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Abstract Entamoeba histolytica is the causative agent of
amoebic dysentery and liver abscess. The medium for its axe-
nic culture contains glucose as energy source, and we ad-
dressed the question whether E. histolytica can also use fruc-
tose instead. As the amoebic hexokinases do not phosphory-
late fructose, a separate fructokinase is essential. The genome
project revealed a single candidate gene encoding an
E. histolytica homolog of bacterial fructokinases. This gene
was cloned, and the recombinant enzyme had a magnesium-
dependent fructose 6-kinase activity (EC 2.7.1.4) with a K,
for fructose of 0.156 mM and a V,.x of 131 U/mg protein.
Recombinant fructokinase also showed a much weaker
mannokinase activity, but no activity with glucose or galac-
tose. The amoebae could be switched from glucose to fructose
medium without any detectable consequence on doubling
time. Fructokinase messenger RNA (mRNA) was modestly
but significantly upregulated in amoebae switched to fructose
medium as well as in fructose-adapted E. histolytica.

Keyword Entamoeba histolytica - Glucose - Fructose -
Fructokinase - Hexokinase
Introduction

The protozoan parasite Entamoeba histolytica is the cause of
amoebic dysentery and liver abscess. In an older study (Walsh

Electronic supplementary material The online version of this article
(doi:10.1007/s00436-015-4383-5) contains supplementary material,
which is available to authorized users.

J. Matt - M. Duchéne (><])

Institute of Specific Prophylaxis and Tropical Medicine, Center for
Pathophysiology, Infectiology and Immunology, Medical University
of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria

e-mail: michael.duchene@meduniwien.ac.at

1986), between 36 and 50 million cases of disease and up to
110,000 deaths per year were estimated, whereas in a recent
assessment of the situation in 2010, the disease burden of
amoebiasis was estimated at 2.24 million disability-adjusted
life years (DALY's) lost annually (Hotez et al. 2014).

The intestinal parasite exists in a microaerophilic environ-
ment and lacks a functional Krebs cycle, mitochondria and
oxidative phosphorylation, so glycolysis is the major source
of energy (Reeves 1984). Accordingly, the two most com-
monly used media for the axenic culture of E. histolytica,
TYI-S-33 (Diamond et al. 1978) and YI-S (Diamond et al.
1995) both contain glucose as the major energy source.
Glucose is readily taken up (Serrano and Reeves 1974) and
phosphorylated by one of the two hexokinases (Ortner et al.
1995) as the first step of glycolysis. These two steps together
with glycogen breakdown were found to have the largest in-
fluence on the glycolytic flux (Pineda et al. 2014).

In the human host, under normal conditions, almost 100 %
of the glucose is absorbed before it reaches the colon and the
amoebae never encounter the glucose concentration provided
in the culture media. In contrast, fructose may be found at
varying but sometimes significant concentrations, at least in
case of fructose malabsorption, which is a common trait
(Latulippe and Skoog 2011).

Although E. histolytica can tolerate only modest oxygen
concentrations, the organism is able to consume oxygen and
its uptake is strongly stimulated by glucose (Weinbach and
Diamond 1974). The glycolytic pathway from glucose to
acetyl-CoA generates NADH. To regenerate NAD", NADH
can be used to reduce acetyl-CoA to ethanol, or NADH can be
transformed to NADPH which can reduce oxygen eventually
to H,O. Thus, acetyl-CoA can be spared for the generation of
an extra molecule of ATP, and this type of aerobic metabolism
provides a small benefit for the amoebae.

In E. histolytica, fructose stimulated the aerobic metabo-
lism at only 30 % of the level of glucose (Weinbach and
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Diamond 1974); moreover, the two hexokinase isoenzymes of
E. histolytica were unable to phosphorylate fructose
(Kroschewski et al. 2000), unlike the hexokinases of the hu-
man host (Middleton 1990). On the other hand, the
E. histolytica genome (Loftus et al. 2005) contains a gene
coding for a sugar kinase with similarity to bacterial
fructokinases. It was hypothesized that this gene was acquired
from bacteria by lateral gene transfer (Loftus et al. 2005).

