick-borne pathogens in Germany

Pathogen Nucleic acid detection Antibody detection Other tests
(e.g. ELISPOT)

For
veterinary
(vet.) use

For
human
use

For vet. use For human use For
vet.
use

For
human
use

Babesia divergens − + + (IgG: +, IgM: −,
IgG/IgM: −)

− − −

Babesia microti − + + (IgG: +, IgM: −,
IgG/IgM: −)

+ (IgG: +, IgM: −, IgG/IgM: −) − +

Babesia venatorum − + − − − −
Bartonella henselae1 − + + (IgG: +, IgM: −,

IgG/IgM: −)
+ (IgG: +, IgM: +, IgG/IgM: −) − +

Borrelia burgdorferi s.l. + ++ ++ (IgG: ++, IgM: +, IgG/IgM: +) +++ (IgG: +++, IgM: +++, IgG/IgM: ++) + +
Borrelia miyamotoi − − − − − +
Coxiella burnetii ++ − ++ (IgG: ++, IgM: +, IgG/IgM: −) +++ (IgG: ++, IgM: ++, IgG/IgM: −) − −
Francisella tularensis − + + (IgG: +, IgM: −,

IgG/IgM: −)
++ (IgG: ++, IgM: +, IgG/IgM: −) − −

Anaplasma
phagocytophilum

+ + ++ (IgG: ++, IgM: −, IgG/IgM: −) ++ (IgG: ++, IgM: +, IgG/IgM: −) −

Ehrlichia spp. + − ++ (IgG: ++, IgM: −, IgG/IgM: −) + (IgG: +, IgM: +, IgG/IgM: −) − +
Neoehrlichia mikurensis − − − − − −
Rickettsia spp. − ++ ++ (IgG: ++, IgM: −, IgG/IgM: −) ++ (IgG: ++, IgM: ++,

IgG/IgM: −)
− −

Tick-borne
encephalitis virus

+ + + (IgG: +, IgM: −,
IgG/IgM: −)

+++ (IgG: ++, IgM: ++,
IgG/IgM: +)

− −

+++, > 20 kits on the market; ++, 6–20 kits on the market; +, ≤ 5 kits on the market; −, no marketed kits found
1Vector competence of ticks for B. henselae not proven
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in-house PCR tests in acute cases. However, blood smears have
a limited sensitivity when parasitaemia is low or limited speci-
ficity when parasite morphology has been altered due to refrig-
eration prior to blood smear preparation (Cursino-Santos et al.
2014). In addition, many human babesiosis cases in immuno-
competent individuals might be overlooked when symptoms are
mild, which represents a problem regarding blood transfusions,
for example (Hildebrandt et al. 2008; Ord and Lobo 2015). In
the veterinary field, a recent outbreak of bovine babesiosis
(B. divergens) in Germany has shown that mortality rates and
the subsequent economic impact may be high if diagnosis is
delayed (Springer et al. 2020). Therefore, sensitive, easy-to-
use and rapid diagnostic tools for zoonotic Babesia spp. are
needed. Recently, an immunochromatographic test based on a
recombinant B. microti surface antigen showed promising re-
sults in experimentally infected mice (Cai et al. 2018).

Regarding B. miyamotoi and N. mikurensis, which have only
recently been identified as human and, possibly, veterinary path-
ogens (Diniz et al. 2011; Platonov et al. 2011; Welinder-Olsson
et al. 2010), no commercially available kits were identified at all,
except for one ELISPOT kit designed for B. miyamotoi. In gen-
eral, only few ELISPOT assays are currently available in
Germany, reflecting the fact that their utility is controversially
discussed. Identified tests included EPISPOTS for detecting cel-
lular immunity against B. burgdorferi s.l. in humans, horses and
dogs, as well as against B. miyamotoi, B. microti, Ehrlichia spp.
and Bartonella henselae in humans.

For Bartonella henselae, C. burnetii and F. tularensis, tick-
borne transmission plays a minor role. Several diagnostic kits
were identified for C. burnetii for both disciplines, as this path-
ogen is economically important as a cause of abortions in rumi-
nants as well as from a public health perspective (Duron et al.
2015). In contrast, identified diagnostic kits forF. tularensiswere
mainly for human use, as symptomatic infections in domestic
animals are limited to cats and rabbits (Telford III and Goethert
2020).

Conclusions

Human and animal health are closely linked by ticks acting as
vectors for zoonotic pathogens, making tick-borne diseases
excellent examples of the One Health concept. Animals are
either clinically affected by the same tick-borne pathogens as
humans and/or play a role in tick cycle maintenance and as
reservoirs or sentinel pathogen hosts. Using the German mar-
ket as an example, several gaps in commercial availability of
diagnostic tests for zoonotic tick-borne pathogens were iden-
tified. Regarding B. burgdorferi s.l., sensitive tests indicative
of active infection would be useful to limit unnecessary or
overuse of antibiotics in human as well as veterinary medi-
cine. Furthermore, there is a need for rapid and sensitive di-
agnostic tools for zoonotic Babesia spp. infections in both

disciplines. Recently emerged tick-borne pathogens, such as
N. mikurensis and B. miyamotoi, open up further opportunities
for collaboration, since no standardised tests for these patho-
gens are yet commercially available. Test development for
these pathogens could save substantial time and effort for
the benefit of both human and animal health.
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