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Abstract
Toxoplasma gondii is a protozoan parasite capable of infecting a large number of warm-blooded animals and causes serious
health complications in immunocompromised patients. T. gondii infection of the feline small intestine is critical for the comple-
tion of the life cycle and transmission of T. gondii. Protein acetylation is an important posttranslational modification, which plays
roles in the regulation of various cellular processes. Therefore, understanding of how T. gondii reprograms the protein acetylation
status of feline definitive host can help to thwart the production and spread of T. gondii. Here, we used affinity enrichment and
high-resolution liquid chromatography with tandem mass spectrometry to profile the alterations of the acetylome in cat small
intestine 10 days after infection by T. gondii Prugniuad (Pru) strain. Our analysis showed that T. gondii induced significant
changes in the acetylation of proteins in the cat intestine. We identified 2606 unique lysine acetylation sites in 1357 acetylated
proteins. The levels of 334 acetylated peptides were downregulated, while the levels of 82 acetylated peptides were increased in
the infected small intestine. The proteins with differentially acetylated peptides were particularly enriched in the bioenergetics-
related processes, such as tricarboxylic acid cycle, oxidative phosphorylation, and oxidation-reduction. These results provide the
first baseline of the global acetylome of feline small intestine following T. gondii infection and should facilitate further analysis of
the role of acetylated protein in the pathogenesis of T. gondii infection in its definitive host.
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Introduction

Toxoplasma gondii is an obligate intracellular pathogen that
has been estimated to chronically infect approximately one-

third of the world’s population (Dubey 2010). However,
T. gondii causes severe diseases in prenatally infected children
and in immunocompromised individuals (Hohlfeld et al.
1989; Luft and Remington 1992). Although T. gondii has a
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wide range of intermediate hosts, felids are the only definitive
host of this parasite. Cats play an important role in spreading
of T. gondii, and one infected cat can discharge millions of
oocysts in the feces (/Dubey 2001). The ability of T. gondii to
enter and sexually differentiate within intestinal epithelial
cells into oocysts constitutes a fundamental step in the biology
and transmission of this parasite. A deeper understanding of
the molecular events that shape the interaction of T. gondii
with the feline intestine is therefore important for developing
new intervention to interrupt the production of oocysts, which
in turn may reduce the spread of infection to other hosts.

Protein acetylation was firstly discovered in 1964 (Allfrey
et al. 1964) and participated in multiple cellular processes
such as gene regulation, protein degradation, cellular metabo-
lism, and cellular stress response (Lee and Gu 2013; Lima
et al. 2011; Sang et al. 2017). Protein lysine acetylation
(LysAc) has been reported in bacteria [e.g. Escherichia coli
(Zhang et al. 2009), Bacillus subtilis (Kim et al. 2013)], par-
asites [e.g. Plasmodium falciparum (Miao et al. 2013)], insect
[e.g. Drosophila melanogaster (Weinert et al. 2011)], and
mammals [e.g. Mus musculus (Lundby et al. 2012) and
Homo sapiens (Choudhary et al. 2009)]. These studies
showed that acetylated proteins can influence a broad variety
of cellular processes.

Acetylation of protein was found to play a role in regula-
tion of the interaction between host and pathogen (Husain and
Cheung 2014). A genome-wide acetylation analysis identified
many acetylated proteins involved in diverse cellular process-
es and different localizations in T. gondii, suggesting potential
of the parasite to modulate host cell acetylome (Jeffers and
Sullivan, 2012). Lysine acetylation has also been studied in
different genotype of T. gondii and was found to correlate with
the virulence of the parasite strains (Wang et al. 2019).
However, to what extent does T. gondii influence the cat in-
testine acetylome remains unknown.

In the present study, a quantitative analysis of the
acetylome of cat small intestine infected by T. gondii was
performed. To our knowledge, this is the first study to profile
the acetylome alteration of feline small intestine following
T. gondii infection.