In general, sugar kinases can be grouped into non-
homologous families: Two large families of hexokinases and
ribokinases plus a smaller family of sugar kinases with sub-
strate binding regions in common with homoserine kinases
were defined (Bork et al. 1993). Later, a fourth family of
receptor kinases (ROK), which also comprises sugar kinases,
was added (Titgemeyer et al. 1994). The E. histolytica
fructokinase belongs to the ribokinase family. In the NCBI
protein database (http://www.ncbi.nlm.nih.gov/protein/),
homologs of the E. histolytica fructokinase are present in
Entamoeba nuttalli, Entamoeba dispar, and Entamoeba
invadens. A BlastP search (http://blast.ncbi.nlm.nih.gov/
Blast.cgi) showed that the closest relatives outside the genus
Entamoeba were from Prevotella spp.; one of these gene
products was characterized as a fructose 6-kinase (EC 2.7.1.
4) (Fuse et al. 2013).

In the present study, we investigated whether E. histolytica
is able to grow in a medium with fructose replacing glucose
and if this medium switch would cause an upregulation of the
putative fructokinase gene on the messenger RNA (mRNA)
level and on the level of enzyme activity. The E. histolytica
fructokinase was expressed in Escherichia coli, and its sub-
strate specificity and kinetic parameters were measured.
Finally, the enzyme was localized by confocal
immunofluorescence.

Materials and methods
Microorganisms

E. histolytica trophozoites (HM-1: IMSS) were grown axeni-
cally in TYI-S-33 medium (Diamond et al. 1978) containing
10 % (v/v) bovine serum at 37 °C. The cells were harvested
after 48 h of incubation by centrifugation at 500 g for 5 min,
followed by two washings with phosphate-buffered saline
(PBS). For experiments performed with fructose-adapted
amoebae, the harvested trophozoites were transferred to me-
dium containing 10 g/1 (55.5 mM) fructose, instead of 10 g/l
(55.5 mM) glucose. Fructose-adapted cultures remained via-
ble for at least 12 months.

E. coli strain INVaF’ [F' endAl recAl hsdR17 (r, ,my")
supE44 thi-1 gyrA96 relA1 ®80lacZAM15 A(lacZYA-argF)
U169 N'] (Invitrogen, Life Technologies) was used for the
direct cloning of the PCR-amplified fructokinase gene.
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E. coli strain BL21-Al [F ompT hsdSg (rg mg ) gal dem
araB::T7RNAP-tetA] from the same provider was used for
protein expression.

Cloning and recombinant expression of E. histolytica
fructokinase

The coding sequence from the E. histolytica intronless
fructokinase gene (XM_646995) was amplified by PCR from
genomic E. histolytica DNA which was prepared using the
DNeasy Blood and Tissue Kit (Qiagen). The primers 5'-
CCG GCT AGC ATG AAC CAT AAA AAA ATT AAA
GTA G-3" and 5'-CAT CCA GCT CGA GTT AGT GAT
GGT GAT GGT GAT GTT TTA ACT CAG ATA AAA
GCT C-3" were used for amplification. PCR was performed
with Phusion High-Fidelity DNA Polymerase (Thermo
Scientific), and the resulting fragment was gel-purified with
the QIAquick Gel Extraction Kit (Qiagen) and cloned into the
vector pCR 1II using the TA Cloning Kit Dual Promoter
(Invitrogen, Life Technologies). The nucleotide sequence
was checked by sequence analysis (Microsynth, Balgach,
Switzerland). After digestion with EcoRI, purification was
performed with the QIAquick PCR Purification Kit, and the
product was ligated into the pET-17b vector (Novagen).

For expression, the plasmid was transformed into BL21-Al
competent E. coli. Induction was performed at ODgo0=0.4
with 0.5 mM isopropyl (3-D-1-thiogalactopyranoside (IPTG)
and 0.2 % (w/v) arabinose, followed by 4 h culture at 37 °C.
Cells were harvested by centrifugation at 5000x g for 10 min
at 4 °C, resuspended in native lysis buffer containing 50 mM
NaH,PO,, 300 mM NaCl, 10 mM imidazole, 100 pug/ml ly-
sozyme, pH 8.0, and disrupted in a mortar. The crude lysate
was centrifuged at 18,000 x g at 4 °C to remove debris, and the
recombinant protein in the supernatant with a predicted mo-
lecular mass of 33.6 kDa was purified under native conditions
using Ni-NTA Spin Columns (Qiagen), and the obtained frac-
tions were analyzed by 12 % SDS-polyacrylamide gel elec-
trophoresis (SDS-PAGE).

