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Abstract The Toll-like receptors (TLRs) of the innate immune
system play an important role in the recognition of pathogens
such as bacteria, viruses, fungi, and parasites. In this study, we
examined the changes in the level of expression of TLR2 and
TLR4 mRNA and protein in the brains of mice infected with
Acanthamoeba spp. The Acanthamoeba strains were isolated
from a patient with Acanthamoeba keratitis (AK) (Ac55) and
Malta Lake (Ac43). In the brain isolated from mice at 2 days
post-infection (dpi) with Acanthamoeba strains Ac55 and
Ac43, mRNAs for TLR2 and TLR4 were significantly more
strongly expressed in comparison with the uninfected mice. In
Acanthamoeba-infected mice, TLR2 and TLR4 expression was
detected in neurons, glial cells, and endothelial cells within the
neocortex. These receptors showed more intense expression in
ependymocytes of the choroid plexus of infected mice at 2 dpi.
Increased levels of TLR2 and TLR4 mRNA expression in in-
fected mice suggest the involvement of these TLRs in the rec-
ognition of Acanthamoeba spp. pathogen-associated molecular
patterns (PAMPs).
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Introduction

Acanthamoeba spp. are free-living amoebae (FLA) found in
several natural habitats, including lakes, rivers, swimming
pools, thermal baths, tap water, sewage, humid soils, and dust
(Khan, 2006).

Traditional taxonomy of Acanthamoeba has used morpho-
logical characteristics of cysts and trophozoites (Booton et al.
2005). However, genetic studies have led to the identification
of 18 genotypes (T1-T18) based on rRNA gene sequences
(Qvarnstrom, et al. 2013). The T4 genotype has been frequent-
ly reported as a predominant cause of AK (Niyyati et al. 2009).

Acanthamoeba spp. can infect humans and animals as
opportunistic pathogens and cause severe diseases, including
amebic Acanthamoeba keratitis (AK), a painful sight-
threatening infection of the cornea, and granulomatous amebic
encephalitis (GAE), a fatal disease of the central nervous
system (CNS), in immunocompromised hosts (Martinez &
Visvesvara, 1997; Visvesvara et al. 2007). The important
clinical symptoms of GAE are headache, fever, behavioral
changes, lethargy, stiff neck, aphasia, ataxia, nausea, cranial
nerve palsies, confused state, seizures, and coma, which final-
ly lead to death. Pathological findings include hemorrhagic
necrosis, fibrin thrombi, and inflammation (Marciano-Cabral
& Cabral 2003). The intensity of symptoms and histological
changes in the host may be a result of many factors including
the immunocompetence of the host and the virulence of amoe-
bae. Experimental studies have shown that the properties of
pathogenic free-living amoebae and the intensity of histolog-
ical changes in organs depend on the virulence of the strain
(Rucka, 1974) and, on the other hand, the duration of infection
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(Gieryng et al. 1993). In mice infected with different strains of
Acanthamoeba spp., Gornik et al. (2005) demonstrated that
the changes in intensity in the brain depend on the virulence of
the strain.

Acanthamoeba spp. infections of the skin, nasal passages,
lung, and brain are also documented in patients with immuno-
deficiency disease (Martinez & Visvesvara 1997; Marciano-
Cabral & Cabral, 2003). Furthermore, several studies strongly
suggest that Acanthamoeba spp. can act as reservoir hosts for
other pathogenic viruses, bacteria, and fungi (Barker &
Brown 1994; Scheid et al. 2008; Gaze et al. 2011; Scheid
& Schwarzenberger 2012). In addition, although GAE oc-
curs in healthy people, immunocompromised or debilitated
patients due to HIV infection, diabetes, immunosuppres-
sive therapy, malignancies, malnutrition, and alcoholism
are particularly at risk (Visvesvara et al. 2007).

