Catherine Trap • Baoquan Fu • Franck Le Guerhier Mingyuan Liu • Danielle Le Rhun - Thibault Romand • Catherine Perret • Radu Blaga • Pascal Boireau

Cloning and analysis of a cDNA encoding a putative serine protease comprising two trypsin-like domains of Trichinella spiralis

Received: 31 August 2005 / Accepted: 20 September 2005 / Published online: 10 December 2005
(C) Springer-Verlag 2005

Abstract

The cDNA encoding a putative serine protease, T_{s} SerP, was cloned by degenerative polymerase chain reaction and screening of the cDNA library from Trichinella spiralis adult-newborn larvae stage. Sequence analysis revealed the presence of two trypsin-like serine protease domains flanking a hydrophilic domain, with the catalytic triad residue histidine in the alpha domain substituted by an arginine residue. Southern blots indicated that this was a single copy gene in the parasite genome. Northern blots demonstrated a single 2.3 kb transcript during the muscle larvae and adult stages of T. spiralis. The recombinant protein from the $T_{s} S e r P$ beta domain ($\beta \mathrm{SerP}$) was produced but not recognised by T. spiralis-infected swine serum. An anti- β SerP polyclonal serum detected a 69 kDa polypeptide in the soluble antigens of T. spiralis muscle larvae. Immunolocalisation analysis located T_{S} SerP on the inner layer of the cuticle and oesophagus of the parasite, suggesting a potential role in its moulting and/or digestive functions.

Keywords Trichinella spiralis • Serine protease • Trypsin-like domain \cdot cDNA library \cdot Cloning

[^0]
Introduction

Proteases appear to be required for critical events in the life cycle of numerous protozoan and helminth parasites. Parasite proteases may be involved in varied aspects of host-parasite interactions, such as host tissue invasion, parasite nutrition, anti-coagulation and the evasion of host immune responses (McKerrow 1989; Trap and Boireau 2000). These proteins have therefore been investigated as potential targets for chemotherapy and vaccines against parasite infections (Coombs and Mottram 1997; Dalton et al. 2003).

Parasitic nematodes of the Trichinella genus are widespread in nature, infecting virtually all mammals and some carnivorous birds when these hosts ingest parasite-laden muscle tissues. The life cycle of Trichinella is reproduced in the same host and can be divided into three main stages: muscle larvae, adult worms and newborn larvae. After digestion by the host, muscle larvae migrate through the enterocytes, leaving an empty path behind them (ManWarren et al. 1997) like a tunnel in the cytoplasm of contiguous cells, suggesting the possibility of enzymatic activities. The transformation of muscle larvae into adult worms occurs within a couple of days in enterocytes. Newborn larvae are released a few hours after fecundation and invade the bloodstream of the host, to penetrate striated muscle cells. One striking characteristic of Trichinella is the transformation of host-striated muscle cells into nurse cells. The addition of excretory/secretory (E / S) products from newborn larvae or muscle larvae into a culture of myocytes elicits morphological changes in myotubes, such as the formation of nodular structures that contain numerous cavities, probably due to enzymatic digestion by parasitic proteases (Leung and Ko 1997).

Protease activities have been identified in E/S products and crude extracts of Trichinella spiralis (Criado-Fornelio et al. 1992; de Armas-Serra et al. 1995; Todorova et al. 1995; Todorova and Stoyanov 2000; Todorova 2000;

Moczon and Wranicz 1999; Ros-Moreno et al. 2000). These proteases probably play a crucial role in the development and survival of Trichinella. All these data indicate the importance of the cloning and characterisation of Trichinella proteases to studying their function. Recently, a serine protease (Romaris et al. 2002; Nagano et al. 2003) and a metalloproteinase (Lun et al. 2003) were cloned and identified from E/S products of T. spiralis muscle larvae. In the present study, we report on the cloning and analysis of a putative serine protease gene with two protease domains from T. spiralis (TsSerP). Our findings show that $T s S e r P$ is expressed during all three antigenic stages, and its potential role in host-parasite interactions, particularly with respect to moulting and digestion, is discussed.

Materials and methods

Parasite preparations
Muscle larvae (ML) of T. spiralis (ISS 534) were recovered from infected OF1 mice by the acid-pepsin digestion of striated muscles at 45 days post-infection (dpi). For Northern blot analysis, ML were recovered from infected mice at days 26, 31, 35, 41 and 47 dpi. Adult worms (Ad) were isolated from the small intestine of infected rats at 3 and 5 dpi. Newborn larvae (NBL) were isolated from adult worms at 5 dpi , and the pool of adult-newborn larvae (AdNBL) was concentrated by centrifugation.

RNA purification from T. spiralis
and cDNA library construction
Total RNA was extracted independently from approximately 150,000 ML, 20,000 Ad (3 dpi), 15,000 Ad (5 dpi) plus 100,000 NBL using a standard protocol as previously described (Vayssier et al. 1999). The poly (A) RNA was purified using the Oligotex Direct mRNA Midi Kit (Qiagen). A lambda ZAP II cDNA library of Ad-NBL was constructed according to the manufacturer's instructions (Stratagene).