Quantitative reverse transcription PCR (qQRT-PCR)

The expression levels of fructokinase mRNA were examined
by qRT-PCR of amoebae either grown in normal medium
containing glucose or of amoebae adapted to fructose for
4 weeks. Moreover, expression levels of trophozoites freshly
switched to fructose medium for a total of 2 or 4 h were
investigated.

Total RNA extraction was performed with the GeneJET
RNA Purification Kit (Thermo Scientific). The RevertAid
First Strand cDNA Synthesis Kit (Thermo Scientific) was
used for reverse transcription. The reaction using a final total
RNA concentration of 25 ng/pl was run at 42 °C for 70 min
followed by 6 min inactivation at 70 °C. For dilution series,
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5 pl aliquots were diluted 1:10 and used in qRT-PCR, always
carried out in duplicate. The master mix consisted of 3.5 mM
MgCl,, 1xPCR-buffer B2 (Solis Biodyne), 0.2 mM dNTP
mix (Thermo Scientific), 0.8 xEva Green Dye (Biotium),
and 1U HOT FIREPol DNA Polymerase (Solis Biodyne).
To a final reaction volume of 20 ul, 2 ul template cDNA
and 250 nM each (final concentration) of forward and reverse
primer were added. For primer design, the program
Primer3Plus (http://www.bioinformatics.nl/cgi-bin/
primer3plus/primer3plus.cgi) was used, and the primers
were checked for secondary structures (http://mfold.rna.
albany.edu/?q=mfold/dna-folding-form) and dimers (http://
www.premierbiosoft.com/netprimer/). Primer-BLAST
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) was used
to check for pseudogenes or other homologs. The sense and
antisense primers were the following: 5-GGT GAG GTT
GTT TGG GAT TG-3' and 5-TTC CAA CAG CAA TGA
AAG CA-3'. qRT-PCR was carried out with the Roche Light
Cycler 480 II using the following protocol: 95 °C for 15 min,
45 cycles of (95 °C, 158,60 °C, 30 s, and 72 °C, 20 s), and a
final extension at 72 °C for 10 min. Experiments were per-
formed in triplicate, and positive and negative controls were
included in each run. Hexokinase 2 (XM_650873) was used
as reference gene, and statistical analysis was performed with
the program REST (“relative expression software tool”),
available at http://rest.gene-quantification.info/ (Pfaftl et al.
2002).

Kinetic parameters and substrate specificity

The assay for analysis of fructose phosphorylation activity
measured the ADP generated in the fructokinase reaction
(ADP assay). The decrease of NADH in the coupled lactate
dehydrogenase reaction was examined spectrophotometrical-
ly at 340 nm. The standard assay mixture (slightly modified
from Kroschewski et al. (2000)) contained 1 mM fructose,
2 mM ATP, 100 mM KCI, 10 mM MgCl,, 0.2 mM NADH,
0.4 mM phosphoenolpyruvate, 6 U/ml pyruvate kinase (from
rabbit muscle, Sigma-Aldrich), 6 U/ml lactate dehydrogenase
(from porcine heart, SERVA), and 50 mM Tris—HCI pH 8.0.
Ten micrograms of recombinant E. histolytica fructokinase
was added to a total volume of 1 ml, and the reaction was
monitored over a time period of 1 min. To optimize the reac-
tion, various pH (pH 6-9) and temperature conditions (RT,
37 °C) were tested at various fructose concentrations
(0.005-10 mM). Measurements with the addition of MnCl,
or CaCl, (10 mM) and in the absence of MgCl, were also
carried out. Moreover, the putative phosphorylation of glu-
cose, mannose, and galactose (starting concentration: 5 mM)
by the recombinant fructokinase was examined. All experi-
ments were carried out in triplicate, and mean values were
used for analysis. K, and V,,,, were calculated with the

software GraFit, Version 7 (Erithacus Software Ltd., UK),
using the non-linear curve fitting program.