Materials and methods

Animals

Six domestic cats (7- to 9-month-old) of the Chinese Li Hua
breed were purchased from a local breeder and housed in a
controlled environment. Prior to the experiment, sera of all
cats were tested using a modified agglutination test (MAT)
to confirm that the cats were negative for T. gondii antibodies.
Commercial ELISA Kits (NuoYuan, Shanghai, China) were
used to confirm that the cats used in the study were free of four

viral infections (feline immunodeficiency virus, feline parvo-
virus, feline coronavirus, and feline leukemia virus). All cats
had access to commercial diet and water ad libitum.

Parasite infection and sample collection

PRU strain (genotype II) of T. gondii was used in the present
study. The parasite tissue cysts were collected from the brains
of Kunming mice infected by PRU strain and counted micro-
scopically. Six cats were randomly allocated to 2 groups (3
cats per group). Each cat in the infected group was orally
inoculated with 100 cysts suspended in 1 ml of sterile phos-
phate buffer saline (PBS), whereas cats of the control
(noninfected) group received 1 ml of sterile PBS only. Ten
days postinfection, cats were euthanized, and their small in-
testines were collected followed by several washes using PBS
to remove the intestinal contents. The collected intestinal sam-
ples were frozen immediately in liquid nitrogen and stored at –
80 °C until use.

Confirmation of T. gondii infection in the intestines

Genomic DNA of harvested small intestine was extracted
using TIANamp Genomic DNA Kit (TianGenTM, Beijing,
China). A nested PCR was used to detect T. gondii infection
in cat intestine tissues as described previously (Lin et al.
2000). In the first round of the nested PCR, the following
primers were used: TOXO1: 5'-GGAACTGCATCCGT
TCATGAG-3' and TOXO2: 5'-TCTTTAAAGCGTTC
GTGGTC-3'. PCR conditions included an initial denaturation
step at 94 °C for 10 min, followed by 30 PCR cycles of 94 °C
for 1 min, 60 °C for 15 s, and 72 °C for 45 s. In the second
round of nested PCR, 1 μl PCR product (~ 193 bp) of first
round was used as PCR template and the same protocol used
in first round was followed, but with using primer TOXO 3
(5'-TGCATAGGTTGCAGTCACTG-3') instead of the prim-
er TOXO 1 with anticipated amplicon size of 131 bp. The
PCR products were electrophoresed on 1% agarose-Tris-
acetate-EDTA gel that was stained with ethidium bromide.
The PCR products were purified and sequenced. Also, fecal
samples were collected daily and examined using flotation
method to monitor the shedding of T. gondii oocysts.

Protein extraction

The appropriate amount of lysis buffer (containing 8 M urea
and protease inhibitor) was added to each sample followed by
sonication on ice for 5 min. Then, samples were centrifuged at
25,000g for 20 min at 4 °C, and the supernatant was collected.
Dithiothreitol (DTT) was added to the supernatant at a final
concentration of 10mM, and the samples were incubated at 56
°C for 1 h in a water bath. The deacetylase inhibitor (55 mM
IAM) was added followed by incubation in the dark for
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45 min at room temperature. Finally, protein concentration of
each protein sample was determined by using the Bradford
assay.

Trypsin digestion and affinity enrichment of
acetylated peptides

From each sample, 5mg of extracted protein were diluted with
30 mMHEPES until the final concentration of urea reached <
2 M. Then, trypsin was added at protein to trypsin mass ratio
of 50:1 and digested at 37 °C for overnight. The digested
peptides were desalted using Sep-Pac C18 column and vacu-
um dried. The tryptic peptides were dissolved in IAP buffer
and mixed with the coupled acetylated antibody beads at 4 °C
overnight with gentle shaking. The sample was centrifuged at
2000g and 4 °C for 4 s, and the supernatant was discarded.
The sediment was washed twice with 1 ml IPA buffer follow-
ed by washing three times with precooled double distilled
H2O. After adding 200 μl 0.15% trifluoroacetic acid (TFA)
and incubation for 10 min at room temperature, the sample
was centrifuged at 2000g and 4 °C for 4 s, and the supernatant
was collected. Finally, the peptides in the supernatant were
dried using a vacuum centrifuge.

