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Abstract

Purpose Metabolic reprogramming is currently considered a hallmark of tumor and immune development. It is obviously
of interest to identify metabolic enzymes that are associated with clinical prognosis in head and neck squamous cell carci-
nomas (HNSCC).

Methods Candidate genes were screened to construct folate metabolism scores by Cox regression analysis. Functional
enrichment between high- and low-folate metabolism groups was explored by GO, KEGG, GSVA, and ssGSEA. EPIC,
MCPcounter, and xCell were utilized to explore immune cell infiltration between high- and low-folate metabolism groups.
Relevant metabolic scores were calculated and visually analyzed by the “IOBR” software package.

Results To investigate the mechanism behind metabolic reprogramming of HNSCC, 2886 human genes associated with 86
metabolic pathways were selected. Folate metabolism is significantly enriched in HNSCC, and that the six-gene (MTHFDIL,
MTHFD2, SHMT2, ATIC, MTFMT, and MTHFS) folate score accurately predicts and differentiates folate metabolism levels.
Reprogramming of folate metabolism affects CDST cell infiltration and induces immune escape through the MIF signaling
pathway. Further research found that SHMT?2, an enzyme involved in folate metabolism, inhibits CDS8T cell infiltration and
induces immune escape by regulating the MIF/CD44 signaling axis, which in turn promotes HNSCC progression.
Conclusions Our study identified a novel and robust folate metabolic signature. A folate metabolic signature comprising six
genes was effective in assessing the prognosis and reflecting the immune status of HNSCC patients. The target molecule of
folate metabolic reprogramming, SHMT?2, probably plays a very important role in HNSCC development and immune escape.

Keywords Head and neck squamous cell carcinoma (HNSCC) - Serine hydroxymethyltransferase 2 (SHMT?2) - Folate one-
carbon metabolism - Tumor microenvironment

Introduction

Head and neck squamous cell carcinoma (HNSCC) originat-
ing from mucosal epithelial cells of the larynx, pharynx, and
oral cavity is the sixth most common malignancy worldwide,
with approximately 600,000 cases and 380,000 deaths annu-
ally (Ferlay et al. 2015; Johnson et al. 2020). Most patients
are diagnosed in the late stage of HNSCC, and the prog-
nosis is usually poor. Despite good progress in screening,
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diagnosis and multimodal treatment, the 5-year overall sur-
vival rate is still less than 50% (Cohen et al. 2016). Meta-
bolic reprogramming is currently considered one of the
important markers of tumor immune escape. However, the
specific mechanism by which tumor growth and prolifera-
tion rely on tumor metabolic pathways to promote immune
escape is not yet clear.

The folate cycle, also known as one-carbon metabolism,
primarily supports cellular nucleotide supply, S-adenosyl-
methionine production, and amino acid homeostasis (Ducker
and Rabinowitz 2017). High folate levels are usually posi-
tively associated with markers of genomic stability and a
lower risk of colorectal cancer, but in trials, folate interven-
tions did not reduce the risk of cancer (Kim 2007). There
are results showing that artificial folic acid supplementa-
tion further promotes cancer cell growth in animal models,
human trials, and cancer incidence data (Cole et al. 2007).
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Several large-scale human trials have shown that folic acid
supplementation increases the risk of breast, colon, lung and
prostate cancers (Cole et al. 2007; Ebbing et al. 2009; Figue-
iredo et al. 2009; Stolzenberg-Solomon et al. 2006). The
role that folic acid plays in HNSCC and the specific mecha-
nisms involved need to be further clarified. Serine hydroxy-
methyltransferase 2 (SHMT?2) is localized in mitochondria,
the rate-limiting enzyme of the one-carbon unit (Tibbetts
and Appling 2010). Tumor cells can alter these metabolic
enzymes to maintain the supply of one-carbon units needed
for proliferation. Recent studies have shown that overexpres-
sion of SHMT?2 is observed in a variety of cancers, includ-
ing breast, melanoma, lung, ovarian, and prostate cancers
(Anderson et al. 2011; Ding et al. 2013; Lee et al. 2014),
and that it is associated with tumorigenesis and progression.
SHMT?2 has been shown in clinical studies that the higher
the expression, the more aggressive the tumor is and the
worse the prognosis (Jin et al. 2022). Therefore, SHMT?2 is
an important potential target for metabolic reprogramming
in tumors and its role in tumors needs to be further explored.

