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Abstract
Purpose  Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant and fatal liver tumor with increasing incidence world-
wide. Lactate metabolism has been recently reported as a crucial contributor to tumor progression and immune regulation 
in the tumor microenvironment. However, it remains poorly identified about the biological functions of lactate metabolism 
in iCCA, which hinders the development of prognostic tools and therapeutic interventions.
Methods  The univariate Cox regression analysis and Boruta algorithm were utilized to identify key lactate metabolism-
related genes (LMRGs), and a prognostic signature was constructed based on LMRG scores. Genomic variations and immune 
cell infiltration were evaluated in the high and low LMRG score groups. Finally, the biological functions of key LMRGs 
were verified with in vitro and in vivo experiments.
Results  Patients in the high LMRG score group exhibit a poor prognosis compared to those in the low LMRG score group, 
with a high frequency of TP53 and KRAS mutations. Moreover, the infiltration and function of NK cells were compromised 
in the high LMRG score group, consistent with the results from two independent single-cell RNA sequencing datasets and 
immunohistochemistry of tissue microarrays. Experimental data revealed that lactate dehydrogenase A (LDHA) knockdown 
inhibited proliferation and migration in iCCA cell lines and tumor growth in immunocompetent mice.
Conclusion  Our study revealed the biological roles of LDHA in iCCA and developed a reliable lactate metabolism-related 
prognostic signature for iCCA, offering promising therapeutic targets for iCCA in the clinic.
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Introduction

Cholangiocarcinoma (CCA) is broadly categorized into 
intrahepatic CCA (iCCA), perihilar CCA (pCCA), or dis-
tal CCA (dCCA) based on its anatomic origin (Brindley 
et al. 2021). Recent data have reported an increase in the 
incidence and mortality of iCCA in Western and East-
ern countries (Kelley et al. 2020). Moreover, advanced 
iCCA has a median overall survival (OS) of < 12 months 
(Tsimafeyeu and Temper 2021). Therefore, it is crucial 
to identify factors influencing the prognosis of iCCA for 
its effective clinical management. Although the tumor-
node-metastasis (TNM) staging manual is widely used to 
classify iCCA patients, it remains limited in predicting 
prognosis and selecting treatment options for such patients 
(Edge and Compton 2010). Specifically, the TNM staging 
approach fails to reveal the biological heterogeneity of 
iCCA or fully explain the remarkable variations in prog-
nosis and treatment responses even among patients at the 
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same stage. Moreover, the survival of iCCA patients is 
impacted by other factors, such as age, performance status, 
and tumor site (Brindley et al. 2021). Accordingly, it is 
urgently needed to identify reliable prognostic biomarkers 
that capture tumor biology for increasing the clinical value 
of prognostic prediction and uncovering new therapeutic 
targets for iCCA.

The advent of high-throughput sequencing technol-
ogy and bioinformatics tools now allows for the identi-
fication of potential molecular targets in various diseases 
(Hong et al. 2020), which is beneficial for the develop-
ment and application of effective targeted therapies for 
iCCA. Recent studies have elucidated the proteogenomic 
subtypes and related biomarkers in cancers and systemati-
cally explored the heterogeneous immune microenviron-
ment of iCCA and the crucial role of glycolysis and lactate 
metabolism in this immune microenvironment (Yang et al. 
2023; Lin et al. 2022a). Further analyses of the clinical 
relevance of lactate metabolism to iCCA have provided 
new pathogenic mechanisms for iCCA (Dong et al. 2020, 
2022; Lin et al. 2022b). Emerging data have underscored 
the significance of lactate metabolism in shaping the tumor 
immune microenvironment (TIME) (Certo et al. 2021). 
Moreover, prior studies showed that the accumulation 
of lactate in TIME negatively impacted the function of 
immune cells such as CD4+ T cells, CD8+ T cells, natural 
killer (NK) cells, and natural killer T cells, while elevat-
ing the activity of regulatory T cells and myeloid-derived 
suppressor cells (Angelin et al. 2017; Peng et al. 2016), 
which ultimately compromised anti-tumor immunity. Of 
note, lactate metabolism-related gene (LMRG) signatures 
have been utilized in predicting prognosis and evaluating 
TIME in breast cancer, lung adenocarcinoma, and hepa-
tocellular carcinoma (Wang et al. 2021; Yang et al. 2022, 
2023; Li et al. 2021). However, limited studies are avail-
able on LMRGs and TIME-related lactate metabolism in 
iCCA (Thonsri et al. 2017), and the biological function of 
LMRGs in iCCA remains incompletely explored.