HPLC fractionation and LC-MS/MS analysis

The dried peptides were reconstituted in double distilled H2O
with 2% ACN and 0.1% FA. Then, the dissolved peptides
were separated by UHPLC (UltiMate 3000, Thermo) using
the HPLC gradient elution settings described in Table S1.
Peptide segments were ionized by nanoESI source and then
detected by tandem mass spectrometer Q-Exactive HF
(Thermo Fisher Scientific, San Jose, CA) with DDA (data-
dependent acquisition) detection mode. The m/z scan range
was 350 to 1500 for full scan, and intact peptides were detect-
ed in the orbitrap at a resolution of 120,000. The analyses of
the MS/MS data, including identification, normalization, and
differential analysis, were processed using MaxQuant
(v.1.5.3.30) search engine (Cox and Mann 2008). Tandem
mass spectra were searched against UniProt database for pro-
tein identification. Trypsin/P was specified as cleavage en-
zyme allowing up to 4 missing cleavages. The mass tolerance
for precursor ions was set as 20 ppm and 0.05 Da for fragment
ions. Carbamidomethylation of cysteine was considered as a
fixed modification. Methionine oxidation, acetylation on ly-
sine, and acetylation on protein N-terminal were designated as
variable modifications. The false discovery rate threshold
(FDR) was set as 1%. All other parameters in MaxQuant were
set to the default values. The site location probability was set
as > 0.75. The threshold of differentially acetylated peptides
(DAPs) was P < 0.05.

Bioinformatics analysis

Gene ontology (GO) analysis was performed to identify the
enriched acetylated proteins among the proteins with differen-
tially acetylated peptides (PDAPs) by using ToxoDB 11.0 and
UniProt-GOA database, and acetylated proteins were classed
into three categories: molecular function (MF), biological pro-
cess (BP), and cellular component (CC). The orthologous
proteins were classified by using orthologous groups of pro-
teins (COG) database (Tatusov et al. 2000). Functional enrich-
ment analysis was performed to identify the enriched path-
ways using Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (Kanehisa 2008). KEGG pathways were
considered significant at a P value of < 0.05. WoLF PSORT
algorithm was applied to predict the subcellular locations of
the PDAPs (Horton et al. 2007). For motif analysis, the 11-
mers amino acid (± 5 amino acids residues around the lysine
acetylation site) of sequences of all DAPs was analyzed using
Motif-x software. All protein sequences were used as back-
ground and other parameters were set to the default values.

Results

Confirmation of T. gondii infection and overall
features of the differentially acetylated peptides

Daily fecal examination detected T. gondii oocysts in feline
feces at 7 dpi. All feline small intestines were PCR positive
(Figure S1), and our DNA sequencing confirmed that the PCR
product was B1 gene of T. gondii. In high-resolution immu-
noaffinity LC-MS/MS analysis, the mass errors were less than
6 ppm, and the majority were close to zero (Fig. 1a), showing
the accuracy of the data obtained in the present study. A total
of 2606 unique acetylation sites of 1357 proteins were identi-
fied (Table S2). Acetylated peptides with P value < 0.05 were
deemed as differentially regulated. In this study, the acetyla-
tion of 334 peptides was decreased in the infected small intes-
tine, whereas acetylation of 82 peptides was increased (Fig. 1b
and Table S3). About 65% acetylated proteins had only one
acetylated site, 17% acetylated proteins contained two acety-
lated site, 10% acetylated proteins contained three or four
acetylated sites, and 8% acetylated proteins contained five or
more acetylated sites (Fig. 1c). To identify the motif of DAPs
in feline small intestine, the character of the amino acid se-
quence adjacent to acetylation sites was analyzed. As shown
in Fig. 1d, no clear acetylation motif was detected.

Functional classification and subcellular localization
of the proteins with differentially acetylated peptides

To elucidate the functions of PDAPs altered by T. gondii in-
fection in the small intestine, subcellular localization, GO,
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KEGG, and COG classification analyses were performed.
Analysis of subcellular localization of PDAPs indicated that
most PDAPs were localized in the cytoplasm (32%), nucleus
(29%), mitochondria (18%), extracellular (8%), cyto-nucl
(3%), and endoplasmic reticulum (2%) (Fig. 2a).