The immune defense mechanisms that operate against
Acanthamoeba have not been well characterized. It was
found that in the host defense mechanisms against
Acanthamoeba spp., both innate and acquired immunities
play arole (Cursons et al. 1980; Marciano-Cabral & Cabral
2003). McClellan (2002) found that trophozoites as well as
cysts are recognized by the immune system of the host.
The innate immunity was the first line of defense against
Acanthamoeba infection (Ferrante & Rowan-Kelly 1983).
Ferrante and Abell (1986) as well as Stewart et al. (1992)
demonstrated in vitro killing of trophozoites of Acanthamoeba
spp. in the presence of neutrophils and macrophages. However,
activation in response to infection with Acanthamoeba and the
role of antibodies are not known (Marciano-Cabral & Cabral
2003). Antibodies may prevent attachment to host cells, inhibit
the motility of amoebae, or neutralize ameba cytotoxic factors
(Cursons et al. 1980; Ferrante & Abell 1986; Stewart et al. 1994;
Marciano-Cabral & Toney 1998).

The pathogenesis of infections by Acanthamoeba, includ-
ing the cellular processes and molecules involved in the
recognition and adhesion to the host tissues, is little known.
However, Soto-Arredondo et al. (2014) suggested that glyco-
proteins on the surface of Acanthamoeba trophozoites interact
with and recognize receptors on the host cell.

The innate immune response in the brain and other tissues is
initiated via recognition of pathogen-associated molecular pat-
terns (PAMPS) by pathogen recognition receptors (PRRs) such
as the Toll-like receptors (TLRs) (Creagh & O’Neil 2006). To
date, 13 TLRs have been identified in mammals, each of which
recognizes specific PAMPS or host-derived damage-associated
molecular patterns (DAMPS) (Roach et al. 2005; Akira et al.
2006). Signaling via the TLR pathway leads to the production
of inflammatory cytokines, chemokines, adhesion molecules,
and costimulatory molecules (Ospelt & Gay 2010).

In this study, we examined two selected TLRs: 2 and 4.
TLR2 and TLR4 are the best known transmembrane receptors
and the most extensively analyzed members of the TLR
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family. The alteration of TLR2 and TLR4 expression in
infected rats indicates the potential role of the innate immune
system in the pathomechanism of Hymenolepis diminuta
infection (Kosik-Bogacka et al. 2012; Kosik-Bogacka et al.
2013). Recent studies have shown that TLR2 is capable of
recognizing ligands such as glycosylphosphatidylinositol
(GPI) of Plasmodium falciparum, Toxoplasma gondii,
Trypanosoma cruzi, Trypanosoma brucei, Leishmania major,
and Leishmania donovani (Krishnegowda et al. 2005;
Debierre-Grockiego et al. 2007; Chandra & Naik 2008;
Egan et al. 2009; Amin et al. 2012). The TLR4 ligands
including lipophosphoglycans (LPG) of Leishmania spp.
(Tuon et al. 2008) and lysophosphatidylserine of Schistosoma
spp. (van der Kleij et al. 2002; Layland et al. 2007; Van der
Kleij et al. 2004) confirm that the phosphatidylserine fraction of
Schistosoma haematobium contains a TLR2 ligand as well as
TLRA4. Our previous study confirmed an increase in the level of
expression of TLRs 2, 3, 4, and 9 during experimental
hymenolepidosis (Kosik-Bogacka et al. 2012, 2013, 2014).
TLRs are predominantly expressed on immune cells but
also on non-immune cells. TLR4 is also expressed in the brain
cells, in particular parenchymal glial cells, microglia, astro-
cytes, and in neurons (Rolls et al. 2007; Acosta & Davies
2008; Tu et al. 2011). However, the role of neuronal TLR4
in the central nervous system is unknown (Leow-Dyke et al.
2012). TLR2 is an important element of the brain innate im-
mune response system. TLR2 is also expressed on microglia,
astrocytes, neurons, and endothelial cells (Laflamme et al.
2001; Bsibsi et al. 2002), and similarly, the functional
significance of this receptor is still unknown (Kielian et al.
2005). Therefore, the aim of this study was to characterize
for the first time the expression of TLR2 and TLR4 in the
brain of Acanthamoeba spp.-infected mice using quantitative
real-time polymerase chain reaction (Q-PCR) and immunobhis-
tochemical staining (IHC). The Acanthamoeba spp. were iso-
lated from a patient with AK (Ac55) and Malta Lake (Ac43).

Materials and methods
Acanthamoeba spp.