We found that folate underwent metabolic reprogram-
ming in HNSCC by analyzing bulk transcriptome data and
explored the relationship between folate metabolic repro-
gramming and tumor immunity. We further found that folate
metabolic reprogramming affected CDS8T cell infiltration
through the MIF signaling pathway by analyzing single-cell
data. More importantly, we found that the target molecule of
folate metabolic reprogramming, SHMT2, plays a key role
in HNSCC development and immune escape. Our study fills
the gap of SHMT?2 in HNSCC.

Methods

Metabolic transcript GSVA and construction
of folate score

We selected 2886 metabolism-related genes from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database and
estimated the enrichment scores of metabolic pathways for
each sample in the TCGA cohort based on GSVA. Differ-
ential analysis of 20 folate metabolism-related genes (the
one-carbon pool by folate and the folate biosynthesis path-
way) between cancer and adjacent tissues revealed that 16
genes were differentially expressed in HNSCC (adjusted
P-values < 0.05 and log fold change > 1). Subsequently, we
employed univariate regression and stepwise Cox regres-
sion analysis on 16 folate metabolism-associated genes
and a folate score was constructed. Schoenfeld residuals
were used to test the proportional hazards assumption of
Cox regression models. We obtained a validation dataset,
GSE65858, with clinical annotations and overall survival
(0OS) information from the GEO database in the latest
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manuscript. The expression profile includes 270 HNSCC
samples. Patients were categorized into a low-folate group
and a high-folate group, with the median folate as the cutoff
point. Kaplan—Meier plots of OS and DFS were generated
using R package survival. The log-rank test p <0.05 was
used to determine differences in survival times.

Functional analysis

GO and KEGG analyses were performed using the “cluster-
Profiler” R package to enrich DEG into relevant pathways. In
addition, the activation level of 50 HALLMARK pathways
was estimated by the ssGSEA R package. Various metabolic
scores were calculated based on the work of Smiraglia et al.
(Parsa et al. 2020).

Immune cell infiltration assessment

TIMER, EPIC, MCPcounter, CIBERSORT, QUANTISEQ,
and xCell algorithms were used to estimate the degree of
immune cell infiltration. The above algorithm is included in
the “IOBR” R package.

Single-cell data processing

We re-annotated the cell types of GEO: GSE151530. Spe-
cifically, malignant, fibroblasts, CD8T, CD4T, endothe-
lial, mono, plasma, mast, and myocyte can be identified by
uniform manifold approximation and projection (UMAP).
Cell—cell ligand receptor analysis was performed using the
CellChat package. Pseduobulk RNA-seq analysis was per-
formed by subsetting the raw counts for each sample.

Cell lines

Normal human oral mucosa precancerous lesion cell line
(DOK) and several human HNSCC cell lines (SCC-4, HNS,
and FaDu) were obtained from otolaryngology department
of Xiangya Hospital. DOK and HNS cells were cultured
in RPMI-1640 medium containing 10% fetal bovine serum
(FBS). The culture medium for the SCC-4 and FaDu was
Dulbecco’s modified Eagle medium (DMEM) with 10%
FBS. All cells were cultured at 37 °C with 5% CO,.

Immunohistochemistry

Formalin solution (10%) fixed surgically obtained head
and neck squamous cell carcinoma, embedded in paraffin,
and sectioned at a thickness of 3 to 5 pm. The slides were
washed with 3% hydrogen peroxide (H202) to block endog-
enous peroxidase activity and to avoid immunoreaction. The
tissue was blocked in 5% BSA, and the slides were incubated
with primary antibodies (SHMT?2, ProteinTech, 11099-1-AP,
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1:100) overnight at 4 °C. After washing with PBS, the sec-
tions were incubated with appropriate reaction enhancement
solution and enhanced HRP-conjugated sheep anti-mouse/
rabbit IgG polymer (ZSGB-Bio) and 3,3’-diaminobenzi-
dine (DAB; ZSGB-Bio) substrate solution to visualize the
immunoreaction. The nuclei were stained with hematoxylin
(ZSGB-Bio) and the differentiation solution was decolorized
and observed under a microscope.