Therefore, it may be an important direction for develop-
ing treatment strategies and predicting prognosis for iCCA 
to investigate the biological functions of LMRGs in iCCA 
and to link tumor metabolism to the TIME represented by 
lactate metabolism. Herein, this study analyzed the corre-
lation between lactate metabolism and the tumor microen-
vironment (TME) in iCCA and evaluated the clinical sig-
nificance of an LMRG prognostic signature. Our results 
indicated that the molecular signature constructed based on 
LMRGs could predict the prognosis of iCCA patients. In 
addition, this study explored the key biological functions 
of lactate dehydrogenase A (LDHA) in the progression of 
iCCA through in vitro and in vivo experiments, displaying 
that LDHA might be a novel promising therapeutic target 
for iCCA patients.

Materials and methods

Data collection and pre‑processing

This study involved the bulk RNA sequencing (RNA-seq) 
and whole-exome sequencing (WES) data of 255 iCCA 
patients in prior studies (Lin et al. 2022b; Dong et al. 
2022). In addition, a validation dataset was collected from 
a previous study (Deng et al. 2023), and single-cell RNA 
sequencing (scRNA-seq) datasets were obtained from pub-
lished literature (Ma et al. 2021; Song et al. 2022).

Differentially expressed genes (DEGs) in the high 
and low LMRG score groups

DEGs in the high and low LMRG score groups were 
screened and analyzed using DESeq2 (Love et al. 2014), 
with |logFC|> 1 and adjusted false-discovery rates < 0.05 
as the screening criteria. Then, partial least squares-discri-
minant analysis (PLS-DA) was performed to determine the 
profile differences between the high and low LMRG score 
groups. Subsequently, the R packages ggplot2 and Com-
plexHeatmap were utilized to generate various plots for the 
DEGs, such as volcano plots, heat maps, and PLS-DA maps.

Construction of a lactate metabolism‑related 
prognostic scoring model for iCCA​

Two hundred and fifty five iCCA samples with survival 
information were obtained for the construction of the prog-
nosis risk model, and 84 samples with survival information 
were used for external validation (Deng et al. 2023). LMRGs 
associated with the OS of iCCA patients were identified with 
the univariate Cox analysis, and only LMRGs with P < 0.05 
were selected for subsequent analysis. The Boruta algo-
rithm, an all-relevant feature selection wrapper algorithm, 
was utilized to avoid the overfitting of the prognostic model 
and narrow the range of genes predicting OS (Kursa 2010). 
LMRGs filtered with the Boruta algorithm were assessed 
with the multivariate Cox regression analysis. The LMRG 
prognostic scoring model was constructed based on the 
expression of each gene and its corresponding importance. 
The patients were categorized into high and low LMRG 
score groups using the score formula, with the median score 
as the threshold. The dissimilarities in OS between the two 
groups were calculated with the Kaplan–Meier analysis and 
log-rank test. The sensitivity and specificity of the prognos-
tic scoring model were identified with the receiver operating 
characteristic (ROC) curve and the corresponding area under 
the ROC curve (AUC).
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Association of the prognostic scoring model 
and clinicopathological features

Univariate and multivariate Cox regression analyses were 
carried out to clarify the effect of the risk score on OS and 
clinicopathological features, followed by the analysis of the 
correlation between the expression of these LMRGs and sev-
eral clinicopathological features. In addition, the prediction 
accuracy of the risk score and the clinicopathologic features 
was compared with ROC curves.

Construction of a prognostic nomogram

To calculate the probability of 1- and 3-year OS, a nomo-
gram was constructed based on independent prognostic fac-
tors. The performance of the nomogram was assessed with 
ROC and calibration curves. Meanwhile, decision curve 
analysis (DCA) was utilized to further measure the net ben-
efit of the nomogram and single clinical features.

Functional enrichment analyses

To identify the functional characteristics of the high and low 
LMRG score groups, a differential gene expression analysis 
was performed, and Gene Ontology and Kyoto Encyclopedia 
of Genes and Genomes pathway enrichment analyses were 
conducted with the R package “ClusterProfiler” (Yu et al. 
2012). In addition, Gene Set Enrichment Analysis (GSEA) 
was utilized to analyze differences in pathway activities 
between the two risk groups.

Comprehensive analysis of TIME in the two LMRG 
groups

To identify the immune infiltration features of iCCA sam-
ples, their gene expression profiles were imported to the 
TIME 2.0 website with 1000 permutations (https://​ciber​
sortx.​stanf​ord.​edu/). The obtained results were utilized to 
compare the fractions of tumor-infiltrating immune cells in 
the two LMRG groups. Afterward, the association between 
LMRG scores and immune cells was established with a cor-
relation analysis.