Degenerative PCR and screening
of the Ad-NBL cDNA library
Primer 1 (5^{\prime}-GCT CAT GTT GGG CWK TC-3') and primer 2 (5^{\prime}-CCA YGA GTT RGC AAY RAK CC-3') derived from conserved protease sequences (Harrop et al. 1995) were used to amplify a cDNA fragment from the T. spiralis Ad-NBL cDNA library. After gel purification, the amplified DNA was radioisotope labelled and used to screen the cDNA library by plaque hybridisation. Positive clones were sequenced on both strands, and the nucleotide sequence and deduced amino acid sequence were analysed.

Southern blot and Northern blot analysis
Genomic DNA was isolated from T. spiralis ML, according to the protocol for the DNeasy Tissue kit (Qiagen). Approximately $10 \mu \mathrm{~g}$ of genomic DNA was digested with EcoRI or HindIII restriction enzymes and separated on a 1% agarose gel before being denatured and transferred onto a Hybond N+ membrane (Amersham). The DNA fragment of $T s S e r P$ (nucleotides 6-1126) amplified by polymerase chain reaction (PCR) was labelled using the AlkPhos Direct Labelling and Detection System (Amersham) and hybridised overnight with the membrane at $55^{\circ} \mathrm{C}$. The membrane was washed under high stringency conditions, and then CDP-Star (Amersham) was added to enable direct exposure to x-ray film for 1 h at room temperature. Total RNA from Ad and ML was denatured in $10 \times$ MOPS, 40% formaldehyde and deionised formamide at $65^{\circ} \mathrm{C}$ for 10 min , before being separated on a 1% agarose gel prepared under native conditions ($1 \times$ MOPS) and transferred onto Hybond $\mathrm{N}+$ membranes (Amersham). The membranes were hybridised and washed as described for Southern blot analysis.

Expression of recombinant protein
and production of antibody
The T_{s} SerP beta domain was cloned in frame with the thioredoxin protein (Trx) tag into the pET32 Xa/LIC vector (Novagen) using the following primers: SERLIC1 (5'-GGT ATT GAG GGT CGC TCA AAC AGA GTG TCT GGT GGA TGG-3') and SERLIC2 (5'-AGA GGA GAG TTA GAG CCT AGG CAG AGG AGT CAT AAA TCT GC-3') and then expressed in the AD 494 strain of E. coli. The Trx- β SerP fusion protein was purified using the Ni-NTA Spin Columns kit (Qiagen) under denaturing conditions. The immunization protocol consisted of two subcutaneous injections at an interval of 3 weeks in mice, using $50 \mu \mathrm{~g}$ of the purified Trx- β SerP fusion protein emulsified with Montanide ISA 50 V adjuvant (SEPPIC). Sera were collected 6 weeks after a booster injection and stored at $-20^{\circ} \mathrm{C}$ until use. Negative control serum samples were obtained from non-immunized animals.

Western blot analysis

Somatic antigens and E/S products of Trichinella were prepared as previously described (Boireau et al. 1997). The antigen preparations, including T. spiralis ML soluble and E/S antigens and the recombinant proteins, were separated on 12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) before being electrophoretically transferred onto Hybond C extra membranes (Amersham). The membranes were then blocked and incubated with 1:100 diluted anti- β SerP mice sera or swine sera
experimentally infected with 10,000 T. spiralis ML. After washing, the membranes were incubated with goat antimouse or anti-swine immunoglobulin G (IgG) alkaline
phosphatase (AP) conjugate ($1: 5,000$). Bonded AP was developed in nitroblue tetrazolium/bromochloroindoyl (NBT/BCIP, Interchim) phosphate substrate.

Fig. 1 Nucleotide and the deduced amino acid sequences of $T_{s} S e r P$ cDNA. Signal peptide is in bold type. The polyadenylation signal is double underlined. The amino acids involved in the catalytic triad of the trypsin-like domains are boxed (R88, D142, S233 for the α domain; H389, D444, S533 for the conserved β domain). The asparagine residue of the N-glycosylation sites are indicated by asterisks (N78, N379). The position of the SERLIC1 and SERLIC2 primers used to produce the Trx- β serP recombinant protein is underlined. The nucleotides and amino acids are numbered along the upper and lower of the margins, respectively