The amoebae isolated from a patient with AK (strain Ac55)
and from environmental samples of water from Malta Lake in
Poznan, Poland (strain Ac43), were cultured on a non-nutrient
agar covered by bacteria Enterobacter aerogenes at a temper-
ature of 28 °C. After 2-3 days of culture, amoebae were
washed and used for infection or research.

Genotyping of Acanthamoeba

The DNA amplification was performed using genus-specific
primers previously described by Schroeder et al. (2001). A set
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of primers that included the forward JDPI (5‘GGCCCAGA
TCGTTTACCGTGAA'3) and the reverse primer JDP2 was
used (S TCTCACAAGCTGCTAGGGAGTCA'3) for genetic
characterization targeting an ~450-bp fragment of the
Acanthamoeba 18S rRNA gene. Amplification involved use
of a 25-ul suspension of the following reagents: 2.5 mM
MgCl,, 0.6—1 uM of each primer, 0.2 mM of each
deoxynucleotide triphosphate, and 0.5 U of AmpliTaq Gold
DNA polymerase. A clinical isolate of A. castellanii belong-
ing to the T4 genotype isolated from a keratitis patient (ATCC
00000) was used as a positive control. A negative control
consisting of a reaction mixture without a DNA template
was included. PCR was carried out using a GeneAmp 2400
thermocycler. Two PCR products were cleaned and sequenced
in both directions with the same set of primers. Sequencing
was performed with BigDye Terminator v3.1 on an ABI Prism
3130XL Analyzer (Applied Biosystems, USA). Trace files
were checked and edited using FinchTV 1.3.1 (Geospiza
Inc., Seattle, USA). Contigs were aligned and manually as-
sembled in GeneDoc v. 2.7.000 (Nicholas et al. 1997). Next,
the gene sequence fragments of the Acanthamoeba isolates
were compared with the reference sequences deposited in
GenBank (National Center for Biotechnology Information).

Animals

BALB/c mice, 2-3 weeks old, body weight 10-15 g, were
bred and housed in our animal laboratory, which ensured
approximately constant temperature, humidity, and ad libitum
access to standardized granulated food and water. Mice lightly
anesthetized were intranasally infected with one drop of
suspension containing 2 x 10* amoebae. Control mice were
given the same volume of physiological solution. After
inoculation, the animals were monitored constantly.

The experimental material consisted of brains from mice
infected with two different strains of Acanthamoeba isolated
from a patient with AK and from environmental samples.

The mice (n = 54) were divided into nine groups:

* Control group 0 (n=6)—uninfected, 0 days post-
Acanthamoeba infection (0 dpi)

The mice infected by Acanthamoeba strain Ac55:

* Group I (n=6)—2 dpi

*  Group II (n=6)—4 dpi
Group III (n=6)—16 dpi
*  Group IV (n=6)—30 dpi

The mice infected by Acanthamoeba strain Ac43:

* Group I' (n=6)—2 dpi
e Group II' (n=6)—4 dpi

e Group III' (n=6)—16 dpi
e Group IV' (n=6)—30 dpi

The section infected mice with Acanthamoeba at 2, 4, 16,
and 30 dpi, depending on the symptoms of infection such as
lack of mobility, depression, turning in circles, tousled
(matted) hair, anorexia, or emaciation (wasting).

The study was approved by the Local Ethics Committee for
Scientific Experiments on Animals in Poznan (Poland).

Evaluation of infection of animals

Fragments of brains were collected from experimental animals
at2, 4, 16, and 30 dpi.

Sterile collected tissues were applied on 1.5 % agar plates
covered with a layer of E. aerogenes. The agar plates were
incubated at 25 °C. Growth of Acanthamoeba on agar plates
was observed by microscope at x40—100 magnification.
Animals were regarded as infected when the presence of
amoeba was identified on the agar.

Isolation of RNA and conversion of cDNA by reverse
transcription

The expression of TLR2 and TLR4 genes at the mRNA level
in brains in mice of five groups (control and 2, 4, 16, 30 dpi)
was examined using reverse transcription polymerase chain
reaction (RT-PCR). The brains were homogenized in liquid
nitrogen, and total RNA was isolated according to the manu-
facturer’s instructions (Qiagen, Germany). One microgram of
RNA from segments of lungs was reverse transcribed with an
oligo (dT) primer in a 20-ul reaction (first-strand cDNA
synthesis using M-MLV RT kit; Invitrogen, CA) to obtain
cDNA. Successful cDNA conversions were confirmed by
amplification using conventional PCR (GeneAmp PCR
System 2400, Applied Biosystems).

