Skip to main content
Log in

Alterations in superoxide dismutase, glutathione peroxidase and catalase activities in experimental cerebral ischemia-reperfusion

  • Published:
Research in Experimental Medicine

Abstract

Free radicals are thought to be the most important cause of the reperfusion injury subsequent to ischemia. The antioxidant status of the tissue affected by ischemia-reperfusion is of great importance for the primary endogenous defense against the free radical induced injury. This investigation was performed to evaluate the antioxidant enzyme capacity of the brain tissue in the ischemia-reperfusion period using an experimental global moderate (penumbral) ischemia model on rat brains. Experiments were performed on 45 male Sprague Dawley rats. Ischemia was induced by bilateral vertebral arteries cauterization and temporary bilateral carotid arteries occlusion and sustained for 10 minutes. At the end of ischemia (0 min reperfusion) and various reperfusion periods (20 min, 60 min, 240 min), rats were decapitated and brains were frozen in liquid nitrogen. Changes in the intracellular antioxidant enzyme (superoxide dismutase, glutathione peroxidase and catalase) activities were assessed in the rat brain tissues, by spectrophotometric methods. In all moderate ischemia-reperfusion groups, superoxide dismutase activities were found to have decreased significantly compared to the sham operated controls (P<0.05). During ischemia superoxide dismutase activity was lowered to 31% ofthat of the control group. The decreases were more significant in reperfusion groups, particularly in 60 min reperfusion (40%). Relatively smaller but still significant diminution was observed in glutathione peroxidase activities (P<0.05). The ratio of diminution was striking in 20 min and 60 min reperfusion groups with 26% of the sham operated rats. Conversely, moderate ischemia-reperfusion caused significant increase in catalase activities (P<0.05). The increment was 63% of the preischemic level with 10 min of moderate ischemia. In conclusion, activities of the major antioxidant enzymes were changed significantly in moderate brain ischemia-reperfusion. These results suggest that the disturbance in oxidant-antioxidant balance might play a part in rendering the tissue more vulnerable to free radical induced injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beauchamp C, Fridovich I (1971) Superoxide dismutase improved assay and an assay applicable to acrylamide gels. Anal Biochem 44: 276–287

    Article  CAS  PubMed  Google Scholar 

  2. Chan PH (1996) Role of oxidants in ischemic brain damage Stroke 27: 1124–11

  3. Chan PH, Chu L, Fishman RA (1988) Reduction of activities of superoxide dismutase but not of glutathione peroxidase in rat brain regions following decapitation ischemia. Brain Res 439: 388–390

    Article  CAS  PubMed  Google Scholar 

  4. Dirnagl U, Lindauer U, Them A, Schreiber S, Pfister HW, Koedel U, Reszka R, Freyer D, Villringer A (1995) Global cerebral ischemia in the rat: online monitoring of oxygen free radical production using chemiluminescence in vivo. J Cereb Blood Flow Metab 15: 929–940

    Article  CAS  PubMed  Google Scholar 

  5. Farbiszewski R, Bielawski K, Bielawska A, Sobaniec W (1995) Spermine protects in vivo the antioxidant enzymes in transiently hypoperfused rat brain. Acta Neurobiol Exp 19: 253–258

    Google Scholar 

  6. Forsman M, Fleischer JE, Milde JH, Steen PA, Michenfielder JD (1988) Superoxide dismutase and catalase failed to improve neurologic outcome after complete cerebral ischemia in the dog. Acta Anaesthesiol Scand 32: 152–155

    Article  CAS  PubMed  Google Scholar 

  7. Garcia JH, Anderson ML (1989) Physiopathology of cerebral ischemia. Crit Rev Neurobiol 4: 303–324

    CAS  PubMed  Google Scholar 

  8. Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196: 143–152

    Article  CAS  PubMed  Google Scholar 

  9. Gruener N, Gross B, Gozlan O, Barak M (1994) Increase in superoxide dismutase after cerebrovascular accident. Life Sci 270: 711–713

    Article  Google Scholar 

  10. Gutteridge JMC (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41: 1819–1828

    CAS  PubMed  Google Scholar 

  11. Güner G, İşlekel H, Oto Ö, Hazan E, Açıkel Ü (1996) Evaluation of some antioxidant enzymes in lung carcinoma tissue. Cancer Lett 103: 233–239

    Article  PubMed  Google Scholar 

  12. Hakim AM (1987) The cerebral ischemic penumbra. Can J Neurol Sci 14: 557–559

    CAS  PubMed  Google Scholar 

  13. Halliwell B (1989) Oxidants and the central nervous system: some fundamental questions. Acta Neurol Scand 126: 23–33

    Article  CAS  Google Scholar 

  14. Ho YS, Magnenat JL, Gargano M, Cao J (1998) The nature of antioxidant defense mechanisms: a lesson from transgenic studies. Environ Health Perspect 106[Suppl 5]: 1219–1228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Horakova L, Uraz V, Ondrejickova O, Lukovic L, Juranek I (1991) Effect of stobadine on brain lipid peroxidation induced by incomplete ischemia and subsequent reperfusion. Biomed Biochim Acta 50: 1019–1025

    CAS  PubMed  Google Scholar 

  16. Horakova L, Ondrejickova O, Uraz V, Lukovic L, Juranek I (1992) Short cerebral ischemia and subsequent reperfusion and treatment with stobadine. Experienta 48: 872–874

    Article  CAS  Google Scholar 

  17. Imaizumi S, Wool Worth V, Kinouchi H, Chen SF, Fishman RA, Chan PH (1990) Liposome-entrapped superoxide dismutase ameliorates infarct volume in focal cerebral ischaemia. Acta Neurochir Suppl 51: 236–238