		$\begin{aligned} & \text { ATG A } \\ & \mathbf{M} \end{aligned}$	$\begin{gathered} A A A \\ \mathbf{K} \end{gathered}$	ACT	GTA	$\begin{gathered} \text { ATA } \\ \text { I } \end{gathered}$	$\begin{gathered} \text { TGC } \\ \mathrm{C} \end{gathered}$	$\begin{gathered} \text { ATT } \\ \text { I } \end{gathered}$	$\begin{gathered} \text { TTA } \\ \text { L } \end{gathered}$	$\begin{gathered} \text { CTT } \\ \text { L } \end{gathered}$	$\begin{gathered} \text { CTT } \\ \text { L } \end{gathered}$	$\begin{gathered} \mathrm{CCA} \\ \mathrm{P} \end{gathered}$	$\begin{gathered} \text { TTA } \\ \text { L } \end{gathered}$	$\begin{gathered} \text { ACT } \\ \mathrm{T} \end{gathered}$	$\begin{gathered} \text { ATA } \\ \text { I } \end{gathered}$	$\begin{gathered} \text { CTT } \\ \text { L } \end{gathered}$	$\begin{gathered} \text { GCA } \\ \mathbf{A} \end{gathered}$	$\begin{gathered} \text { CTA } \\ \text { L } \end{gathered}$	$\begin{gathered} \text { TCA } \\ \mathrm{S} \end{gathered}$	$\begin{gathered} \text { GAT } \\ \text { D } \end{gathered}$	$\begin{gathered} \text { GAC } \\ \mathrm{D} \end{gathered}$	$\begin{gathered} \mathrm{AAA} \\ \mathrm{~K} \end{gathered}$				$\begin{gathered} \text { ACT } \\ \mathrm{T} \end{gathered}$	$\begin{gathered} \mathrm{GCA} \\ \mathrm{~A} \end{gathered}$	83 26
TAT	CCA	ATA	AGA	AAA	ACT	GAT	CCA	TCA	GGC	AAC	AAA	ATT	GCA	GGT	GGC	TGG	TAT	GCA	ACA	CCG	CAC	TCT	CTA	CCA	TAT	CAA	GTA	167
Y	P	I	R	K	T	D	P	S	G	N	K	I	A	G	G	\%	Y	A	T	P	H	S	L	P	Y	Q	V	54
AAA	TTA	TTA	ATT	GAA	AAA	AGT	GGG	ATA	CAT	GCT	TCA	TGC	GGT	GGT	GTT	ATA	ATT	CAA	CTG	AAG	TCT	GGC	AAC	GGT	ACA	GAC	GCA	251
K	L	L	I	E	K	S	G	I	H	A	S	C	G	G	V	I	I	Q	L	K	S	G	N	G	T	D	A	82

GTC	CTC	ACA	TCA	GCA	CGT	TGC	CTT	TAT	CAA	GAA	TCA	TTA	AGA	AAA	CCT	GTG	CCC	GTG	GAT	AAA	GTT	GAT	GTT	ATT	AGT		GCT	335
V	L	T	S	A	R	C	L	Y	Q	E	S	L	R	K	P	V	P	V	D	K	V	D	V	I	S	G	A	110
CAC	GAT	CTT	GAA	AAC	AAC	TTT	GAA	GAA	AGT	CAA	AGG	AAA	ATC	CCC	GTT	AAA	AAT	TTT	GTA	CTC	CAT	CCG	GAG	TAT	AAA		AAT	419
H	D	L	E	N	N	F	E	E	S	Q	R	K	I	P	V	K	N	F	V	L	H	P	E	Y	K	G	N	138
GCA	ATT	AAC	GAT	ATA	GCA	TTG	TTA	AAA	TTG	AAG	GAG	AAA	ATA	CTA	TAC	ACA	GAT	AAA	ACT	CGA	CCA	GCA	TGT	TTA	CCT	GAC	AAA	503
A	I	N	D	I	A	L	L	K	L	K	E	K	I	L	Y	T	D	K	T	R	P	A	C	L	P	D	K	166
GAT	GCA	GAG	CCG	AAT	GCG	GGC	GAG	CTG	TGT	TAT	GCA	TCT	GGA	TGG	GGA	TCC	CCT	TTC	TCT	GGA	GCC	GAG	GAT	AGC	GCA	GTT	TTG	587
D	A	E	P	N	A	G	E	L	C	Y	A	S	G	W	G	S	P	F	S	G	A	E	D	S	A	V	L	194
AAA	ATG	GCA	GCG	ATA	CCC	GTT	CAA	ACT	AAA	GAG	AAA	TGT	AAC	TTG	GCT	GGT	GGA	ATA	GCA	ACC	AGA	TTT	TGT	GCT	GGA	GGA	AGC	671
K	M	,	A	I	P	V	Q	T	K	E	K	C	N	L	A	G	G	I	A	T	R	F	C	A	G	G	S	222
TTT	GGA	GGA	CAC	GGA	ATT	TGT	GAC	GGT	GAT	TCA	GGA	GGA	CCA	TTA	ACA	TGC	GAA	AGA	AAT	GGA	AAA	TTG	GTT	GTA	TTT	GGC	ATA	755
F	G	G	H	G	I	C	D	G	D	-	G	G	P	L	T	C	E	R	N	G	K	L	V	V	F	G	I	250
TCA	AGT	GGA	CAT	ACA	GGC	CTC	TGT	GGT	CAA	TAT	GGC	AAA	CCA	GGA	ATT	TTT	ACA	AAA	GTA	TCA	TCC	TTT	TTG	GAT	TGG	ATT	AAA	839
S	S	G	H	T	G	L	C	G	Q	Y	G	K	P	G	I	F	T	K	V	S	S	F	L	D	W	I	K	278
AAA	ACT	GAT	ACA	GAA	TTA	GAT	ACT	GCA	GTG	GAT	ATG	AGC	AAA	GGA	AAA	AAA	GCA	GAA	AAC	ATT	GCT	CAG	CCA	CTT	GAT	TCT	GAT	923
K	T	D	T	E	L	D	T	A	V	D	M	S	K	G	K	K	A	E	N	I	A	Q	P	L	D	S	D	306
GAA	ACT	ACT	GAT	GCT	AAA	CAG	GCA	GGC	AAA	GTT	AAA	GAA	CAA	TTT	CCA	TGC	GGC	CTT	TCA	GCA	TTT	CCT	ATG	AAA	AAA	GAG	CAA	1007
E	T	I	D	A	K	Q	A	G	K	V	K	E	Q	F	P	C	G	L	S	A	F	P	M	K	K	E	Q	334
TCT	CCA	TCA	AAC	AGA	GTG	TCT	GGT	GGA	TGG	GAA	ACA	AGA	CCC	AAT	TCA	TTG	CCG	TAT	CAA	GTG	AAA	TTA	ATA	AAT	CAA	AAA	CAG	1091
S	P	S	N	R	V	S	G	G	W	E	T	R	P	N	S	L	P	Y	Q	V	K	L	I	N	Q	K	Q	362
GGA	AAA	GAA	TTT	GCG	TGT	GGT	GGA	ACA	TTA	ATT	CAG	TTT	AAA	CCA	GGA	AAT	GGG	ACA	TTT	TGG	ATA	TTA	ACG	GCA	GCT	CAC	TGC	1175
G	K	E	F	A	C	G	G	T	L	I	Q	F	K	P	G	N	G	T	F	W	I	L	T	A	A		C	390