To analyze if the product of the fructokinase reaction was
fructose 6-phosphate, the assay was coupled to the
phosphoglucose isomerase and glucose-6-phosphate dehydro-
genase reactions, and NADPH formation was measured. The
assay mixture contained 1 mM fructose, 2 mM ATP, 10 mM
MgCl,, 50 mM Tris—HCI pH 8.0, 0.2 mM NADP", 6 U/ml
glucose-6-phosphate dehydrogenase (from baker’s yeast,
Sigma-Aldrich), 0.1 U/ml phosphoglucose isomerase (from
baker’s yeast, Sigma-Aldrich), and 10 pug of recombinant
fructokinase.

Moreover, fructokinase activity was examined in lysates of
E. histolytica cells via measurements of NADPH formation,
using the same assay mixture as above. The activity was mea-
sured in amoebae either grown in fructose or in glucose. For
lysate preparation, trophozoites were washed in PBS twice,
resuspended in extraction buffer (50 mM Tris—HCI, 1 mM
EDTA, pH 7.4), and broken with a Dounce homogenizer.
After centrifugation at 14,000xg for 5 min, protein concen-
tration of the supernatant was determined with the Bradford
assay (Bio-Rad) and 500 ug of total lysate proteins were used
per reaction.

Immunofluorescence assay

E. histolytica trophozoites were cultured and fixed in 4-
well p-Slides (ibidi, Martinsried, Germany). Seven hun-
dred microliters of cell suspension was pipetted into the
wells, and the slides were incubated at 37 °C for 2 h in
a box containing Anaerocult A (Merck). The following
steps were all carried out at room temperature.
E. histolytica cells were fixed with 4 % (w/v) parafor-
maldehyde (Sigma-Aldrich) in PBS for 20 min, follow-
ed by a washing step with PBS. Afterwards, the cells
were incubated for 10 min with 50 mM ammonium
chloride (Sigma-Aldrich) and washed with PBS twice.
Incubation with 0.1 % (w/v) saponin (Sigma-Aldrich)
in PBS and mouse antiserum (Davids Biotechnologie,
Regensburg, Germany) 1:500 was performed for 1 h.
As negative control, pre-immune serum was used.
After three washings with PBS, amoebae were stained
with Alexa Fluor 488 goat anti-mouse IgG (Invitrogen,
Molecular Probes) 1:1000 in PBS for 30 min in the
dark. Then, three washing steps followed, and to stain
the nuclei, 5 min of incubation with 4',6-diamidino-2-
phenylindole (DAPI) (Sigma-Aldrich) 1:2000 in water
was performed. After three more washings, cells could
be stored in PBS in the dark. Microscopy was carried
out with the LSM 700 confocal microscope (Carl Zeiss,
Germany), and pictures were analyzed with ZEISS
Efficient Navigation (ZEN) imaging software.
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Fig. 1 SDS-PAGE showing the purification of recombinant E. histolytica
fructokinase. Lane 1 E. coli lysate from non-induced cells, lane 2 lysate
from arabinose and IPTG-induced cells, lane 3 flow-through fraction after
binding of proteins, lanes 4-5 washing fractions, lanes 6—7 elution fractions
containing the purified recombinant fructokinase. Marker proteins are
shown on the left side (M)

Results

E. histolytica trophozoites can be cultured in medium
containing fructose

For all experiments with fructose-adapted amoebae, cells were
grown in medium containing 10 g/l fructose instead of 10 g/l
glucose for 4 weeks. Until now, after more than 12 months, the
amoebae continue to proliferate well in the fructose medium.

Cloning and recombinant expression of the E. histolytica
fructokinase

As the E. histolytica hexokinases are unable to phosphorylate
fructose (Kroschewski et al. 2000), the putative fructokinase
was studied. Its open reading frame (XM_646995) was am-
plified by PCR, and the resulting fragment was engineered
into the pET-17b vector. The protein was expressed
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Fig. 2 E. histolytica fructokinase mRNA expression of amoebae grown
in medium containing fructose. E. histolytica trophozoites grown in
fructose for 2 h upregulated fructokinase mRNA by the factor 1.47

(»<0.05). Highest expression ratios were observed after 4 h of
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2 h Fructose

abundantly (around 15 pg/ml) in E. coli BL21-Al cells from
which it was purified under native conditions using Ni-NTA
Spin Columns. Stored at =20 °C in 50 % (v/v) glycerol, the
enzyme was stable for at least 6 months. SDS-PAGE analysis
of the purified protein revealed a band with an apparent mo-
lecular mass of slightly below 35 kDa, corresponding to the
calculated molecular mass of 33.6 kDa including the
hexahistidine tail (Fig. 1).