Real-time PCR

The expression of TLR2 and TLR4 genes in fragments of
brain was measured by Q-PCR. This method enables both
detection and quantification of gene expression at the
mRNA level. Q-PCR was carried out in a LightCycler real-
time PCR detection system from Roche Diagnostic GmbH
(Mannheim, Germany) using SYBR Green I as detection
dye, and target cDNA was quantified using a relative quanti-
fication method using a calibrator. The calibrator was prepared
as a cDNA mix from all samples, and successive dilutions
were used to create a standard curve as described in the
Relative Quantification Manual, Roche Diagnostics GmbH
(Mannheim, Germany). The housekeeping gene PBGD was
amplified as the reference gene for mRNA quantification. The
quantity of TLR2 and TLR4 transcripts in each sample was
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standardized by the geometric mean of PBGD transcript level.
For amplification, 1 pl of total (10 ul) cDNA solution was
added to 5 pul of LightCycler 480 DNA SYBR Green I Master
(Roche) as well as primers for TLR2, TLR4, and PBGD. One
RNA sample of each preparation was processed without RT
reaction to provide a negative control in subsequent PCR
series. Primers for TLR2 were forward 5'-AAA GAT GTC
GTT CAA GGA GG-3' and reverse 5'-ATT TGA CGC TTT
GTC TGA GG-3' (product—161 bp); TLR4 forward 5-TTC
TTC TCC TGC CTG ACA CC-3'" and reverse 5'-CTT TGC
TGA GTT TCT GAT CCA T-3' (product—94 bp); and PBGD
forward 5'-TGG ACC TAG TGA GTG TGT TG-3' and re-
verse 5'-GGT ACA GTT GCC CAT CTT TC 3’ (product—
138 bp). Real-time data were collected and analyzed using the
Excel program. The amounts of TLR2 and TLR4 mRNA are
expressed as the multiplicity of these cDNA concentrations in
the calibrator.

Immunohistochemical staining

Paraffin-embedded sections (3—5 wm) of brains from mice
infected with Acanthamoeba isolated from patients and from
Malta Lake (control and 2, 4, 16, 30 dpi) were immunostained
for visualization of TLR2 and TLR4 proteins.
Immunohistochemistry was performed using specific pri-
mary rabbit polyclonal antibodies against TLR2 and TLR4
(Santa Cruz Biotechnology, Inc., cat. no. sc-10739 and sc-
30002) in a final 1:500 dilution. Firstly, the deparaffinized
sections were microwave irradiated in citrate buffer (pH 6.0)
to heat induce epitope retrieval. After slow cooling to room
temperature, slides were washed in PBS twice for 5 min
and then incubated with primary antibodies overnight
(4 °C). On the next day, sections were stained with an
avidin-biotin-peroxidase system with diaminobenzidine
as the chromogen (Rabbit ABC Staining System, Santa
Cruz Biotechnology, Inc., cat. no. sc-2018) in conformity
with staining procedure instructions included. Sections
were washed in distilled H,O and counterstained with
hematoxylin. For a negative control, specimens were proc-
essed in the absence of primary antibodies. Positive stain-
ing was defined microscopically by visual identification of
brown pigmentation. The IHC-stained sections were exam-
ined by light microscope (Leica, DM5000B, Germany).

Statistical analysis

The obtained results were analyzed statistically using Statistica
6.1 software. Arithmetic mean and standard deviation (SD)
were calculated for each of the studied parameters. Two-
group testing was performed using Student’s ¢ test. A value
of P<0.05 was considered statistically significant.
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Results

The macroscopic observation confirmed edema and hy-
peremia in the brain hemispheres of mice infected with
Acanthamoeba.