ATT	TAT	GAC	AAC	CTA	CGG	AAA	AAA	ACG	TTG	GAT	CCT	GAG	AAA	GTA	CAG	GTT	TTG	GTA	GGG	GCT	CAT	AAT	GTA	TAC	AGG	GAT	AGT	1259
I	Y	D	N	L	R	K	K	T	L	D	P	E	K	V	Q	V	L	V	G	A	H	N	V	Y	R	D	S	418
GAA	GAA	AAC	AGA	AAA	CAA	ATC	GCT	GTT	CAA	AAT	GTT	ATA	ATG	CAA	CCA	GGC	TAT	AAT	GAC	CGT	ACA	ATT	GCA	AAT	GAT	ATT	GCA	1343
E	E	N	R	K	Q	I	A	V	Q	N	V	I	M	Q	P	G	Y	N	D	R	T	I	A	N	\square	I	A	446
TTG	CTG	CAG	CTG	CAA	GAA	CCT	GTT	TTC	TAC	ACA	ACG	GTC	ACA	AGA	CCT	GCT	TGC	TTA	CCT	AAC	CCT	GGA	GAA	AAA	CCC	TTA	CCA	1427
L	L	Q	L	Q	L	P	\checkmark	F	Y	T	T	V	T	R	P	A	C	L	P	N	P	G	E	K	P	L	P	474
ACT	ACT	TCG	TGT	TGG	GTG	AGC	GGA	TGG	GGA	GCT	GAA	TCA	TCT	TAT	GGT	GAA	CCA	ACT	GCA	ATT	TTG	AAA	GTG	GCT	AAG	GTG	GCT	1511
T	T	S	C	W	V	S	G	W	G	A	E	S	S	Y	G	E	P	T	A	I	L	K	V	A	K	V	A	502
ATT	TGG	AAT	GAC	GCT	GAT	TGT	AAA	GTA	GAT	GCA	ACT	TCT	AGC	ATA	TGT	CTC	GGT	GGT	AAA	GCA	GAT	AGA	CGT	GGA	TCA	TGC	CAA	1595
I	W	N	D	A	D	C	K	V	D	A	T	S	S	I	C	L	G	G	K	A	D	R	R	G	S	C	Q	530
GGT	GAT	TCT	GGT	GGA	CCG	CTT	CTT	TGT	GAA	CAT	AAT	AAG	AGG	ATG	GTA	GTA	TTC	GGT	GTA	TCC	AGT	TCA	ATC	GTA	GGT	CAT	TGT	1679
G	D	5	G	G	P	L	L	C	E	H	N	K	R	M	V	V	F	G	V	S	S	S	I	V	G	H	C	558
GGC	CAA	TTG	AAT	CAG	CCA	TCT	ATT	TAT	ACA	AGA	GTA	ACA	CAT	TAT	TTG	GAT	TGG	TTG	AAA	GAA	ACT	TCA	GAA	AAA	GCT	GGT	GAC	1763
G	Q	L	N	Q	P	S	1	Y	T	R	\checkmark	T	H	Y	L	D	,	L	K	E	T	S	E	K	A	G	D	586
TTA	AAA	GTC	ACG	GCT	GCA	AGT	TCA	ACT	GGA	GGA	AGT	TCT	GCA	ACT	TCA	AAG	CCA	AAT	AAA	GCG	AAA	GAT	GAC	TTT	ACA	GTT	CGT	1847
L	K	V	T	A	A	S	S	T	G	G	S	S	A	T	S	K	P	N	K	A	K	D	D	F	T	V	R	614
CCC	TCT	AGT	CCA	GCA	AAA	TCA	GTA	TCC	AGC	GTC	CCA	AGC	CAA	CCT	GCT	TTT	CCA	GGT	AGC	AGA	TTT	ATG	ACT	CCT	CTG	CCT	ACG	1931
P	S	S	P	A	K	S	V	S	S	V	P	S	Q	P	A	F	P	G	S	R	F	M	T	P	L	P	T	642
CCC	GGA	CGT	CCA	GCT	GCA	TCC	AGA	TTT	TAC	ACT	CCC	CCA	TCA	TCA	GGT	TTA	TCC	CGT	TCC	CGT	TTT	CAG	ACA	CTT	TGA	AAT	AGA	2015
P	G	R	P	A	A	S	R	F	Y	T	P	P	S	S	G	L	S	R	S	R	F	Q	T	L				667
TGA	ATA	ACA	TTT	TCA	TCA	TAT	GTT	GTT	TGT			AAT										AAG				ATA	AAT	2099