Upregulation of the fructokinase mRNA in amoebae switched
to fructose medium

E. histolytica trophozoites were switched from 10 g/l glucose
to 10 g/l fructose medium. Total RNA was extracted from the
original culture and after 2 and 4 h in fructose medium. After
reverse transcription, the relative expression of fructokinase
mRNA was determined by qRT-PCR (Fig. 2). In general, only
a modest upregulation of fructokinase expression was ob-
served, 1.47-fold after 2 h (p<0.05) and 1.81-fold after 4 h
(»<0.005). Compared to amoebae grown in glucose medium,
the expression of fructokinase mRNA in amoebae grown in
fructose medium for 4 weeks remained elevated 1.5-fold
(»<0.05). The efficiency of amplification was between 0.85
and 1.

Kinetic parameters and substrate specificity of E. histolytica
fructokinase

E. histolytica fructokinase was produced at an estimated 30 %
of the soluble protein in E. coli (Fig. 1), and about 1 ug of
recombinant protein per microliter of eluate could be purified
by nickel chelate affinity chromatography under native condi-
tions. For measurements of fructokinase activity, the ADP
generated was measured by coupled pyruvate kinase and lac-
tate dehydrogenase reactions, and the decrease of NADH was
examined spectrophotometrically at 340 nm. The activity of

*%

T 1

4 h Fructose  Fructose adapted

cultivation in fructose medium with a mean upregulation of 1.81
(»<0.005). Compared to cells grown in normal medium, fructose-
adapted amoebae showed an upregulation of 1.5 (p<0.05)
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the fructokinase was MgCl, dependent, with an optimum con-
centration of 10 mM (used in all experiments); no activity was
observed with the addition of CaCl,. A slightly diminished
fructokinase activity of 83 % was detected with 10 mM
MnCl, instead of MgCl, The activity was rising up to a sub-
strate concentration of 1 mM (108.5 U/mg; Fig. 3a, Table 1)
and dropping to about half of the maximum at 5 mM substrate
concentration. Calculated V.. of E. histolytica fructokinase
at 37 °C was 131.3£8.1 U/mg protein, and K,,, for fructose
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Fig. 3 a Fructose phosphorylation activity in the fructokinase reaction
with different substrate concentrations. Generated ADP was measured
spectrophotometrically via the decrease of NADH in the coupled
lactose dehydrogenase reaction, at the temperature optimum of 37 °C.
Highest fructokinase phosphorylation activity was observed with 1 mM
fructose (108.5 U/mg). Similar results were observed with 0.5 mM
fructose, whereas the activity decreased using lower concentrations. At
5 mM fructose concentration, the activity decreased to about half of that
observed at 1 mM. b Fructokinase reaction rate as a function of fructose
concentration (0.01-1 mM). Calculated V. of E. histolytica
fructokinase at 37 °C was 131.25 U/mg protein and K,;, was 0.156 mM.
¢ pH dependency of E. histolytica fructokinase. Maximal
phosphorylation activity was found at pH 7 (125.4+6.7 U/mg) whereas
lower activities were observed at pH 6 (81.3+6.7 U/mg), pH 8 (116.8+
6 U/mg) and pH 9 (108.5+3.3 U/mg)

was 0.156+0.032 mM (Fig. 3b). Maximal phosphorylation
activity was found at pH 7 (125.44+6.7 U/mg), used in all
assays. Lower activity was observed at pH 6 (81.3+6.7 U/
mg), pH 8 (116.8+6 U/mg) and pH 9 (108.5+3.3 U/mg)
(Fig. 3c¢).

Next, the activity of the recombinant enzyme with glucose,
mannose, and galactose was tested. Limited activity with man-
nose but no activity with glucose or galactose was observed
(Table 1). Moreover, the temperature optimum of E. Aistolytica
fructokinase was at 37 °C (data not shown).