Immunohistochemistry (IHC)

This experiment was conducted on the Tissue Microarray 
(TMA) containing corresponding samples of iCCA tissues 
from Zhongshan Hospital of Fudan University (Dong et al. 
2022). All samples were acquired in accordance with the 
Code of Ethics of the World Medical Association (Declara-
tion of Helsinki) after written informed consent had been 
obtained. The protocols for sample use in this study were 
ratified by the Ethics Committee of the Zhongshan Hospital 

of Fudan University. Standard IHC was performed as pre-
viously described (Zheng et al. 2020). Two pathologists 
blindly measured LDHA, CD56, and CD66b expression in 
the iCCA tissues of the TMA (Detre et al. 1995). Image J 
software was employed to determine the mean gray value of 
LDHA and the number of CD56- and CD66b-positive cells 
for each patient. This experiment was carried out with pri-
mary antibodies against LDHA (Proteintech, Wuhan, China, 
19,987-1-AP), CD56 (Proteintech, Wuhan, China, 14,255-1-
AP), and CD66b (Abcam, Cambridge, UK, 197,678).

Cell culture and transfection

Human iCCA cell lines, HuCCT1 (a standardized iCCA 
cell line with KRAS and TP53 mutations) and 880 (a pri-
mary iCCA cell line constructed by our group, which has 
been revealed to have KRAS and TP53 mutations (Dong 
et al. 2018)) were cultured in a Roswell Park Memorial 
Institute (RPMI)-1640 medium encompassing 10% fetal 
bovine serum (FBS; Gibco, Carlsbad, California, USA), 100 
units of penicillin, and 100 mg/mL streptomycin in a 37 °C 
incubator. Negative control (NC), hLDHA-KD#1, hLDHA-
KD#2, mLdha-KD#1, and mLdha-KD#2 were designed and 
constructed into pLKO.1 vectors by Xitu Bio (Shanghai, 
China). Subsequently, these vectors were transfected into 
HUCCT1 and 880 cells with Lipo3000 (Thermo, Waltham, 
Massachusetts, USA) as per the manufacturer’s manuals. 
The used sequences were as follows: hLDHA-KD#1: GCC​
TGT​GCC​ATC​AGT​ATC​TTA; hLDHA-KD#2: CCA​CCA​
TGA​TTA​AGG​GTC​TTT; mLdha-KD#1: GTT​CCC​AGT​
TAA​GTC​GTA​TAA; mLdha-KD#2: CGT​GAA​CAT​CTT​
CAA​GTT​CAT.

Western blot analysis

Cells were lysed in Radio-Immunoprecipitation Assay buffer 
(Beyotime, Shanghai, China) encompassing protease inhibi-
tors (Beyotime) and phosphatase inhibitors (Beyotime). 
Cellular proteins (20 μg) were separated by 10% sodium 
dodecyl sulfate–polyacrylamide gel electrophoresis gels 
and incubated with primary antibodies against extracellular 
signal-regulated kinase 1/2 (ERK1/2; Abmart, Shanghai, 
China; T40071), phosphorylation (P)-ERK1/2 (Abmart; 
TA1015), LDHA (Proteintech; 19,987-1-AP), and glyceral-
dehyde 3-phosphate dehydrogenase (GAPDH) (Proteintech; 
60,004-1-Ig).

Cell proliferation and migration assays

Cell viability was tested with the cell counting kit (CCK)-8 
assay (Dojindo, Kumamoto, Japan). Cells were seeded 
into 96-well plates (2 × 103 cells/well) 24 h after transfec-
tion. At each time point, CCK-8 solutions were added to 

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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the plates (10 μL/well) for 1.5 h of incubation, and optical 
density (OD) values were measured immediately at 450 nm. 
Cell proliferation was also examined as instructed in the 
manuals of the Cell-Light 5-ethynyl-2-deoxyuridine (EdU) 
Apollo567 In Vitro Kit (Ruibo, Guangzhou, China). Micro-
photographs were captured under a fluorescence microscope 
and analyzed. For the Transwell migration assay, cells were 
re-suspended in the RPMI-1640 medium. Next, 2 × 104 cells 
were placed into the apical Transwell chamber, while 800 
μL of medium containing 20% FBS was added into the baso-
lateral chamber. After 24 h, cells remaining in the upper 
chamber were discarded. Cells migrating across the mem-
brane were fixed and stained, followed by counting in three 
random fields under a microscope.