Western blotting analysis

The cell protein samples were extracted using RIPA lysis
buffer containing protease inhibitors (K1007, APE X BIO),
and the protein concentration was determined by a bicin-
choninic acid assay kit (20201ES76, YEASEN). The quan-
tified proteins were electrophoresed using 10% SDS—poly-
acrylamide gel and transferred to PVDF membrane. The
PVDF membrane was blocked with 5% skim milk for 1 h
at room temperature, and then incubated with the primary
antibody at 4 °C overnight. The primary antibody was anti-
body against SHMT?2 (proteintech Cat#11099-1-AP, 1:3000)
and antibody against GAPDH (Proteintech Cat# 60004-1-
Ig, 1:1000). After incubation with horseradish peroxidase-
conjugated anti-mouse or anti-rabbit secondary antibodies,
band images were digitally captured and quantified using
enhanced chemiluminescence.

Statistical analysis

The results were expressed as mean + standard error of
the mean. The #-test was used to compare the differences
between the two groups, and one-way ANOVA was used to
compare differences between multiple groups. In addition,
we used the Benjamini—-Hochberg false discovery rate (FDR)
approach (p <0.05) to control for multiple comparisons
between the groups. The level of significance was p <0.05
(*p<0.05, **p<0.01, and ***p <0.001).

Results

Bulk transcriptomic profiling revealed evident
folate metabolism dysregulation in HNSCC

To explore the mechanism behind the metabolic reprogram-
ming of HNSCC to promote tumor progression, we selected
2886 metabolism-related genes from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database. To reveal the meta-
bolic heterogeneity of HNSCC, we estimated the enrichment
scores of metabolic pathways for each sample in the TCGA
cohort based on GSVA (Fig. 1A; Supplementary Table 1).
One carbon pool by folate and the folate biosynthesis pathway
were significantly enriched in HNSCC (Fig. 1B). Differential

analysis of 20 folate metabolism-related genes (the one-carbon
pool by folate and the Folate biosynthesis pathway) between
cancer and adjacent tissues revealed that 16 genes were dif-
ferentially expressed in HNSC. Subsequently, we analyzed
the prognostic significance of these 16 genes through uni-
variate Cox regression (Fig. 1C). The results suggested that
high expression of MTHFD1L, MTHFD2, SHMT?2, ATIC,
MTFMT, and MTHFS predicted a poor prognosis. Therefore,
we constructed and validated a folate score based on the above
six genes through stepwise multiple regression analysis, and
the higher the folate score is, the worse the prognosis of the
patient (Supplementary Fig. 1 and Fig. 1D). The folate metab-
olism signature we constructed also has good predictive ability
in the validation cohort (Supplementary Fig. 2). More impor-
tantly, we analyzed the relationship between the folate score
and the known associated metabolic signatures and found that
folate-related metabolic pathways (folate one-carbon metabo-
lism, purine metabolism, and pyrimidine metabolism) were
significantly enriched in the high-folate score group (Fig. 1E).
Taken together, our results suggest that folate metabolism is
significantly enriched in HNSCC, and that the six-gene folate
score we constructed accurately predicts and differentiates
folate metabolism levels.

The relationship between folate metabolism
reprogramming and immunity in HNSCC

To further explore the specific mechanisms by which repro-
gramming of folate metabolism in HNSCC affects progno-
sis, we analyzed the folate score by enriching for differential
genes. The GO (Fig. 2A) and KEGG (Fig. 2B) analysis results
showed that folate metabolism was significantly associated
with DNA damage and repair. In addition, the folate-related
pathways were significantly enriched in KEGG results, further
validating the accuracy of our constructed folate score. More
importantly, the Hallmark enrichment analysis showed that
folate metabolism was significantly correlated with immune-
related pathways, and immune-related pathway scores were
significantly under-expressed in the high-folate score group,
suggesting suppression (Fig. 2C). To further explore the poten-
tial mechanisms of immune suppression by reprogramming of
folate metabolism, we analyzed by different immune cell infil-
tration algorithms (EPIC, MCPcounter, and xCell) and found
that folate scores were significantly negatively correlated with
CD8T cell infiltration, with higher folate scores being associ-
ated with lower CDS8T cell infiltration scores (Fig. 2D-F).