Indirect immunofluorescence antibody test
Trichinella Ad and ML were embedded in tissue-tek (Miles Scientific) and frozen at $-20^{\circ} \mathrm{C}$. Sections of $10 \mu \mathrm{~m}$ were prepared with a cryostat (Cryo-cut, American Optical Corporation) and fixed for 15 min in cold acetone. Cryostat sections were incubated for 1 h with polyclonal sera (1:50) against recombinant Trx- β SerP or with sera (1:50) obtained from non-immunized animals. The preparations were washed three times in phosphate-buffered saline (PBS) $\mathrm{pH} 7.2,1 \%$ Tween 20 before being incubated for 1 h with fluorescein isothiocyanate (FITC)-labelled goat antimouse IgG (Interchim) (1:50).

Results

Molecular cloning and sequence analysis of a cDNA encoding a new serine protease of T. spiralis

Five micrograms of poly (A) RNA purified from the mixture of T. spiralis Ad-NBL was used to construct a cDNA library consisting of 1.1×10^{6} independent clones. Degenerate primers based on the conserved region of proteases (Harrop et al. 1995) allowed the amplification of a 610 bp DNA fragment, with the Ad-NBL cDNA library as template. Sequence analysis of this cDNA fragment revealed part of a consensus active site belonging to the trypsin group. Using this target sequence as a probe to screen 150,000 plaques from the Ad-NBL cDNA library, four positive clones were selected and sequenced on both strands. The resulting cDNA consisted of 2,126 bp (Fig. 1) with one major open reading frame (ORF) of $2,001 \mathrm{bp}$, with the initiation codon ATG at position 6-9 and a 3^{\prime} untranslated region of 101 bp between the stop codon TGA and the poly (A) tail (GenBank accession number AF331156). A polyadenylation signal, AATAAA, was identified 9 bp upstream of the poly (A) tail.

The predicted protein, named T_{s} SerP, comprised 667 amino acid residues, with a molecular weight of 71.6 kDa and an isoelectric point of 8.6. SignalP analysis predicted an N -terminal signal peptide with the cleavage site between residues serine 18 and aspartic acid 19. Surprisingly, SMART analysis revealed two trypsin-like domains of serine protease. The first domain, called the α domain, was situated between positions 38 and 282 and displayed substitution of the conserved histidine residue to an arginine residue in the catalytic triad (arginine 88, aspartic acid 142 and serine 233). The second domain, designated the beta domain, was located between positions 339 and 582 of $T s S e r P$ and exhibited the characteristic trypsin domain of serine proteases consisting of a catalytic triad of histidine 389, aspartic acid 444 and serine 533. A hydrophilic domain from positions 265 to 376 was flanked by these two domains, and two putative N -glycosylation sites were identified at positions 78 and 379. Analysis of the deduced amino acid sequence homologies using the BLAST

Fig. 2 a Southern blot analysis of Trichinella spiralis genomic DNA. T. spiralis genomic DNA was digested with EcoRI (lane 1) or HindIII (lane 2) and hybridised with the alkaline phosphataselabelled PCR fragment of $T s$ SerP cDNA (nucleotides 6-1120). M Molecular weight markers (kb). b Northern blot analysis of T. spiralis RNA. Total RNA from T. spiralis adult worms (lane 1) and muscle larvae isolated at 26, 30, 35, 41 and 47 dpi (lanes 2-6) were migrated under non-denaturing conditions and transferred onto Hybond $\mathrm{N}+$ membranes before being hybridised with alkaline phosphatase-labelled DNA probe. M Molecular weight markers (kb)
program revealed that both the alpha and beta domains displayed up to 39% identity to serine proteases from a broad range of organisms including T. spiralis (newborn larvae-specific serine protease SS2, AAK16520; adult stage-specific serine proteinase, AAD09211; muscle larvae stage-specific serine proteinase, AAK31787).