Potentially, the fructokinase reaction can generate fructose
1-phosphate or fructose 6-phosphate. To test for the activity
generating fructose 6-phosphate, a coupled assay including
glucose-6-phosphate isomerase and glucose-6-phosphate de-
hydrogenase was performed and the formation of NADPH
during the latter reaction was measured by spectrophotometry.
The calculated activity at 1 mM fructose concentration was
26.3+1.1 U/mg protein with a turnover number of 14.3+£0.6
molecules per second, demonstrating the 6-phosphate forming
activity of E. histolytica fructokinase.

Fructokinase activity is elevated in lysates
from fructose-adapted E. histolytica trophozoites

Fructokinase activity was examined in E. histolytica lysates
via measurements of NADPH formation. In lysates of amoe-
bae adapted to fructose, the measured fructokinase activity
was 3-fold higher than in control amoebae. The calculated
activity in fructose-adapted trophozoites was 12.3+£1.5 U/mg
protein; the turnover number was 6.7+0.8 molecules per

Table 1  Activity of the recombinant E. histolytica fructokinase using
different substrates at various concentrations

Activity (umoles/min/mg) Turnover (molecules/s)

Fructose (mM)

5 50.5 27.5

1 108.5 59.1

0.5 106.5 58.0

0.1 53.1 29.0

0.05 27.1 14.8

0.01 53 29

0.005 0.0 0.0
Mannose (mM)

5 12.5 6.8

1 25 1.4

0.5 0.0 0.0
Galactose (mM)

5 0.0 0.0
Glucose (mM)

5 0.0 0.0
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second. Control amoebae grown in glucose showed a
fructokinase activity of 3.9+1.8 U/mg and a turnover number
of 2.1£0.5. So, the level of enzyme activity had risen more
than the mRNA level, indicating additional post-
transcriptional regulation.

E. histolytica fructokinase localizes to the cytoplasm
of trophozoites

Confocal immunofluorescence microscopy was used to test
the cellular localization of the fructokinase. A mouse serum
was raised against the recombinant enzyme, and antibody
binding was visualized with secondary anti-IgG antibodies
labeled with Alexa 488 fluorescent dye. For staining of the
nucleus, DAPI was used. Cytoplasmic localization was ob-
served in amoebae stained with the fluorescent dye (Fig. 4),
controls showed no staining (data not shown).

Discussion

Only limited information exists about the response of
E. histolytica to a lack of nutrients or changes in nutrient
supply. Short-term (12 h) glucose starvation of trophozoites
increased target cell lysis; moreover, the virulence of the tro-
phozoites in a hamster liver abscess model was augmented.
The lysine-rich protein KRiP1 was found to play an important
role in this augmentation of virulence (Tovy et al. 2011).
Deprivation of cysteine, a normal medium component, led to
drastic changes in the metabolism of trophozoites (Husain
et al. 2010). So far, it is not known, however, if this also
increases their virulence.

Active glycolysis in E. histolytica was associated with up-
take of oxygen. This respiration was maximally stimulated by
glucose (100 %), much less by galactose (68 %), and even less
by fructose (30 %) (Weinbach and Diamond 1974).
Nevertheless, in this study, we showed that the trophozoites
could be switched from glucose to fructose medium without

Alexa

Fructokinase

" soum

Fig. 4 Localization of E. histolytica fructokinase. Paraformaldehyde-
fixed trophozoites (right panel) were probed with a mouse serum against
recombinant E. histolytica, and bound antibodies were visualized with
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any problems, and we studied fructokinase as the tool to me-
tabolize fructose.

In the annotated E. histolytica genome database, there is a
single fructokinase gene. The intronless 885 bp gene codes for
a protein of 294 residues with a predicted molecular mass of
32.8 kDa and an isoelectric point of 5.87. Due to its associa-
tion with bacterial sequences in the phylogenetic tree, the
E. histolytica fructokinase gene was among the 96 candidates
for lateral gene transfer (Loftus et al. 2005) and remained one
up to this date with the availability of many more genomes
(Grant and Katz 2014). All Entamoeba spp. sequenced to this
date possess homologs of the fructokinase gene, so the event
of lateral gene transfer may have been an early one.
Interestingly, the single E. histolytica galactokinase gene is
also most similar to bacterial galactokinase genes.