Mouse model establishment

Six-week-old female C57BL/6 J mice (the Shanghai Branch 
of Beijing Vital River, Shanghai, China) were housed under 
specific pathogen-free conditions. Animal experiments 
were performed following institutional guidelines and 
were approved by the Institutional Animal Care and Use 
Committee of the Shanghai Branch of Beijing Vital River 
(2017–0014). A spontaneous mouse model of iCCA was 
established with reference to previous studies (Affo et al. 
2021; Lin et al. 2022a). Thereafter, 25 μg of pT3-EF1a-
KRASG12D, 10 μg of PX330-CAG-sgp19, and 5 μg of 
plasmids containing transposon and SB-luc transposase at 
a ratio were dissolved in 2 mL of 0.9% NaCl solutions. The 
obtained solutions were injected into the tail vein of mice in 
a total volume equal to 10% of body weight in 6 s. Then, the 
state of the mice was observed, and tumors were dissected 
and collected after 1 month of modeling.

Primary cell construction

Tumors of the Kp19 iCCA mouse model were dissected 
with the Miltenyi Mouse Tumor Dissociation Kit and gen-
tleMACS Octo-Dissociator (Miltenyi) as per the manufac-
turer’s manuals. The tumors were dissociated into single-
cell suspensions, washed twice with phosphate-buffered 
saline (PBS), re-suspended with a primary cell medium 
(RPMI-1640 medium with 10% FBS, 50 ng/mL epithelial 
growth factor, 1 × Insulin-Transferrin-Selenium Solution, 
10 μM Y-27632, and 5 μM A83-01), and seeded into a 

collagen-coated cell culture dish. The cultured cells were 
passaged over 10 times to remove non-tumor cells such as 
fibroblasts.

Subcutaneous tumor model

Cells (2 million) were suspended in 150 μL of PBS and 
injected subcutaneously into C57BL/6 J mice. The tumor 
volume was measured every 3 days until the tumor volume 
reached 150 mm3. Mice were euthanized, and tumors were 
dissected when the tumor volume reached around 2000 mm3.

Statistical analysis

Statistical analysis and visualization were performed with 
version 4.2.2 of R software (https://​www.r-​proje​ct.​org). The 
Mann–Whitney U test was utilized for comparisons between 
the two groups. Kaplan–Meier survival curves were assessed 
with the log-rank test. In all tests, two-sided P < 0.05 repre-
sented statistically significant differences.

Results

Identification of LMRGs to construct a prognostic 
signature

First, the RNA-seq dataset was acquired from a previously 
published Fudan University (FU)-iCCA cohort (Dong et al. 
2022) containing 255 patients. Then, a univariate Cox model 
was constructed to select prognostic genes among 284 
LMRGs (Li et al. 2022), which demonstrated that 27 genes 
were markedly associated with prognoses (hazard Ratio 
[HR] > 1, P < 0.05) in the FU-iCCA cohort (Fig. 1A). Lac-
tate metabolism-related pathways were obviously enriched 
(Zhou et al. 2019) (Fig. 1B), highlighting that the selected 
genes indeed maintain their key lactate metabolism features. 
Next, a prognostic model was built with the Boruta algo-
rithm (Kursa 2010). In Fig. 1C, the green line corresponds to 
confirmed features, the red line represents rejected features, 
and the yellow line denotes features to be identified. The 
three blue lines represent the importance of minimum, aver-
age, and maximum shadow features, respectively.

Eventually, six genes, namely LDHA, ETHE1, ATAD3A, 
SLC25A19, SLC13A5, and LARS2, were identified and 
subsequently determined as potential constituents of the 
LMRG prognostic signature (Fig. 1D). Heat maps were plot-
ted to present the expression of these genes in patients of 
the cohorts of FU-iCCA and Deng et al. (Deng et al. 2023) 
(Fig. 1E, Figure S1A). Of note, LDHA has been generally 
considered the central enzyme dictating the lactate metabo-
lism pathway (Thonsri et al. 2017). In our study, LDHA was 
the most significant prognostic LMRG in iCCA (Fig. 1D). 

Fig. 1   Cox regression and Boruta to filter lactate metabolism-related 
genes. A 27 prognostic LMRGs selected with univariate Cox regres-
sion. B The GO analysis of the 27 prognostic LMRGs. C The selec-
tion process of Boruta. D The genes selected with Boruta. E Expres-
sion heat map of the selected 6 LMRGs. F Correlation plot for the six 
LMRGs in iCCA G The PPI network of the 6 LMRGs constructed 
with the STRING website. H Transcript factor analysis of the 6 
LMRGs with the ChEA3 website

◂

https://www.r-project.org
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The intrinsic correlations among LMRGs were assessed with 
the correlation analysis and the protein–protein interaction 
network, which displayed a positive correlation among these 
six genes (Fig. 1F, G, Figure S1B). Transcript factor analy-
ses with the ChEA3 (Keenan et al. 2019) database indicated 
that the main functions of co-expressed transcription factors 
were related to immune responses (Fig. 1H). These results 
further illustrate that lactate metabolism may be involved in 
the reprogramming of TIME.