Southern blot and Northern blot analysis

When digested with EcoRI, a single band of genomic DNA was recognised, while two bands were observed after HindIII restriction due to the presence of a cutting site in the probe, indicating that the selected sequence was present as a single copy in the genome of T. spiralis (Fig. 2a). Moreover, hybridisation of the total RNA from Ad and ML with the $T_{s} S$ SerP probe demonstrated a single transcript of 2.3 kb at both stages (Fig. 2b) whatever the day of ML purification (from 26 to 47 dpi). A similar result was

Fig. 3 Western blot analysis of soluble and E / S antigens of T. spiralis muscle larvae using the anti-Trx- β SerP serum. Soluble (lanes 1 to 3) and E/S (lanes 4 to 6) antigens were migrated on polyacrylamide gel under denaturing conditions and blotted onto Hybond C filters. Lanes 1 and 4, the mouse serum raised against the recombinant $T_{s} \Delta$ HSP70 (Vayssier et al. 1999) was used as a positive control (recognition of TsHSP70 being similar in size to full-length SerP). Lanes 2 and 5, mouse serum against Trx- β SerP collected at day 0 . Lanes 3 and 6 , mouse serum against Trx- β SerP collected 42 dpi. M Molecular weight markers (kDa)
obtained by the dot blot analysis of T. spiralis cDNAs at the Ad, ML and NBL stages (data not shown), suggesting continuous transcription of the $T s$ SerP gene.

Western blot analysis and localization of $T_{s} S e r P$

The recombinant protein of the beta protease domain (β SerP) was successfully expressed, but exhibited no reactivity with the serum of pigs experimentally infected with 10,000 T. spiralis ML. Antiserum from mice collected 42 days after immunization with the β SerP recombinant protein allowed the detection of a polypeptide of 69 kDa in ML soluble antigens, but not in E/S products, corresponding to the expected size of the mature $T s S e r P$ with two domains (Fig. 3). Specific sera against the recombinant protein β SerP were then used for an indirect immunofluorescence (IIF) test on cryostat sections of T. spiralis ML and Ad stages (Fig. 4). Narrow peripheral fluorescence extending the entire length of the parasite at both stages was located in the inner layer of the cuticle. On cross sections of the parasite, four peripheral symmetrical gaps were delineated, and a bright circular fluorescence in the oesophagus was identified. No differences were observed concerning TsSerP immunolocalisation with Trichinella britovi, Trichinella nativa and Trichinella pseudospiralis cryostat sections (data not shown).

Discussion

The present study describes the cloning and analysis of a novel T. spiralis gene, $T s$ SerP, encoding a putative serine protease composed of two protease domains. Although the first of these protease domains did not possess the consensus proteolytic triad because of the substitution of

Fig. 4 IIF test with anti-
Trx- β SerP serum or the 2 A 6 d 3 monoclonal antibody. 1 and 2 , cryostat sections of adult worms. 3 and 4, cryostat sections of muscle larvae. A peripheral immunostaining is visible on the entire length of the worm with anti-Trx- β SerP serum (2 and 4). A gap in the inner part of the cuticle and oesophageal fluorescence are indicated with arrows (1). The 2A6d3 monoclonal antibody raised against antigenic group 3 of the ML stage (Boireau et al. 1997) exhibits an identical IIF pattern (3)

conserved histidine, it might still retain substrate-binding activity. The presence of several protease domains in a single translation product is very unusual, and this is the first description in parasites. Oviductin from Xenopus laevis (Lindsay et al. 1999a) and Bufo japonicus (Hiyoshi et al. 2002) contains two serine protease domains, one of which is catalytically inactive and require post-translational processing to generate a mature protease. Ovochymase from X. laevis (Lindsay et al. 1999b) and human polyserase-I (Cal et al. 2003) are mosaic proteins with three serine protease domains that are released after the translation of a single polyprotein product. Sequence comparisons with known serine proteases suggested that $T s S e r P$ was a protein precursor with a pro-region cleavage site between lysine 38 and isoleucine 39 . The mature protein would thus be 629 amino acids in length with a predicted molecular weight of 67.5 kDa . Because the specific anti-Trx- β SerP serum only immunostained a $69-$ kDa polypeptide in soluble antigens of T. spiralis muscle larvae, we concluded that unlike the serine proteases mentioned above, the two serine protease domains of $T s$ SerP were not separated after post-translational processing. Whatever the case, the enzymatic activity of $T s$ SerP and the function of the first protease domain require further study.

Southern blot analysis indicated that the $T s$ SerP gene was present as a single copy in the genome of T. spiralis. EST sequence data also confirmed that the sequences belonged to TsSerP (Mitreva et al. 2004). Recently, a T. spiralis muscle larvae stage-specific antigenic serine protease was cloned and characterised as a secretory glycoprotein (Romaris et al. 2002; Nagano et al. 2003), and the proteinase activity of the recombinant serine protease was confirmed (Nagano et al. 2003). We also cloned a newborn larvae stage-specific putative serine protease gene (Mingyuan and Boireau, unpublished data). All these data support the existence of a superfamily of serine proteases in T. spiralis. It has been demonstrated that the C-terminal part of the protease domain is crucial to exerting influence on the active site and triggering certain conformational changes (Krem et al. 1999). According to this observation, serine protease genes should have different functions in T. spiralis. Multigene protease families have been found in numerous parasites such as Fasciola hepatica (Heussler and Dobbelaere 1994), Haemonchus contortus (Cox et al. 1990) and Aspergillus flavus (Ramesh et al. 1994). Each member of these protease families may have a specific role dependent on particular regulation (constitutive or stage-specific), location (intestinal tract or excreted), the presence of a regulatory domain (in N or C terminal part) or variations in the amino acid sequence.