Genotyping of Acanthamoeba

The DNA was isolated from two Acanthamoeba-positive
samples. Amplicons of the fragment of 18S rRNA gene were
obtained from the Acanthamoeba Ac43 and Ac5S5 isolates
from the water and corneal scrape, respectively. The results
showed that sequences obtained from Acanthamoeba Ac43
isolates shared 100 % identity to the sequences from the
isolates of Acanthamoeba obtained from meadow soil
(KF928953), gill tissue (HM363628), air conditioner
(GQ397470), and river water (EU273824). The comparison
of the sequence at the same molecular marker of the
Acanthamoeba Ac5S5 isolate from the human with the se-
quences deposited in GenBank also showed 100 % identity to
the sequences of this gene of the parasite isolated from infected
liver of pheasant Tragopan temminckii (GQ889265), corneal
(KF318460, DQ087297) and contact lens (DQ087296)
scrapings, and an environmental sample (EU377583) (Table 1).

The Acanthamoeba sequences from the isolates obtained
from Malta Lake, Poznan (Ac43) and corneal scraping (Ac55)
were deposited in GenBank (NCBI) under accession numbers
KP120879 and KP120880, respectively.

Expression of TLR2 and TLR4 genes

This study showed that the levels of mRNA expression of
Toll-like receptor (TLR2 and TLR4) genes in the control
group (uninfected mice) were very similar (Figs. 1 and 2).

In the brain of mice infected by Acanthamoeba strains of
Ac55 and Ac43, it was observed that the level of mRNA
expression of TLR2 statistically increased only at 2 dpi, and
at 4 dpi, it was higher but without statistical significance,
whereas at 16 and 30 dpi, it was at a similar level compared
with the control group (Fig. 1a, b).

The levels of mRNA expression of TLR4 in the brains
from the infected mice statistically increased only at 2 dpi,
whereas at 4, 16, and 30 dpi, it was at a similar level compared
with uninfected mice (Fig. 2a, b).

In the brains of mice infected by Acanthamoeba spp.
isolated from a patient with Acanthamoeba keratitis (Ac55)
and Malta Lake (Ac43), the levels of expression of TLR2
were statistically higher than the levels of expression of TLR4.

Immunohistochemical staining

The results of the immunohistochemical reactions, presented in
Fig. 3¢, d, g, h, k, 1, o, p, show that brains (neocortex) of mice



Parasitol Res (2016) 115:4335-4344

4339

Table 1

Results of genotyping of Acanthamoeba sp. from water and clinical sample

Sampling

Isolate, accession no. Published sequences in the GenBank

Accession no. Sampling, isolate

Region of origin References

Malta Lake, Poznan Ac43, KP120879 KF928953 High altitude meadow soil, Acanthamoeba  China Geisen et al. (2014)
sp., Tib121
HM363628  Gill tissue, rainbow trout, Acanthamoeba Germany Dykova et al. (2010)
sp., GERF3
GQ397470 Air conditioner water, Acanthamoeba Slovakia Nagyova et al. (2010)
sp., AcaVNOS8
EU273824 River water, upstream from a drinking France Thomas et al. (2008)
water production plant, Acanthamoeba
sp., CRIB-22
Corneal scrape Ac55, KP120880 GQ889265 CDCV600, liver of a Temminck’s tragopan, USA Visvesvara et al. (2010)
Acanthamoeba sp., genotype: T4
KF318460 Corneal surface tissue, Acanthamoeba sp.,  Brazil Mafra et al. (2013)
1 FRC-2013
EU377583 Biofilm, Acanthamoeba sp., CRIB53 Switzerland Corsaro et al. (2009)
DQ087296 Contact lenses and contact lens case, France Yera et al. (2008)
Acanthamoeba sp., S6
DQO087297 Corneal scraping, Acanthamoeba France Yera et al. (2007)

sp., 222BAL

infected with Acanthamoeba exhibited changes in TLR2 and
TLR4 (Fig. 3¢, f, 1, j, m, n, g, r) intensity in comparison to the
control group (Fig. 3a, b).

In control mice brains, both Toll-like receptors were
expressed in epithelium of neural blood vessels (Fig. 3a, b;
red arrows); TLR2 was sporadically observed in neurons and
glial cells (black and blue arrows, respectively). In these
groups, TLR4 expression was slightly more intensive than
TLR2.