High and low LMRG scores were tightly associated 
with the prognosis and mutation profile of patients

Based on the importance of LMRGs defined with Boruta, 
the LMRG score was computed with the established for-
mula: LMRG score = (10.17 × LDHA expression) + (4.38 × 
ATAD3A expression) + (7.22 × ETHE1 expression) + (3.86 × 
LARS2 expression) + (3.57 × SLC13A5 expression) + (3.76 
× SLC25A19 expression). Next, patients were allocated into 
high and low LMRG score groups with the median of the 
score. As expected, the high LMRG score group showed 
worse prognoses, which was further validated in the cohorts 
of FU-iCCA and Deng et al. (Fig. 2A–D). Meanwhile, the 
HR of the high LMRG score group was 3.01 and 2.57 in 
these two cohorts according to the multivariate Cox model, 
respectively (Fig. 2E, Figure S2A), and LMRG scores were 
negatively correlated with the prognosis of patients (Fig. 2F, 
Figure S2B).

Clinically, nomograms are frequently utilized to forecast 
the survival of patients and to calculate points derived from 
their calculated scores (Balachandran et al. 2015). To predict 
the 1- and 3-year OS rates of iCCA patients, a nomogram 
was developed based on independent prognostic markers 
including LMRG scores and TNM stages to quantitatively 
assess the prognosis of patients (Fig. 3A, Figure S3A). 
The calibration curves exhibited the exceptional prediction 
accuracy of the nomogram in the cohorts of FU-iCCA and 
Deng et al. (Fig. 3B, Figure S3B). The ROC curves dem-
onstrated the AUC of the nomogram was 0.72, and 0.73 in 
predicting 1- and 3-year OS, respectively, in the FU-iCCA 
cohort (Fig. 3C). In the cohort of Deng et al., the AUC of the 
nomogram was 0.59 and 0.75 in predicting 1- and 3-year OS, 
respectively (Figure S3C). The clinical validity of the nomo-
gram was assessed with the decision curves. As depicted in 
Fig. 3D, the nomogram yielded substantial net clinical ben-
efits in both the short and long terms (Fig. 3D, Figure S3D).

To identify genetic variations in the high and low LMRG 
score groups, the WES data of the FU-iCCA cohort were 
collected to show gene mutations in these two groups 
analyzed with the 10 × single-cell technique (Fig. 3E, F). 
Obviously, TP53 and KRAS mutations were substantially 
enriched in the high LMRG score group, consistent with 
our previous finding that both TP53 and KRAS mutations 

were associated with the poor prognosis of patients (Dong 
et al. 2022). These results indicate that our LMRG score can 
effectively characterize the poor prognosis of iCCA patients 
and has value for further research.

Prominent impact of the LMRG score on the TIME 
of iCCA​

Metabolic pathways, particularly lactate metabolism path-
ways, play a vital role in remodeling the TIME during the 
development of numerous cancers (Angelin et al. 2017; Fau-
bert et al. 2017). Thus, the TIME 2.0 website (http://​timer.​
comp-​genom​ics.​org) was employed to deconvolve immune 
cell compositions in the cohorts of FU-iCCA and Deng 
et al. It was observed that NK cell infiltration was obvi-
ously diminished and neutrophil abundance was augmented 
in the high LMRG score group (Fig. 4A, B; Figure S4A). 
Furthermore, LMRG scores were also markedly negatively 
correlated with NK cell infiltration and positively correlated 
with neutrophil abundance (Fig. 4C, Figure S4B). Then, the 
immunoediting score was calculated for each tumor, with a 
score < 1 suggesting the presence of immunoediting. The 
results manifested that immunoediting scores were promi-
nently higher in the high LMRG score group (Fig. 4D), 
underscoring that high glycolytic activity mediated by lac-
tate metabolism can potentially suppress cytolytic activ-
ity in iCCA. Further results exhibited that cytolytic scores 
were lowered and co-inhibitor scores were enhanced in the 
high LMRG score group (Fig. 4E, F), illustrating that active 
lactate metabolism may contribute to the formation of the 
immunosuppressive TME in iCCA. LMRG scores also 
showed negative associations with cytolytic scores and the 
expression of NK cell functional genes GNLY and GZMM 
(Figure S4C, S4D). These results highlight that the immuno-
suppressive TME may impede NK cell-mediated anti-tumor 
immunity.