It has been hypothesised that the hydrophilic region of $T s$ SerP may contain some immunodominant epitopes, but neither of the recombinant proteins of the $T_{s} S e r P$ beta domain and hydrophilic domain (data not shown) was recognised by T. spiralis-infected pig serum. Although some parasite proteases have been shown to be immunodominant antigens (Romaris et al. 2002; Nagano et al. 2003), $T s$ SerP is poorly immunogenic. The detection of
$T_{s} S e r P$ gene transcription in Ad, ML and NBL indicated its continuous expression during these stages. Proteolytic activities have been reported by Ros-Moreno et al. (2000) in crude extracts and E/S antigens throughout the life cycle of T. spiralis. TsSerP should not therefore be involved in the proteolytic activities of E/S products because $T_{s} \mathrm{SerP}$ is not found in E / S products.

The anti-Trx- β SerP serum localised $T s$ SerP on peripheral regions and the oesophagus of T. spiralis muscle larvae and adult worms. The characteristic IIF pattern observed is consistent with the antigenic group 3 of muscle larvae previously described for various Trichinella species with monoclonal antibodies (Boireau et al. 1997). The peripheral and oesophageal location of $T s S e r P$ and its continuous expression throughout all antigenic stages suggest two potential roles in the physiology of Trichinella. Firstly, $T s$ SerP may be involved in the proteolysis of cuticle proteins during the moulting of first-stage T. spiralis larvae and may thereby play a critical role in antigen shedding. Proteases from other parasites have been shown to be involved in this essential process of moulting. Aminopeptidase activity was identified during in vitro development of the L3 to L4 larval stages of Ascaris suum (Rhoads et al. 1997), and peak secretion of the enzyme was correlated with moulting, thus demonstrating its involvement. Metalloproteases of H. contortus (Gamble et al. 1996) and metalloproteases associated with cysteine proteases of Dirofilaria immitis (Richer et al. 1992) have also been suggested to play a role in the moulting process and in the degradation of cutaneous tissue components. Secondly, TsSerP may be involved in parasite nutrition through its digestive function. The two functions may be linked if transcuticular digestion is important in Trichinella physiology, but verification of such a hypothesis requires determination of the roles of the intestinal tract vs the cuticle in the absorption of major nutrients. The constitutive expression and location of $\operatorname{Ts} \operatorname{Ser} \mathrm{P}$ suggest a function in moulting and/or digestion, and this protease may play a key role in the parasite.

The experiments performed in the context of this study complied with current laws in the countries where the experiments took place.

Acknowledgements This work received financial support through grants of EU Trichiporse, QLRT-2000-01156, AQS 2589 (DGAL), PRA BT 03-02 and NSFC30170709.

References

Boireau P, Vayssier M, Fabien JF, Perret C, Calamel M, Soule C (1997) Characterization of eleven antigenic groups in Trichinella genus and identification of stage and species markers. Parasitology 115:641-651
Cal S, Quesada V, Garabaya G, Lopez-Otin C (2003) Polyserase-I, a human polyprotease with the ability to generate independent serine protease domains from a single translation product. Proc Natl Acad Sci U S A 100:9185-9190
Coombs GH, Mottram JC (1997) Parasite proteinases and amino acid metabolism: possibilities for chemotherapeutic exploitation. Parasitology 114:S61-S80

Cox GN, Pratt D, Hageman R, Boisvenue RJ (1990) Molecular cloning and primary sequence of a cysteine protease expressed by Haemonchus contortus adult worms. Mol Biochem Parasitol 41:25-34
Criado-Fornelio A, De Armas-Serra C, Gimenez-Pardo C, CasadoEscribano A, Jimenez-Gonzalez A, Rodriguez-Caabeiro F (1992) Proteolytic enzymes from Trichinella spiralis larvae. Vet Parasitol 45:133-140
Dalton JP, Brindley PJ, Knox DP, Brady CP, Hotez PJ, Donnelly S, O'Neill SM, Mulcahy G, Loukas A (2003) Helminth vaccines: from mining genomic information for vaccine targets to systems used for protein expression. Int J Parasitol 33:621-640
De Armas-Serra C, Gimenes-pardo C, Jimenez-Gonzalez A, Bernadina WE, Rodriguez-Caabeiro F (1995) Purification and preliminary characterization of a protease from the excretionsecretion products of Trichinella spiralis muscle-stage larvae. Vet Parasitol 59:157-168
Gamble HR, Fetterer RH, Mansfield LS (1996) Developmentally regulated zinc metalloproteinases from third- and fourth-stage larvae of the ovine nematode Haemonchus contortus. J Parasitol 82:97-202
Harrop SA, Prociv P, Brindley PJ (1995) Amplification and characterization of cysteine proteinase genes from nematodes. Trop Med Parasitol 46:119-122
Heussler VT, Dobbelaere DA (1994) Cloning of a protease gene family of Fasciola hepatica by the polymerase chain reaction. Mol Biochem Parasitol 64:11-23
Hiyoshi M, Takamune K, Mita K, Kubo H, Sugimoto Y, Katagiri C (2002) Oviductin, the oviductal protease that mediates gamete interaction by affecting the vitelline coat in Bufo japonicus: its molecular cloning and analyses of expression and posttranslational activation. Dev Biol 243:176-184
Krem MM, Rose T, Di Cera E (1999) The C-terminal sequence encodes function in serine proteases. J Biol Chem 274:2806328066
Leung RK, Ko RC (1997) In vitro effects of Trichinella spiralis on muscle cells. J Helminthol 71:113-118
Lindsay LL, Wieduwilt M, Hedrick JL (1999a) Oviductin, the Xenopus laevis oviductal protease that processes egg envelope glycoprotein gp43, increases sperm binding to envelopes, and is translated as part of an unusual mosaic protein composed of two protease and several CUB domains. Biol Reprod 60:989995
Lindsay LL, Yang JC, Hedrick JL (1999b) Ovochymase, a Xenopus laevis egg extracellular protease, is translated as part of an unusual polyprotease. Proc Natl Acad Sci U S A 96:1125311258
Lun M, Mak CH, Ko RC (2003) Characterization and cloning of metallo-proteinase in the excretory/secretory products of the infective-stage larva of Trichinella spiralis. Parasitol Res 90:27-37