In the neocortex of mice infected by Acanthamoeba strain
Ac55, TLR2 (Fig. 3¢, g, k, 1, 0) was located mainly in neurons
(black arrows); sporadically glial cells (blue arrow) and also
infrequently endothelial cells of capillaries (red arrow) were
low TLR2-positive. The TLR2 immunoexpression was most
intense at 2 and 4 dpi (Fig. 3c, g), and the immunointensity
decreased during the time of infection. At 16 and 30 dpi
(Fig. 3k, o), the level of TLR2 expression was quite similar
to the control group (Fig. 3a) but appeared to be lower.

A brown pigmentation indicated that TLR4 immunohisto-
chemical staining within the neocortex of brains of mice in-
fected by Acanthamoeba strain Ac55 (Fig. 3e, 1, m, q) was the
highest at 2 dpi (Fig. 3e) and markedly decreased during the
time of infection (Fig. 31, m, q). The immunoexpression was
observed in neurons (black arrows), glial cells (blue arrows),
and capillaries (red arrows). The number of TLR4-positive
cells (neurons, glial, and endothelial) was higher than in
TLR2 immunostaining experiment.

In the neocortex of mice infected by Acanthamoeba strain
Ac43, TLR2 (3, D, H, L, P) was located mainly in neurons
(blue arrows) and sometimes in glial cells (blue arrows) and

endothelial cells (red arrows). The highest expression was
noted at 2 dpi (Fig. 3d), lower at 4 dpi (Fig. 3h), and lower,
similar to the control, at 16 and 30 dpi (Fig. 31, p).

TLR4 expression in neocortex of mice infected by
Acanthamoeba strain Ac43 (Fig. 3f, j, n, r) was analogous to
TLR4 expression within the group of mice infected by
Acanthamoeba strain Ac55. The highest expression was
observed at 2 dpi (Fig. 3f) and was much lower at the
subsequent days post-infection (Fig. 3j, n, r). Neurons (black
arrows) and glial (blue arrows) and endothelial (red arrows)
cells were immunopositive.

The changes of immunoexpression of Toll-like receptors
were also observed in ependymocytes of the choroid plexus
(Fig. 4a—h, black arrows). The highest TLR2 and TLR4
expression levels were at 2 dpi (Fig. 4a—d), decreasing during
the time of infection and reaching a minimum at 30 dpi
(Fig. 4e—h). TLR expression was much more intense in cho-
roidal ependymocytes of mice infected by Acanthamoeba
strain Ac43 (Fig. 4b, d, f, h) than Ac55 (Fig. 4a, c, e, g).
During the period of infection, TLR expression in
ependymocytes fell, but in connective tissue of the choroid
plexus, there appeared immunopositive cells (Fig. 4f, g, h; blue
arrows), possibly dendritic cells.

Discussion
The results of this study indicate a neurotropic character of

both strains of Acanthamoeba (Ac43 and Ac55). In all the
infected mice, Acanthamoeba spp. were confirmed in the
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Fig. 1 Expression of TLR2 gene at the mRNA level in brains isolated
from uninfected and Acanthamoeba-infected mice from patient with
Acanthamoeba keratitis (strain Ac55; a) and Malta Lake (strain Ac43;
b). Brains were dissected from mice at 2, 4, 16, and 30 dpi. Expression
level of TLR2 gene was determined by Q-PCR relative quantification
analysis evaluated using a calibrator (cDNA mix from all samples). The
quantify of TLR2 transcript in each sample was standardized to the
amount of PBGD cDNA as the internal control. The amounts of TLR2
mRNA are expressed as the multiplicity of these cDNA concentrations in
the calibrator. Each sample was determined in triplicate. Data represent
mean + SD and are representative of groups of six animals in an
experiment. *P <0.05, compared with the control value derived from
uninfected mice (Student’s ¢ test)

brain. Also, Kasprzak et al. (1974) indicate the brain as the
primary site of infection by intranasal inoculation. The most
common microscopic changes in the brain include blood effu-
sion resulting from damage to the capillary walls (Rucka 1974;
Gieryng and Gieryng 1987; Gornik et al. 2005). Gornik et al.
(2005) found, in parts of the meninges and perivascular space
of mice infected with Acanthamoeba spp., trophozoites of
Acanthamoeba as well as neutrophils, macrophages, plasma
cells, and single multinucleate giant cells.