COG analysis showed that PDAPs were classified into 24
functional groups. The proteins involved in translation, ribo-
somal structure and biogenesis, posttranslational modifica-
tion, protein turnover, and chaperones account for a large pro-
portion of the PDAPs (Fig. 2b). According to COG annota-
tions, a number of metabolically related enzymes were iden-
tified as acetylated proteins, including acyl-coenzyme A oxi-
dase 3, aconitate hydratase, malate dehydrogenase, isocitrate
dehydrogenase, dihydrolipoyl dehydrogenase, fumarate
hydratase, and citrate synthase.

To further identify intestinal biological changes that
may have been influenced by PDAPs induced by
T. gondii, we performed GO and KEGG pathway enrich-
ment analyses with all PDAPs. GO enrichment identified
several PDAPs involved in mitochondrial matrix (6.92%),
mitochondrion (6.11%), and organelle part (3.52%). This
result was consistent with that of WoLF PSORT predic-
tion. Also, a variety of molecular functions were enriched,
such as actin-dependent ATPase activity (3.22%),

cysteine-type endopeptidase activity (2.88%), anion chan-
nel activity (2.66%), and oxidoreductase activity (2.54%),
which were involved in oxidation-reduction process
(4.55%) and various metabolic process (≥ 2.98%) (Fig.
3a and Table S4). According to the KEGG enrichment
analysis, a majority of the PDAPs were related to microbial
metabolism, carbon metabolism, fatty acid metabolism,
and degradation (Fig. 3b).

For proteins with upregulated acetylated peptides (Fig. 4a),
DNA binding, zinc ion binding, and protein binding were the
top 3 GO terms in the MF category. In the CC category, most
proteins with upregulated acetylated peptides were enriched in
nuclear and nucleolar. The positive regulation of nucleosome
assembly and apoptosis in the BP category corresponds to a
relatively large number of proteins with upregulated acetylat-
ed peptides. Regarding the proteins with downregulated acet-
ylated peptides (Fig. 4b), the results of MF indicated that the
largest group was ATP-binding protein, and the second largest
group was protein-binding protein. For the CC category, most
proteins with downregulated acetylated peptides correspond
to cytoplasm and mitochondria. In the BP category, the redox
process and the ATP decomposition process were the top two
protein groups enriched by the proteins with downregulated
acetylated peptides.

Fig. 1 The properties of the acetylated peptides of cat small intestine
infected by Toxoplasma gondii. a Mass error distribution of all
identified peptides. b Volcano plot of the differentially acetylated
peptides (DAPs). DAPs are shown as a red (upregulated) or green

(downregulated) dot. The acetylated peptides that did not show any sig-
nificant alteration between infected and control are shown as grey dots. c
The number of acetylation sites per protein. d Sequence probability logo
of acetylation motif for +10 amino acids adjacent to acetylation site
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Identification of acetylated proteins of T. gondii

In the present study, we identified 40 acetylated proteins of
T. gondii, including 64 acetylated peptides (Table S3). These
proteins mainly included histones and heat shock proteins. In
total, we found 21 novel acetylated proteins that have not been
identified previously (Wang et al. 2019). These novel acety-
l a t e d p r o t e i n s i n c l u d e d TGME 4 9 _ 2 8 6 4 7 0 ,
TGME49_206430, TGME49_214260, TGME49_313830,
TGME49_306240, TGME49_213770, TGME49_300612,
TGME49_207770, TGME49_305240, TGME49_245530,
TGME49_268380, TGME49_211890, TGME49_241300,
TGME49_207100, TGME49_254050, TGME49_286470,
TGME49_231815, TGME49_217220, TGME49_253360,
TGME49_282210, and TGME49_201640. Among these
novel acetylated proteins, the acetylated hypothetical protein
TGME49_201640 is only expressed in the oocyst and feline

enterocyte stage. The function of TGME49_201640 remains
unknown; however, the protein has one signal peptide at N-
terminal. WoLF PSORT prediction showed that the protein is
a secretory protein.