ManWarren T, Gagliardo L, Geyer J, McVay C, Pearce-Kelling S, Appleton J (1997) Invasion of intestinal epithelia in vitro by the parasitic nematode Trichinella spiralis. Infect Immun 65:48064812
McKerrow JH (1989) Parasite proteinases. Exp Parasitol 68:111115
Mitreva M, Jasmer DP, Appleton J, Martin J, Dante M, Wylie T, Clifton SW, Waterston RH, McCarter JP (2004) Gene discovery in the adenophorean nematode Trichinella spiralis: an analysis of transcription from three life cycle stages. Mol Biochem Parasitol 137:277-291
Moczon T, Wranicz M (1999) Trichinella spiralis: proteinases in the larvae. Parasitol Res 85:47-58
Nagano I, Wu Z, Nakada T, Boonmars T, Takahashi Y (2003) Molecular cloning and characterization of a serine proteinase gene of Trichinella spiralis. J Parasitol 89:92-98
Ramesh MV, Sirakova T, Kolattukudy PE (1994) Isolation, characterization, and cloning of cDNA and the gene for an elastinolytic serine proteinase from Aspergillus flavus. Infect Immun 62:79-85
Rhoads ML, Fetterer RH, Urban JF (1997) Secretion of an aminopeptidase during transition of third- to fourth-stage larvae of Ascaris suum. J Parasitol 83:780-784
Richer JK, Sakanari JA, Frank GR, Grieve RB (1992) Dirofilaria immitis: proteases produced by third- and fourth-stage larvae. Exp Parasitol 75:213-222
Romaris F, North SJ, Gagliardo LF, Butcher BA, Ghosh K, Beiting DP, Panico M, Arasu P, Dell A, Morris HR, Appleton JA (2002) A putative serine protease among the excretorysecretory glycoproteins of L1 Trichinella spiralis. Mol Biochem Parasitol 122:149-160
Ros-Moreno RM, Vasquez-Lopez C, Giménez-Pardo C, de ArmasSerra C, Rodriguez-Caabeiro F (2000) A study of proteases throughout the life cycle of Trichinella spiralis. Folia Parasitol 47:49-54
Todorova VK (2000) Proteolytic enzymes secreted by larval stage of the parasitic nematode Trichinella spiralis. Folia Parasitol 47:141-145
Todorova VK, Stoyanov DI (2000) Partial characterization of serine proteinases secreted by adult Trichinella spiralis. Parasitol Res 86:684-687
Todorova VK, Knox DP, Kennedy MW (1995) Proteinases in the excretory/secretory products (ES) of adult Trichinella spiralis. Parasitology 111:201-208
Trap C, Boireau P (2000) Les proteases chez les helminthes. Vet Res 31:461-471
Vayssier M, Le Guerhier F, Fabien JF, Philippe H, Vallet C, OrtegaPierres G, Soule C, Perret C, Liu M, Vega-Lopez M, Boireau P (1999) Cloning and analysis of a Trichinella britovi gene encoding a cytoplasmic heat shock protein of 72 kDa . Parasitology 119:81-93

[^0]: The authors Catherine Trap, Baoquan Fu and Franck Le Guerhier contributed equally to this paper.
 C. Trap • F. Le Guerhier • D. Le Rhun • T. Romand •
 C. Perret • R. Blaga • P. Boireau (\triangle)

 UMR 956 BIPAR (INRA-AFSSA-ENVA-UPVM), 23 avenue du Général de Gaulle,
 94703 Maisons-Alfort, France
 e-mail: pboireau@vet-alfort.fr
 Tel.: +33-1-49772811
 Fax: +33-1-49771316
 B. $\mathrm{Fu} \cdot \mathrm{M}$. Liu

 Veterinary College, Jilin University, Changchun, 130062, People's Republic of China