Validation of LMRG‑related immune cell 
compositions by scRNA‑seq analysis

To confirm the variations of immune cell compositions 
between the high and low LMRG score groups, scRNA-seq 
datasets were obtained from two published references (Ma 
et al. 2021; Song et al. 2022). Fourteen iCCA patients were 
selected from both cohorts, respectively, for analysis, and 
cells were annotated into distinct types shown in UMAP 
(Fig. 5A, B). The boxplots of the six LMRGs are presented 
in Fig. 5C and D, which displayed that LDHA was expressed 
at the highest level in the baseline of various immune cells. 
The expression data of the six LMRGs were extracted and 
LMRG scores were calculated with the Boruta parameters 
derived from bulk RNA-seq. The proportions of immune 
cells in the high and low LMRG score groups are detailed 

http://timer.comp-genomics.org
http://timer.comp-genomics.org
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in Fig. 5E and F. Specifically, NK cells markedly enriched 
in the low LMRG score group, corresponding to a better 
prognosis. Cytolytic scores were lower and NK cell cytol-
ytic genes were poorly expressed in the high LMRG score 
group (Fig. 5G, H). All these results validated that lactate 

metabolism dysregulation may influence TIME by suppress-
ing the infiltration and functions of NK cells. Due to the 
limitations of prior 10 × single-cell techniques, neutrophils 
in TIME were not included in this dataset. Intriguingly, 
prior studies have unveiled that neutrophils are enriched in 
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KRAS-mutated iCCA samples, consistent with our results 
that KRAS mutations were obviously enriched in the high 
LMRG score group (Lin et al. 2022a; Zhang et al. 2023).
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LDHA recapitulated the significance of LMRG scores 
in iCCA​

Subsequently, Kaplan–Meier survival curves were plotted to 
evaluate the prognostic significance of LDHA, CD56 (a gene 
related to NK cell infiltration), and CD66b (a gene related to 

neutrophil infiltration), respectively. Our results revealed that 
patients with high LDHA and CD66b expression exhibited 
inferior OS outcomes (Fig. 6A, C). In contrast, high CD56 
expression was associated with high OS (Fig. 6B). To fur-
ther validate our findings in the clinical setting, TMA samples 
were acquired from the FU-iCCA cohort (Dong et al. 2022). 
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IHC was performed to examine LDHA, CD56, and CD66b 
expression in iCCA, which demonstrated a positive correlation 
between LDHA expression and the number of CD66b-positive 
cells, as well as a negative correlation between LDHA expres-
sion and the number of CD56-positive cells (Fig. 6D and 
Fig. 6E). The representative image is displayed in Fig. 6F–H.

LDHA knockdown suppressed tumor growth in vitro 
and in vivo

As reported, LDHA not only is correlated with TIME 
but also directly regulates tumor growth (Le et al. 2010; 
Guyon et al. 2022; Jiang et al. 2021). Accordingly, its bio-
logical functions in iCCA were further probed. Specifically, 
HuCCT1 and 880 cell lines with both KRAS and TP53 muta-
tions were chosen to assess the knockdown efficiency of 
LDHA (Fig. 7A). Subsequently, cell proliferation was tested 
with CCK-8 and EdU assays, and migration was examined 
with the Transwell assay. The results demonstrated that 
LDHA knockdown markedly reduced iCCA cell prolif-
eration and migration (Fig. 7B–H). Further, patients were 
categorized based on their LMRG score and high LDHA 
expression, followed by GSEA. The results unraveled that 
the mitogen‑activated protein kinase (MAPK) pathway was 
activated in patients with high LMRG scores (Figure S5A) 
or LDHA expression (Figure S5B). The ERK pathway is 
one of the most significant pathways in the MAPK path-
way. Based on the GSEA results, this study further verified 
that LDHA knockdown inhibited the activation of the ERK 
pathway (Fig. 7I). With reference to prior studies (Lin, Dai, 
et al. 2022; Affo et al. 2021), the primary iCCA cell line 
Kp19 derived from C57BL/6J mice was successfully con-
structed in this study (Fig. 7J). Subsequent to LDHA knock-
down (Fig. 7K), Kp19 cells were subcutaneously inoculated 
into immunocompetent mice. The data confirmed that LDHA 
knockdown substantially repressed tumor growth in mice 
(Fig. 7L–N). Overall, LDHA knockdown may depress tumor 
growth by blocking the activation of the ERK pathway.