Single-cell data reveal reprogramming of folate
metabolism affects CD8T cell infiltration
through the MIF signaling pathway

To further clarify the specific mechanisms by which
reprogramming of folate metabolism regulates immune
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Fig. 1 Bulk transcriptomic profiling revealed evident folate metabo-
lism dysregulation in HNSC. A KEGG metabolic pathway enrich-
ment heat map. B Box plots presenting significant differences in
folate metabolism. C Folate metabolism-related genes were analyzed

escape, we re-annotated the GSE103322 single-cell data
and analyzed the proportion of each type of cells among
different patients (Fig. 3A, B). We found that CD8T cell
infiltration was significantly reduced in patients with
high-folate scores by pesudobulk differential expression
analysis (Fig. 3C). Further enrichment analysis revealed
that reprogramming of folate metabolism was signifi-
cantly associated with immune responses in HNSCC
tumor cells (Fig. 3D, E). More importantly, in CD8T
cells, folate metabolic reprogramming was significantly
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associated with T cell receptors and immune responses
(Fig. 3F, G). Next, we analyzed the cellular communica-
tion by CellChat, and the highest percentage of secreted
signaling was found in HNSCC (Fig. 4A, B). There was
strong cellular communication between tumor cells and
CD8T cells, and it was mainly the tumor cells that sent
signals, not the CD8T cells (Fig. 4C, D). Communica-
tion target analysis revealed a significant enrichment of
the MIF signaling pathway, and our results suggested
that tumor cells acted as senders of the MIF signaling
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Fig.3 Single-cell data revealed reprogramming of folate metabolism
affects CDS8T cell infiltration. A-B, Relabeling of GSE103322 single-
cell data (A) to analyze the proportion of each cell type in different
patients (B). C By converting single-cell data into bulk data, sig-
nificant differences in CD8T cell infiltration revealed by pesudobulk

pathway, while CDS8T cells acted as receivers of the sig-
nals (Fig. 4E, F; Supplementary Table 2). We also ana-
lyzed the principal targets of the MIF signaling pathway
and found significant enrichment of MIF-CD74/CXCR4/
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differential expression analysis. GO (D) and KEGG (E) were used
to analyze the enrichment between high- and low-folate metabolism
groups in cancer cells. GO (F) and KEGG (G) were used to analyze
the enrichment between high- and low-folate metabolism groups in

CDST cell

CD44 (Fig. 4G). In summary, our results suggest that
reprogramming of folate metabolism affects CD8T cell
infiltration and induces immune escape through the MIF

signaling pathway.
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The role of SHMT2, a target molecule
for regulating folate metabolism reprogramming,
in the occurrence and development of HNSCC

To clarify the target molecules that regulate reprogram-
ming of folate metabolism, we analyzed the expression of
six folate metabolism-related genes in individual cells. The
results of single-cell data suggested that SHMT2, ATIC and
MTHEFS were mainly expressed in tumor cells (Fig. 5A).
Further analysis revealed that SHMT2 was highly expressed
in several tumors (Fig. 5B), and drug sensitivity analyses of
both GDSC (Fig. 5C) and CTRP (Fig. 5D) databases were
performed, and the RNA expression level of SHMT2 was
significantly negatively correlated with most drug sensitivi-
ties. The transcriptome (Fig. S5E) and proteome (Fig. 5F) of
SHMT?2 pan-cancer were further validated, and SHMT2 was
found to be generally highly expressed in tumors. By analyz-
ing the E-MTAB-179 data, it was found that high SHMT2
expression suggested poor prognosis and was negatively cor-
related with CTL (Fig. 5G, H). What is more, CTL infiltra-
tion in the SHMT?2 low-expression group suggested a good
prognosis (Fig. 5I), while CTL infiltration in the SHMT2
high-expression group suggested a poor prognosis, suggest-
ing that SHMT?2 was associated with T cell depletion.