The upstream and downstream flanking regions of the
E. histolytica fructokinase gene were retrieved from the
AmoebaDB Database (http://amoebadb.org/amoeba/) and
were found to be extremely A/T-rich (83-84 %) and short,
only 77 bp to the neighboring upstream gene transcribed from
the same strand, and only 64 bp to the downstream gene tran-
scribed from the opposite strand. Whereas, expectedly, no
putative signal peptide sequence, transmembrane domain, or
glycosylation site were found in the deduced protein se-
quence; the neural network-based program NetPhos 2.0
(Blom et al. 1999) predicted the amino acid residues Ser128,
Ser134, Ser146, Ser169, Serl177, Ser260, Ser273, Thr69,
Tyrd4, and Tyr220 as possible phosphorylation sites (score
>0.8, cutoff >0.5). A high number of predicted phosphoryla-
tion sites is quite usual for E. histolytica proteins which cor-
responds to the large number of predicted protein kinases in
this organism (Loftus et al. 2005).

In other protist parasites such as the trypanosomatids,
Plasmodium spp., Giardia intestinalis, and Trichomonas
vaginalis, no fructokinase gene was annotated or purified
and characterized biochemically. Of course, this does not ex-
clude such an activity by other sugar kinases. Two older stud-
ies on Leishmania spp. (Kreutzer and Christensen 1980) and
on Trypanosoma spp. (Kreutzer and Sousa 1981) report the

Alexa + DAPI

" soum " sopm
Alexa Fluor 488 anti-mouse 1gG (left panel). Nuclei were stained with

DAPI (middle panel). No staining was seen when the trophozoites were
stained with pre-immune serum (data not shown)


http://amoebadb.org/amoeba/

Parasitol Res (2015) 114:1939-1947 1945
detection of a fructokinase activity by isoenzyme electropho- § o

resis. Mertens and Miiller (1990) described a fructokinase in 8 E =
Tritrichomonas foetus, as well as a separate glucokinase. The =y ;ﬂb 3 - = 0

T. foetus fructokinase was dependent on ATP, with K,,, values g S g g “§ = SEG § 3

of 0.2 mM for fructose and 0.081 mM for ATP. o « 28 S g8 § = % o=

The E. histolytica fructokinase belongs to the large ribokinase g § § g 5 E” LE A B é 3 z
family which consists of carbohydrate kinases of various spec- ‘% 28 =5 % ESS 2 88 g§

Y Y P 2 |FS& 228 &ZF &4
ificities including fructokinases, phosphofructokinases,
ribokinases, glucokinases, ketohexokinases such as £
ketodeoxygluconate kinase, and adenosine kinases (Bork et al. g
1993). Several of these (Fuse et al. 2013; Caescu et al. 2004; But §-
et al. 2012; Fennington and Hughes 1996; Perez-Cenci and %
Salerno 2014; Qu et al. 2004) are listed in Table 2, together with %_ e o o omo o onme o
the E. histolytica fructokinase and few more bacterial Ec| 7" e oo e I o
fructokinases of the ROC type (Titgemeyer et al. 1994; Nocek i o
etal. 2011; Thompson et al. 1991; Sato et al. 1993; Scopes et al. g -
1985). A sequence comparison of the mentioned ribokinase-like g “ ok <
fructokinases is shown in Fig. S1. On one hand, similarities are T ‘§ X e mes e X -
obvious, especially in some fully conserved regions; on the other & N
hand, significant divergence exists. As an example, the LA)N N%
E. histolytica and Prevotella intermedia (Fuse et al. 2013) L &
sequences are 46.8 % identical on the amino acid level. % %

Table 2 shows some more similarities between the related & % &, .
fructokinases from E. histolytica and various bacteria. For in- X ?\) & ? ”8
stance, the E. histolytica enzyme also displayed a limited activity § Nﬁ” s N@ &A
with mannose besides the major fructokinase activity (Table 1). g N Ay PN