Discussion

The role of lactate metabolism in tumorigenesis and TIME 
has been extensively studied in various cancers (Ratter et al. 
2018; Thorn et al. 2009; Angelin et al. 2017). However, prior 

research has predominantly focused on bile acid and lipid 
metabolism in iCCA (Zhang et al. 2020; Yu et al. 2023, 
2020; Martinez et al. 2020; Herraez et al. 2020), and the 
significance of lactate metabolism in iCCA remains largely 
undetermined. In this study, 27 prognostic-related genes 
were identified among 284 LMRGs with the univariate Cox 
regression model. Moreover, six LMRGs that could serve 
as potential prognostic biomarkers for iCCA were success-
fully filtered out with the Boruta algorithm. Based on these 
six genes, the LMRG score was calculated, which enabled 
discrimination between iCCA patients with good and poor 
prognoses. Next, WES data exhibited that TP53 and KRAS 
mutations were highly enriched in the high LMRG score 
group. Previous studies have elucidated that increased lac-
tate metabolism was enriched in TP53-mutated patients with 
multiple myeloma (Shah et al. 2018) and KRAS-mutated 
patients with lung adenocarcinoma (McCleland et al. 2013), 
implicating the potential association of TP53 and KRAS 
mutations with lactate metabolism in iCCA.

Since TIME is crucial for cancer initiation and progres-
sion, this study also analyzed the correlation between LMRG 
scores and the distribution of immune cells and immune fac-
tors such as cytolytic scores, immunoediting scores, and co-
inhibitor genes. Our result revealed that immune-activated 
cells including NK cells were markedly depressed in the 
high LMRG score group, while immune-suppressive cells 
such as neutrophils were enriched in the high LMRG score 
group, which was also validated by correlation analyses 
and prior research (Deng et al. 2021). Since scRNA-seq is a 
robust technology to explore the immune microenvironment, 
scRNA-seq data were obtained from two public datasets and 
reanalyzed (Ma et al. 2021; Song et al. 2022). The result 
validated that NK cells were markedly decreased in the high 
LMRG score group, concordant with prior results that lac-
tate metabolism products were detrimental to the activity of 
NK cells (Glass et al. 2020; Scott and Cleveland 2016). Due 
to the limited sensitivity of scRNA-seq to neutrophils, neu-
trophil variations in scRNA-seq datasets were not analyzed. 
Given previous findings that neutrophils were enriched in 
tumors with KARS mutations (Lin et al. 2022a; Zhang et al. 
2023), neutrophils were included in further experimental 
verification.

Subsequently, IHC was used for further validation of our 
findings. Among the variables assessed with the Boruta 
algorithm, LDHA was the most significant gene associ-
ated with the prognosis of iCCA patients (Fig. 1D). LDHA 
expression was examined, which exhibited a significantly 
negative correlation between LDHA expression and OS. In 
addition, CD56 and CD66b expression was also detected 
since they are widely recognized surface markers of NK 
cells and neutrophils, respectively. The results demonstrated 
a positive correlation between LDHA and CD66b expres-
sion and a negative correlation between LDHA and CD56 

Fig. 5   ScRNA-seq of iCCA patients with LMRG scores. The UMAP 
plot showing the subtypes of immune cells in the cohorts of FU-
iCCA (A) and Ma et  al. (B). The violin plot of the six LMRGs in 
the cohorts of FU-iCCA (C) and Ma et  al. (D). Boxplot displaying 
the fractions of immune cells in the cohorts of FU-iCCA (E) and Ma 
et  al. (F) (Wilcox. Test). Boxplot exhibiting cytolytic score-related 
genes of LMRGs in the cohorts of FU-iCCA (G) and Ma et al. (H). 
*P < 0.05, **P < 0.01, and ***P < 0.001

◂
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expression. In terms of mechanistic analysis, our study also 
analyzed pathway alterations in patients with high LMRG 
scores or LDHA expression. The results displayed the sig-
nificant activation of the MAPK pathway, underscoring the 
significance of LDHA in this signature.

In addition, our study also investigated the impact of 
LDHA on tumor growth with the use of the representa-
tive cell lines HuCCT1 and 880. The results demonstrated 
that LDHA knockdown substantially diminished iCCA cell 
proliferation and migration, similar to conclusions from 

Fig. 6   IHC validation of LDHA and CD56. The survival analysis of 
high and low expression of LDHA (A), CD56 (B), and CDD66b (C). 
Correlation between LDHA expression and immune cell infiltration 

(D, E). Representative samples revealing the expression of LDHA 
(F), CD56 (G), and CD66b (H) in iCCA patients, respectively
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previous oncology studies (Le et al. 2010; Guyon et al. 2022; 
Jiang et al. 2021). This result highlights the role of LDHA in 
regulating cell proliferation and migration in iCCA. Regard-
ing mouse experiments, we deemed that the conventional 
nude mouse xenograft model cannot fully replicate the char-
acteristics of both tumor immunity and tumor metabolism, 
and iCCA lacks corresponding mouse-derived cell lines. 
To incorporate key factors of tumor metabolism and the 
immune microenvironment, a subcutaneous iCCA model 
was established in immunocompetent mice. The results con-
firmed the repressive effect of LDHA knockdown on tumor 
growth. Simultaneously, it was found that LDHA regulated 
the ERK pathway within the MAPK pathway. Reportedly, 
the ERK pathway not only regulates tumor growth but also 
influences immune cell infiltration in TIME (Yuan et al. 
2020; Ullah et al. 2022).