The role of the MIF signal axis in the occurrence
and development of HNSCC

We also analyzed the expression of the communication tar-
get MIF in individual tumors (Fig. 6A), and MIF was signifi-
cantly overexpressed in several tumors including HNSCC.
The high expression of MIF was suggestive of poor progno-
sis in several tumors including HNSCC (Fig. 6B). In addi-
tion, SHMT?2 was significantly positively correlated with
MIF in the vast majority of tumors (Fig. 6C). We also ana-
lyzed the relationship between SHMT?2 and CDST cells by
multiple immune cell infiltration algorithms (Fig. 6D). The
results showed that SHMT?2 was significantly negatively cor-
related with CDST cell infiltration in several tumors, includ-
ing HNSCC. We also analyzed the communication targets
CD44, CXCR4 and CD74 in relation to MIF in HNSCC, and
found that CD44 was stably negatively correlated with MIF
in HNSCC (Fig. 6E). In conclusion, our results suggest that
SHMT?2 inhibits CDS8T cell infiltration and induces immune
escape by regulating the MIF/CD44 signaling axis, which in
turn promotes HNSCC progression.

Verification of the expression of SHMT2 in tissues
and cell lines of HNSCC

We further validated the above observation in our patient
cohort using western blotting (Fig. 7A) and immunohis-
tochemistry (Fig. 7B) of tumor and normal frozen tissues.

The SHMT?2 was obviously expressed in the three HNSCC
cell lines (SCC-4, HN8 and FaDu) comparing to the nor-
mal DOK cell line. Similarly, compared to the normal tis-
sues from larynx, the strong expression of SHMT2 can be
observed in the laryngocarcinoma.

Discussion

Folate metabolism plays an important role in DNA synthe-
sis and methylation reactions by providing one-carbon units
(Kim 2020; Zarou et al. 2021). Tumor cells use this mecha-
nism to promote tumor growth through reprogramming of
folate metabolism. Some studies have shown that disorders
of folate metabolism are associated with the development
and progression of several cancers(Kim 2020) and that high
serum levels of folate portend a poor prognosis(Ben Fradj
et al. 2021). However, some studies have also concluded
that high intake of folic acid reduces the risk of developing
BLCA (He and Shui 2014). This suggests that the mecha-
nism of folate’s role in tumors needs to be further explored,
especially in HNSCC. Our study found that reprogramming
of folate metabolism in HNSCC suggested a poor prognosis,
with higher folate levels being associated with a poorer prog-
nosis, which is in keeping with previous findings. On the
other hand, folate reduced pro-inflammatory cytokine secre-
tion such as CCL2, CSF1, IL1A, IL6, IL10, and TNF-a.
Immunosuppressive M2 macrophages led to reduced tumor
immune surveillance and other tumor-infiltrating leukocytes
interacted with cancer cells and activated the hypercomplex
mechanism (Paijens et al. 2021; Samaniego et al. 2014;
Sierra-Filardi et al. 2011). Folate metabolism has been stud-
ied more in immunity but less in HNSCC. Our study found
a significant negative correlation between folate score and
CD8T cell infiltration in HNSCC, with higher folate scores
being associated with lower CD8T cell infiltration scores.
Reprogramming of folate metabolism inhibits CDS8T cell
infiltration, which in turn promotes HNSCC progression. In
summary, this study highlights the prognostic value of folate
metabolic pathway, revealing some prognostic metabolic
enzymes that can be used to predict the survival of HNSCC
patients. Risk models based on these metabolic enzymes can
serve as prognostic markers in clinical practice. These find-
ings may provide new potential prognostic and therapeutic
implications for the treatment of HNSCC patients.

The search for biomarkers that accurately and reliably
predict prognosis and treatment outcome has been a hot
topic. Identification of biomarkers from specific aspects of
cell biology, such as autophagy, hypoxia, lipid metabolism
and tumor immunity, has led to a deeper understanding of
pathogenesis (Jiang et al. 2022; Wang et al. 2023; Zhou
et al. 2023a). Although many predictive signatures have
been constructed in tumors, no genetic signatures related
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«Fig. 4 Single-cell data revealed cancer cell affects CDS8T cell infil-
tration through the MIF signaling pathway. A, B, Analyzing cellular
communication through CellChat. C, D show the cellular commu-
nication between tumor cells and CD8T cells. E, F Communication
target analysis revealed a significant enrichment of the MIF signaling
pathway. G The main targets of the MIF signaling pathway were ana-
lyzed