Discussion

The aim of this study was to analyze the effect of T. gondii
infection on lysine acetylation profile of small intestinal pro-
tein in cats. Compared with the control (uninfected) cats, a
total of 2606 unique acetylated sites in 1357 proteins were
detected in the feline small intestine attributed to the
T. gondii infection. Most of these proteins have only a single
lysine acetylation site. These results agree with that reported
previously (Weinert et al. 2011; Zhou et al. 2016a). T. gondii
infection can alter the expression of genes involved in protein

Fig. 2 Functional classification of
protein with differentially
acetylated peptides (PDAPs) in
cat small intestine infected by
Toxoplasma gondii. a Pie chart
showing the percentage and
subcellular localization of the
PDAPs. b Functional categories
of PDAPs based on clusters of
orthologous group (COG)
annotation
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modification processes in feline small intestine (Cong et al.
2018; Wang et al. 2018). Thus, it is possible that the lack of
clear acetylation motif in this study could be due to alteration
in the genes participating in ubiquitous acetylation process by
T. gondii infection.

GO enrichment and KEGG pathway analyses showed that
the proteins with differentially acetylated peptides (PDAPs)
were significantly enriched in metabolic processes, such as
redox processes and peroxisomes (Fig. 3). This is rather an-
ticipated because infection by T. gondii is associated with
considerable metabolic changes of the infected host (Zhou

et al. 2015, 2016b). Previous proteomic studies have shown
that a large number of protein lysine acetylation events occur
in the mitochondria (Gibson 2005; Jardim et al. 2018; Peinado
et al. 2014). As shown in Fig. 4b, mitochondrion was enriched
by the proteins with downregulated acetylated peptides. In
TCA cycle, malate dehydrogenase (MDH) and aconitate
hydratase (ACO2) whose structural and functional stability
had impacts on mitochondrial energy metabolism (Matasova
and Popova 2008; Wang et al. 2009) were highly acetylated.
In TCA cycle, citrate synthase (CS), isocitrate dehydrogenase
(IDH), and oxoglutarate dehydrogenase complex (OGDC) are

Fig. 3 GO enrichment analysis and KEGG pathway analysis of all
PDAPs of cat small intestine infected by Toxoplasma gondii. a Top 30
enriched GO terms categorized according to Biological process,
molecular function and cellular component. b Scatterplot of the top 20

enriched KEGG pathways of the PDAPs. The rich factor on the x-axis
represents the ratio of PDAP's number to the total number of proteins
annotated in the pathway

Fig. 4 Gene Ontology functional analysis of the proteins with increased
or decreased acetylated peptide abundance categorized according to
biological process, molecular function and cellular component. a GO

functional classification of the protein with increased acetylated peptide
abundance. b GO functional classification of the protein with decreased
acetylated peptide abundance
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rate-limiting enzymes that play roles in regulating the TCA
process. TCA cycle and oxidative phosphorylation (OxPhos)
are crucial steps for ATP production. In the present study, 44
proteins whose acetylated peptide abundances were downreg-
ulated in the infected small intestine were enriched in the
OxPhos process (Fig. S2). The downregulated acetylation of
OxPhos process and hypometabolic state seems to be bioen-
ergetic tradeoffs strategy to promote host tissue tolerance to
infection.

Peroxisome is an organelle involved in metabolic and
stress responses (Cavallini et al. 2017; Mast et al. 2015).
It functions as a hub for immune metabolism, supporting
cellular metabolites to control the development and acti-
vation of immune cells and regulating inflammatory path-
ways in different immune cells (Di Cara et al. 2019). The
KEGG pathway enrichment analysis showed that, in
T. gondii–infected small intestine, 10 proteins with down-
regulated acetylated peptides were associated with perox-
isomes (Fig. S3). These proteins included hydroxysteroid
dehydrogenase, catalase, isocitrate dehydrogenase, carni-
tine O-acetyltransferase, acyl-coenzyme A oxidase, super-
oxide dismutase, peroxiredoxin, nudix hydrolase 13, ATP
binding cassette subfamily D member 3, and acyl-CoA
synthetase long chain family member 4. Acyl coenzyme
A oxidase has been shown to drive the peroxisome β-
oxidation and to play an important role in inflammation
control (Vamecq et al. 2018). These results indicate the
involvement of peroxisome in antiT. gondii immune
responses.