This study reports the first documentation of the expression
of TLR2 and TLR4 mRNA and protein in the brains of
Acanthamoeba spp.-infected mice. The CNS is an immuno-
logically unique organ because of the presence of the blood—
brain barrier (BBB) and the absence of a classically defined
lymphatic drainage system (Mishra et al. 2006). Parasitic in-
fection of the CNS (such as malaria, African trypanosomiasis,
neurocysticercosis, and amoebic encephalitis) is a major cause
of mortality worldwide, second to HIV infection (Mishra et al.
2009). During infection, cells of the CNS have the ability to
produce inflammatory mediators such as chemokines,
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Fig. 2 Expression of TLR4 gene at the mRNA level in brains isolated
from uninfected and Acanthamoeba-infected mice from patient with
Acanthamoeba Keratitis (strain Ac55; a) and Malta Lake (strain of
Ac43; b). Brains were dissected from mice at 2, 4, 16, and 30 dpi.
Expression level of TLR4 gene was determined by Q-PCR relative
quantification analysis evaluated using a calibrator (¢(DNA mix from all
samples). The quantify of TLR4 transcript in each sample was
standardized to the amount of PBGD ¢cDNA as the internal control. The
amounts of TLR4 mRNA are expressed as the multiplicity of these cDNA
concentrations in the calibrator. Each sample was determined in triplicate.
Data represent mean + SD and are representative of groups of six animals
in an experiment. *P <0.05, compared with the control value derived
from uninfected mice (Student’s ¢ test)

adhesion molecules and cytokines, and costimulatory mole-
cules during infection (Takeda et al. 2001; Dabbagh & Lewis
2003; Chavarria & Alcocer-Varela 2004). In the brain, TLRs,
including TLR2 and TLR4, are expressed on microglia, astro-
cytes, and oligodendrocytes (Bsibsi et al. 2002a, 2002b;
Bowman et al. 2003; Olson & Miller 2004). However, in neu-
rons, TLR2 and TLR4 are expressed (Tang et al. 2007). The
TLR family of proteins plays an important role in host innate
immunity (Hoebe et al. 2004). Once engaged, signaling
through TLRs starts from the Toll/interleukin-1 receptor
(TIR) domain (Medzhitov 2001) and involves one of four
adaptor protein: myeloid differentiation factor 88 (MyD8S),
MyD88-adaptor-like/TIR-associated proteins (MAL/TIRAP),
Toll-receptor-associated activator of interferon (TRIF), and
Toll-receptor-associated molecule (TRAM) (Mishra et al.
2009). Moreover, it has been proposed that TLRs control the
switch from the innate to the adaptive immune response
(Yarovinsky et al. 2005).

In this study, we observed a statistically increased level
of expression of TLR2 as well as TLR4 mRNA at 2 dpi in
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Fig. 3 Immunoexpression of TLR2 TLR4

Toll-like receptor 2 (TLR2) (a, ¢, Acanthmoeba Acanthmoeba Acanthmoeba Acanthmoeba
strain of Ac43

d, g, h, k, 1, o, p) and Toll-like
receptor 4 (TLR4) (b, e, f, i, j, m,
n, q, r) within neocortex of
control (a, b) and mice infected
with Acanthamoeba spp. isolated
from patient with Acanthamoeba
keratitis strain Ac55 (¢, e, g, i, k,
m, o, q) and from Malta Lake
strain Ac43 (d, f, h, j, L, n, p, r) in
2,4, 16, and 30 dpi. Exemplary
immunopositive cells: neurons—
black arrows; glial cells—blue
arrows; endothelial cells of neural
capillaries—red arrows. Intensity
of IHC reaction was highest in the
2-dpi group and decreased during
the period of infection. Objective
magnification x40

strain of Ac55

0 dpi

2 dpi

4 dpi

16 dpi

30 dpi

the brains of mice infected with two different strains of
Acanthamoeba. In Acanthamoeba-infected mice, TLR2
and TLR4 expression was detected in neurons, glial cells,
and endothelial cells of the neocortex. It is also interesting
that TLR2 and TLR4 were more intensively expressed in
ependymocytes of the choroid plexus of infected mice at
2 dpi.