to folate metabolism have been identified so far, especially
in HNSCC. We developed a folate metabolism score
consisting of six genes that objectively reflects the level of
folate metabolism and accurately predicts patient prognosis.
Xing et al. (Xing et al. 2020) developed a metabolism-
based prognostic risk score for HNSCC using Cox
regression analysis, which is not only a promising predictor
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Fig.5 The role of SHMT2, a target molecule for regulating folate
metabolism reprogramming, in the occurrence and development of
HNSC. A The violin plot shows the expression of target genes in sin-
gle-cell data. B The bubble chart displays the differential expression
of target genes in pan-cancer data. C, D The bubble chart shows the

correlation between target genes and drug sensitivity. E, F, Box plots
show the expression of SHMT? at the transcriptional and protein lev-
els in pan-cancer data. G K-M curves for SHMT?2. H The scatter plot
shows the correlation between SHMT2 and CTL. I K-M curves for
SHMT?2 and CTL
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«Fig.6 The role of the MIF signal axis in the occurrence and devel-
opment of HNSCC. A Box plots show the expression of MIF at the
transcriptional levels in pan-cancer data. B The forest map presents
the prognosis of MIF in pan-cancer data. C The heatmap shows the
correlation between MIF and SHMT?2. D The heatmap shows the cor-
relation between MIF and CDS8T cell. E The heatmap shows the cor-
relation between MIF and CD44

of prognosis and survival, but also a potential biomarker
for monitoring treatment plans. Our study was consistent
with Liu’s findings and further emphasize the prognostic
value of metabolic gene sets in HNSCC. MTHFDIL has
been associated with colon cancer cell proliferation, colony
formation, and invasion (Agarwal et al. 2019). MTHFDI1L
plays a major role in immune cell infiltration and prognostic
biomarkers in patients with LIHC (Chen et al. 2021b).
Increased expression of MTHFDI1L has been associated
with poor prognosis as well as DC, MO macrophages and
increased levels of immune infiltration in M2 macrophages.
MTHEFD?2 contributes to tumorigenesis and immune evasion
in a variety of cancers, and induces immune escape through
upregulation of PD-L1 in pancreatic and bladder cancers (Li
et al. 2023; Shang et al. 2021). In addition, MTHFD2/2L is
a metabolic checkpoint that promotes Th17 metabolism by
inhibiting mTORC1 in Treg cells (Sugiura et al. 2022). ATIC
inhibits autophagy and promotes proliferation, invasion, and
metastasis of hepatocellular carcinoma cells through the
AKT/FOXO3 signaling pathway (Zhang et al. 2021).

Our study contributes to the development of novel bio-
markers in HNSCC. SHMT?2 is upregulated in several can-
cers and correlates with tumor progression (Chen et al.
2021a; DeNicola et al. 2015). For example, inhibition of
SHMT?2 in lymphomas induces alterations in DNA and his-
tone methylation, which promotes lymphatic injury (Parsa

Fig.7 Verification of the A
expression of SHMT?2 in tissues
and cell lines of HNSCC. A
Western blotting analysis of
SHMT?2 protein expression in
DOK and three HNSCC cell
lines (SCC-4, HN8 and FaDu).
B Immunohistochemical analy-
sis of SHMT?2 protein expres-
sion in laryngocarcinoma and 10x
non-tumor tissues. The scale bar
represents 100 pm

SHMT2
Patient 1

Patient 2

Tumor

et al. 2020). SHMT?2 expression was positively correlated
with advanced pathological grading of oral squamous cell
carcinoma (Zhang et al. 2022). However, the function and
specific mechanism of SHMT?2 in HNSCC remain to be
explored in depth. Consistent with our previous findings,
we found that SHMT?2 was significantly overexpressed in
several tumors including HNSCC. More importantly, we
validated this observation in our patient cohort using west-
ern blotting and immunohistochemistry of tumor and normal
frozen tissues and similarly observed significant overexpres-
sion of SHMT?2 in HNSCC. The higher SHMT?2 expression
suggests a worse prognosis for patients. The higher SHMT?2
expression suggests that patients have a poorer prognosis,
and SHMT?2 was significantly and negatively correlated
with CD8T cell infiltration in a variety of tumors, including
HNSCC. We also found that CTL infiltration in the SHMT?2
low-expression group suggested a good prognosis, whereas
CTL infiltration in the SHMT?2 high-expression group sug-
gested a poor prognosis, suggesting that SHMT?2 is asso-
ciated with T cell depletion. Several studies have reported
that SHMT?2 is significantly and positively correlated with
PD-L1 expression (Wu et al. 2019; Zhou et al. 2023b).
PD-L1 inhibits T cell responses by activating the down-
stream signaling pathway of the PD-1 receptor, reducing T
cell activity and promoting apoptosis, thereby inhibiting T
cell responses and leading to tumor immune escape. This is
in keeping with our findings.