T. gondii has been shown to influence the host cell cycle
(Elsheikha et al. 2019) and subvert apoptosis signaling in host
cells to promote its own survival (Lüder and Gross 2005; He
et al. 2016; Cong et al. 2017). GO annotation analysis showed
that most of the proteins with increased acetylated peptides are
involved in promoting apoptosis (Fig. 4a). Interestingly, GO
enrichment uncovered several PDAPs involved in mitochon-
drial matrix and mitochondrion. Also, we have shown in this
study that T. gondii through downregulation of the acetylation
of OxPhos can affect mitochondrial metabolism. The cyto-
chrome c protein, which controls redox signaling in mitochon-
drial OxPhos, is released from the mitochondria into the cy-
tosol to activate caspase proteases that trigger apoptotic
changes (Hengartner 2000). These results suggest a clear im-
pact of T. gondii–induced alterations of protein acetylation on
the bioenergetics and apoptotic processes in the cat intestine.
Sexual reproduction of T. gondii is a highly elaborate event,
which involves parasite proliferation, differentiation and host
cell destruction (Dubey et al. 1998). Following invasion of the
feline small intestine, tachyzoites transform into a presexual
merozoite that replicates and differentiates into male and fe-
male gametes, which ultimately form zygotes. Therefore, it is
reasonable to anticipate a significant metabolic burden and an
increased cellular destruction during T. gondii infection of the

feline intestine. To what extent the acetylated peptides that
were found associated with apoptosis and mitochondrial me-
tabolism in the present study can influence the intrinsic and
extrinsic apoptotic pathways in the cat small intestine remains
to be elucidated.

The acetylated protein of T. gondii tachyzoites has been
described previously (Wang et al. 2019). However, the
acetylation status of T. gondii proteins during intestinal
infection of cats was unknown until the present study,
where we also identified 40 acetylated proteins of
T. gondii. The majority of the acetylated proteins of
T. gondii belong to histone H2A, histone H2B, histone
H3, and histone H4 families. Histone is an important com-
ponent of chromatin and plays a key role in regulation of
gene expression (Nardelli et al. 2013). A previous report
showed that shock protein 70 (HSP70) and heat shock pro-
tein 10 (HSP10) of T. gondii are acetylated proteins (Wang
et al. 2019). In the present study, HSP70 and HSP10 were
also identified as acetylated proteins. HSP70 is a virulence
factor expressed during the transformation of T. gondii
from tachyzoites to bradyzoites and plays a role in parasite
replication and immune responses (Barenco et al. 2014).
Also, we found one acetylated hypothetical protein
TGME49_201640 whose function remains unknown and
is only expressed in the oocyst and feline enterocyte stage.
Bioinformatic analysis showed that this protein is a secre-
tory protein. This suggests that the product of the
TGME49_201640 gene might be discharged into host cells
and contributes to the interaction between feline enterocyte
and T. gondii. The identified acetylated peptides listed in
Table S3 may help us to elucidate new biological functions
of T. gondii secretome in mediating the interaction be-
tween T. gondii and the small intestine of the feline defin-
itive host.

Conclusion

This study, for the first time, showed that T. gondii infection
had significant effect on the acetylome of cat small intestine.
High-resolution mass spectrometry–based proteomics ap-
proach identified 2606 acetylation sites in 1357 acetylated
proteins. Acetylated proteins altered by infection were found
to belong to different cell compartments (cytoplasm, nucleus,
mitochondria, extracellular component) and to participate in
various metabolic pathways or cellular processes (glycolysis/
gluconeogenesis, citrate cycle (TCA cycle) and peroxisome).
We identified a list of novel acetylated proteins of T. gondii,
including one hypothetical protein that is only expressed at the
oocyst and feline enterocyte stage. Our data provided new and
valuable resource to further investigations of the role of pro-
tein acetylation in the sexual reproduction of T. gondii in
feline small intestine.
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