    CAS  PubMed  Google Scholar 

  18. İşlekel S, Coşkun E, Demirtaş E, Özdamar N (1994) The effect of rat cerebral four vessels occlusion on somatosensory evoked potentials. Nörolojik Bilimler Dergisi 11: 23–31

    Google Scholar 

  19. Krause GS, White BC, Aust SD, Nayini NR, Kumar K (1988) Brain cell death following ischemia and reperfusion: a proposed biochemical sequence. Crit Care Med 16: 714–726

    Article  CAS  PubMed  Google Scholar 

  20. Liu XH, Kato H, Araki T, Itoyama Y, Kato K, Kogure K (1994) An immunohistochemical study of copper/zinc superoxide dismutase and manganese superoxide dismutase following focal cerebral ischemia in the rat. Brain Res 25: 257–266

    Article  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275

    CAS  PubMed  Google Scholar 

  22. McCord JM (1993) Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem 26: 351–357

    Article  CAS  PubMed  Google Scholar 

  23. Medina L, Figueredo-Cardenas G, Reiner A (1996) Differential abundance of superoxide dismutase in interneurons versus projection neurons and in matrix versus striosome neurons in monkey striatum. Brain Res 708: 59–70

    Article  CAS  PubMed  Google Scholar 

  24. Michowiz SD, Melamed E, Pikarsky E, Rappaport ZH (1990) Effect of ischemia induced by middle cerebral artery occlusion on superoxide dismutase activity in rat brain. Stroke 21: 1613–1617

    Article  CAS  PubMed  Google Scholar 

  25. Mishra OP, Papadopoulos MD, Wagerle LC (1990) Anti-oxidant enzymes in the brain of newborn piglets during ischemia followed by reperfusion. Neuroscience 35: 211–215

    Article  CAS  PubMed  Google Scholar 

  26. Mrsuljia BB, Stanimirovic D, Micic DV, Spatz M (1990) Excitatory amino acid receptors, oxido-reductive process and brain edema following transient ischemia in gerbils. Acta Neurochir Suppl 51: 180–182

    Google Scholar 

  27. Mullan JC, Korosue K, Heros RC (1993) The use of somatosensory evoked potential monitoring to produce a canine model of uniform moderately severe stroke with permanent arterial occlusion. Neurosurgery 32: 967–973

    Article  CAS  PubMed  Google Scholar 

  28. Ohtsuki T, Matsumato M, Suzuki K, Taniguchi N, Kamado T (1993) Effect of transient forebrain ischemia on superoxide dismutases in gerbil hipocampus. Brain Res 620: 305–309

    Article  CAS  PubMed  Google Scholar 

  29. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1: 158–169

    Google Scholar 

  30. Pulsinelli WA, Buchan AM (1988) The four vessel occlusion rat model: method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke 19: 913–914

    Article  CAS  PubMed  Google Scholar 

  31. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–498

    Article  CAS  PubMed  Google Scholar 

  32. Reilly PM, Schiller HJ, Bulkey GB (1991) Pharmacological approach to tissue injury mediated by free radicals and other reactive oxygen metabolites. Am J Surg 161: 488–502

    Article  CAS  PubMed  Google Scholar 

  33. Rice-Evans CA, Burdon RH (eds) (1994) Antioxidants and free radical scavengers. In: Free radical damage and its control. Elsevier Science, UK pp 113–129

  34. Spitz DR, Oberley LW (1989) An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem 179: 8–18

    Article  CAS  PubMed  Google Scholar 

  35. Stanimirovic DB, Micic DV, Markovic M, Spatz M, Mrsulja BB (1994) Therapeutic window for multiple drug treatment of experimental cerebral ischemia in gerbils. NeurochemRes 19: 189–194

    CAS  Google Scholar 

  36. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34: 497–500

    CAS  PubMed  Google Scholar 

  37. Tokuda Y, Uozumi T, Kawasaki T (1993) The superoxide dismutase activities of cerebral tissues, assayed by the chemiluminescence method, in the gerbil focal ischemia/reperfusion and global ischemia models. Neurochem Int 23: 107–114

    Article  CAS  PubMed  Google Scholar 

  38. Toyoda T, Lee KS (1997) Differential induction of superoxide dismutase in core and penumbra regions after transient focal ischemia in the rat neocortex. Neurosci Lett 10: 235: 29–32

    Article  CAS  Google Scholar 

  39. Ueda Y, Obrenovitch TP, Lok SY, Sarna GS, Symaon L (1992) Efflux of glutamate produced by short ischemia of varied severity in rat striatum. Stroke 23: 1–8

    Google Scholar 

  40. Weisbrot-Lefkowitz M, Reuhl K, Perry B, Chan PH, Inouye M Mirochnitchenko O (1998) Overexpression of human glutathione peroxidase protects transgenic mice against focal cerebral ischemia/reperfusion damage. Brain Res Mol Brain Res 53: 333–338

    Article  CAS  PubMed  Google Scholar 

  41. White BC, Grossman LI, Krause GS (1993) Brain injury by global ischemia and reperfusion: a theoretical perspective on membrane damage and repair. Neurology 43: 1656–1665

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. İşlekel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İşlekel, S., İşlekel, H., Güner, G. et al. Alterations in superoxide dismutase, glutathione peroxidase and catalase activities in experimental cerebral ischemia-reperfusion. Res. Exp. Med. 199, 167–176 (1999). https://doi.org/10.1007/s004330050121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004330050121

Key words

Navigation