As a multifunctional cytokine, MIF mainly interacts with
membrane receptors CXC family, CD74 and CD44 to acti-
vate the downstream signaling pathway and exert biological
functions. The membrane protein CD74 is the high-affinity
receptor of MIF, and MIF can regulate the activity of CD74,
causing homeostatic disorders such as inflammation, tumor
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and autoimmune diseases (Pantouris et al. 2018). MIF binds
to the chemokines CXCR2 and CXCRA4, recruits leukocytes,
and accelerates the process of atherosclerosis (Rajasekaran
et al. 2016). Further studies revealed that these membrane
receptors usually bind to MIF in the form of complexes
(e.g., CXCR4/CD74, CXCR2/CD74, and CD74/CD44) to
regulate cellular functions, e.g., MIF binds to CD74/CD44
complexes to activate signals such as Syk, Akt, and NF-kB,
and regulate immune responses (Gore et al. 2008). Our
study found that there was significant cellular communica-
tion between tumor cells and CDS8T cells in HNSCC, and
the MIF signaling pathway was significantly enriched. We
found that MIF was significantly overexpressed in several
tumors, including HNSCC, and the higher MIF expression
suggested that patients had a worse prognosis. The higher
the expression of MIF, the worse the prognosis of patients,
and MIF was positively correlated with SHMT2 and nega-
tively correlated with CD44 and CD8 T cell infiltration in
many tumors, including HNSCC. Recent studies have shown
that MIF-CD74 can inhibit anti-tumor immune responses by
recruiting tumor-associated macrophages (TAMs) or directly
inhibiting T cell activation (Balogh et al. 2018; Klemke et al.
2021). CD44 plays an important role in T cell activation
and memory responses, and CD44 interacts with other sur-
face receptors (e.g. TCRs and co-stimulatory molecules) to
enhance activation signaling of T cells and promote cell pro-
liferation and function fulfillment. Our study found that in
HNSCC, SHMT?2 suppresses anti-tumor immune responses
by down-regulating CD44 expression and inhibiting T cell
activation through MIF.

Multiple methods, databases, and bioinformatics
analyses were utilized to explore the potential function of
folate metabolism in HNSCC. SHMT?2 may be a potential
prognostic marker for improving survival and prognostic
accuracy in HNSCC patients, and may even be a potential
biomarker for HNSCC patients, indicating response to
immunotherapy. However, this study was based on an open
database; therefore, further studies are needed to investigate
the mechanism of action of SHMT2 in HNSCC.

Conclusion

Our study identified a novel and robust folate metabolic
signature. A folate metabolic signature comprising six
genes was effective in assessing the prognosis and reflect-
ing the immune status of HNSCC patients. The folate
metabolic signature may be involved in the regulation of
immune-related signaling pathways, providing a promis-
ing target for improving prognosis and HNSCC response
to immunotherapy. Our results showed that SHMT2, an
independent prognostic marker, was highly expressed
in HNSCC patients. In addition, SHMT?2 is involved in

@ Springer

certain processes of tumorigenesis and development and
is associated with the expression of MIF, CD74, CXCR4
and CD44 in the HNSCC tumor microenvironment. More
studies are needed on the role of SHMT?2 as an enzyme
involved in folate metabolism in the HNSCC microenvi-
ronment and the specific mechanisms between SHMT2
and the HNSCC immune microenvironment. Future
potential research directions aim to: investigate the spe-
cific mechanisms of SHMT2 in immune-related signal-
ing pathways in HNSCC, and its impact on therapeutic
immune responses; and evaluate the clinical significance
of targeting SHMT?2 in HNSCC treatment and its role as
a therapeutic intervention to improve patient prognosis.
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