. . . = “bn = o 9 o o oo A en
Mannose-phosporylating activity was also observed in the 3 S .55 =58 5 .5 s o
ROC-type fructokinases from Lactococcus lactis (Thompson =
et al. 1991) and Streptococcus mutans (Sato et al. 1993), and a §
trace activity was found in Zymomonas mobilis (Scopes et al. & 2 g 2 % 3
1985). The maximum fructokinase activity of the E. histolytica .g g g g g §
enzyme was observed at 1 mM fructose and decreased signifi- é $ 90 9 90g 9 9 g g ; o)
cantly at 5 mM substrate concentration (Fig. 3a). Such substrate ) § <§ g8 888 g£g£88 88 £
inhibition was also observed in the fructokinase from potatoes é & EEE EEE EEE EE
(Renz and Stitt 1993). E. histolytica fructokinases and all the §
bacterial fructokinases mentioned in Table 2 required bivalent 2 % A — 0 — o~
ions for their activity, preferentially Mg*" with the exception of E ME|SS3 S S J33 33
Methylmicrobium alcaliphilum fructokinase which required i S
Mn®" for its activity (But et al. 2012). In total, the Vi, of 2 2|2 T8 2¥EE &3
E. histolytica was about average compared to the bacterial en- 21 g é
zymes, but the K, was lowest, allowing activity at lower fruc- z - = -
tose concentrations. Moreover, most species showed similar pH 'g 2% 8% %88 2
optima as found for E. histolytica; only the M. alcaliphilum E % = _§ _;i _§ % _§ _g é VY
enzyme (But et al. 2012) had a basic pH optimum. The temper- 3 E g é ;“9 5 éb ée éa 5 e g 22
ature optimum of the E. histolytica fructokinase corresponded to 2
the temperature of the human host; the enzyme with the highest § <
activity from Thermococcus litoralis (Qu et al. 2004) had the g g g -
highest optimum temperature of 80 °C. = § %5 < ;§ § . § 3 § 2

Recombinant E. histolytica fructokinase produced fructose g Ng é 5. § ?O 2‘ ‘§ 2 *§ £ 5
6-phosphate. On one hand, this is a direct intermediate of O SE§sE¥E $E: 8 ;
classical glycolysis and can be used for the generation of en- ~ § B § g E = 5 < g 2 § S 5
ergy. On the other hand, we noted that fructose 6-phosphate = gb g § §§ % § § £ 3 § § §
can be converted in one step to glucosamine 6-phosphate by a &l S S8 &84 833 &
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glucosamine—fructose-6-phosphate aminotransferase (candi-
date XP_650078) followed by acetylation by a glucosamine-
6-phosphate N-acetyltransferase (candidates XP 655194,
XP 649522, and XP_648703). The resulting N-
acetylglucosamine 6-phosphate can serve as a direct precursor
of chitin in the E. histolytica cyst wall.

The mRNA encoding this enzyme was significantly upreg-
ulated in amoebae adapted to fructose, as well as in trophozo-
ites cultured with fructose for 2 and 4 h, respectively (Fig. 2).
However, the highest fructokinase mRNA upregulation,
which was observed after 4 h, was only as high as about 2-
fold compared to amoebae grown in normal medium. Thus,
the parasite responded to chemical stress only with rather
moderate changes of mRNA expression. The fructokinase ac-
tivity measured in extracts from fructose-adapted
E. histolytica was about 3-fold higher than in control extracts,
pointing to some post-transcriptional regulation. Interestingly,
the effect of fructose on the fructokinase expression in
E. histolytica was comparable to what was found in bacteria
before. So, in Zymomonas mobilis, the mRNA level increase
was 3-fold whereas the fructokinase activity increased about
2-fold when the bacteria were grown on fructose instead of
glucose (Zembrzuski et al. 1992).

This work represents the first biochemical study on the
E. histolytica fructokinase. The enzyme allows the trophozo-
ites to grow on fructose which may be more abundant in the
human colon than glucose. In vitro, E. histolytica adapted to
fructose media without any problems and modestly upregu-
lated fructokinase expression on the levels of mRNA and en-
zyme activity. So, taken together, the E. histolytica
fructokinase is a new example for an important metabolic
activity, for which the gene was most likely acquired by lateral
gene transfer.
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