Fig. 4 Immunoexpression of
Toll-like receptor 2 (TLR2) (a, b,
e, f) and Toll-like receptor 4
(TLR4) (¢, d, g, h) within choroid
plexus of mice infected with
Acanthamoeba spp. isolated from
patient with Acanthamoeba
keratitis (strain Ac55) (a, ¢, e, g)
and from Malta Lake (strain
Ac43) (b, d, £, h) at 2 and 30 dpi.
Choroidal ependymocytes—
black arrows; interstitial cells
(possibly dendritic cells)}—blue
arrows. Intensity of IHC reaction
was the highest in 2 dpi groups
and very low in 30 dpi groups.
Objective magnification x40

Acanthmoeba
strain of Ac55

2 dpi

TLR2

Acanthmoeba
strain of Ac43

strain of Ac55 strain of Ac43

Amin et al. (2012) reported that TLR2/9-MyD88-mediated
signaling participates in intracerebral control of parasite load
in the brain of 7. brucei-infected mice (Amin et al. 2012).
Moreover, Bafica et al. (2006) found that the same TLRs (2
and 9) cooperate in the control of infections by an intracellular
parasite, such as 7. cruzi. However, TLR2 and 9 but not TLR4,
5, and 7 were involved in cerebral malaria (CM) infection

TLR4

Acanthmoeba
strain of Ac43

Acanthmoeba
strain of Ac55

e
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using Plasmodium berghei ANKA (PbA) (Coban et al. 2006).
In contrast with the above results, Lepenies et al. (2008)
demonstrated that the induction of CM is independent of
TLR2, 4, and 9 caused by P. berghei ANKA infection.
Moreover, human malaria is associated with higher expression
levels of TLRs 1, 2, 4, and 8 and reduced levels of TLRs 3 and
5 (Ockenhouse et al. 2006; Loharungsikul et al. 2008).
Additionally, other results suggested that TLR1, 2, 4, 6, and
9 are not independently essential for control of 7. gondii
infection. This result is in contrast with a study finding that
TLR2 plays a role in the protective immunity against 7. gondii
infection in the lungs, but its protective function in this organ
remains to be clarified (Mun et al. 2003). Importantly, Hitziger
et al. (2005) suggested that different results may result from
different strains, dose, and route of administration. Particularly,
TLR2 is not an essential molecule for protective immunity to
low-dose infection, but TLR2 is an essential molecule for pro-
tective immunity to high-dose infection of 7. gondii (300 cysts
or more) (Mun et al. 2003). A further study showed that
TLRI11-/— and TLR2/4 double knockout mice display rela-
tively increased susceptibility to infection with a simultaneous
decrease in IL-12 along with an increase in the number of brain
cysts (Debierre-Grockiego et al. 2007; Yarovinsky 2008).
It is worth noting that tachyzoite heat shock proteins and other
partially purified tachyzoite preparations activate TLR4 and
TLR2 (Aosai etal. 2002; Del Rio et al. 2004). Recently, a study
found that TLR4 might be involved in inflammatory reactions
of brain injury to chronic 7 gondii infection of rats (Zhou et al.
2012). Another study, which involved a comprehensive
analysis of TLR expression in the normal and parasite
infected brain in a mouse model of neurocysticercosis
(Mesocestoides corti), suggested a role for TLRs in the
interplay of immune cells and CNS cells during infection.
Above study indicated that TLRs were differentially
distributed among various CNS cell types upon infection,
e.g., TLR2 was localized to nervous tissue cells,
particularly astrocytes, but TLR4 was localized to
microglia and neurons (Mishra et al. 2006).
Additionally, among all TLRs, TLR2 expression was
induced first and was substantially upregulated in the
brain during murine neurocysticercosis (Mishra et al.
2009). Moreover, the results of Gundra et al. (2011)
demonstrated that TLR2-mediated responses help to miti-
gate not only CNS pathology but also mortality due to
infection in murine NCC.

In conclusion, the alternative in the level of expression of
TLR2 and TLR4 may imply the role of the innate immune
system during parasitic infection. A family of proteins called
TLRs plays an important role in the induction of inflammatory
cytokines during infection, such as by parasites. Increased
levels of TLR2 and TLR4 mRNA expression in infected mice
suggested the involvement of these TLRs in the recognition of
Acanthamoeba PAMPs.

@ Springer
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