Tumors not only exhaust local energy stores but also 
generate lactate through anaerobic metabolism, resulting 
in immunosuppression and tumor growth. Given that gly-
colysis is largely required for the proliferation of cytotoxic 
T cells and the production of cytokines, these cells and 

cytokines are inactive under conditions of low glucose lev-
els and high lactate concentrations (Macintyre et al. 2014). 
A prior study unveiled that LDHA downregulation partially 
restored the function of effector T cells, underscoring the 
significant role of LDHA in mediating the impact of lac-
tate metabolism on these immune cells (Pucino et al. 2019). 
In addition, another study reported that LDHA knockdown 
in Pan02 cells (a pancreatic cancer cell line) substantially 
repressed the tumorigenicity of these cells in mice. Of note, 
NK cells were revealed to elevate tumor-killing activity after 
LDHA knockdown, indicating that LDHA may contribute 
to tumor immune escape by impairing immune cell function 
(Husain et al. 2013; Brand et al. 2016; Certo et al. 2020). 
This finding is concordant with our conclusion. Phospho-
mevalonate kinase 2 (PMK2) is another gene implicated in 
lactate metabolism, which is also essential for the progres-
sion of tumors. PKM2 dimerization can translocate into 
the nucleus to stabilize hypoxia inducible factor 1 subunit 
alpha (HIF1α) and to induce the expression of glycolytic 
genes. Previous research elucidated that PKM2 modulated 
breast cancer cell proliferation through the proteasomal 

Fig. 7   LDHA knockdown 
inhibited tumor growth in vitro 
and in vivo. The knockdown 
efficiency of LDHA in human 
iCCA cell lines verified 
with western blot analysis 
(A). CCK-8 assay results 
of HuCCT1 and 880 cells 
transfected with hLDHA KD#1, 
hLDHA KD#2, or negative con-
trol (NC) (B and C). EdU assay 
results of HuCCT1 and 880 
cells transfected with hLDHA 
KD#1, hLDHA KD#2, or NC 
(D, E, and G). Transwell assay 
results of HuCCT1 and 880 
cells transfected with hLDHA 
KD#1, hLDHA KD#2, or NC 
(F and H). Changes in the ERK 
pathway after LDHA knock-
down analyzed with western 
blot analysis (I). Flowchart 
of constructing subcutaneous 
iCCA model in immunocom-
petent mice (J). The knock-
down efficiency of LDHA in 
mouse iCCA cell lines verified 
with western blot analysis 
(K). Growth of subcutaneous 
tumors in ICCA mice after 
LDHA knockdown (L, M, and 
N). *P < 0.05, **P < 0.01, and 
***P < 0.001
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degradation of AU-rich protein tristetraprolin (Huang et al. 
2016). Furthermore, PKM2 can also enter mitochondria to 
phosphorylate BCL2 (an apoptosis regulator), thus facilitat-
ing cancer cell adaptation to oxidative stress (Liang et al. 
2017). Through single-cell technology, a study systemati-
cally analyzed tumor-infiltrating B cells at various stages 
of colorectal cancer and identified a novel subset of B cells 
(LARS B) characterized by high expression of leucyl-tRNA 
synthetase 2 (LARS2). These cells were dispersed within the 
tumor stroma and their enrichment was positively correlated 
with the dismal prognosis of patients (Wang et al. 2022). 
Collectively, these studies on LMRGs underscore the pivotal 
role of lactate metabolism in tumor progression.

However, our research also has several limitations. Spe-
cifically, although our study explored the impact of LDHA 
on tumor cell proliferation and confirmed its relationship 
with immune cell infiltration in TIME, it remains uncertain 
whether LDHA affects the malignant progression of tumors 
primarily by influencing the intrinsic growth of tumors or by 
regulating tumor immunity. In addition, this study failed to 
extensively elucidate the internal mechanisms through which 
LDHA regulates TIME in iCCA. Hence, further studies on 
these aspects are warranted.

Conclusion

In summary, our study developed an LMRG prognostic sig-
nature for iCCA patients and obtained the LMRG score for 
predicting the prognosis of patients. In addition, the high 
LMRG score group exhibited a high frequency of TP53 and 
KRAS mutations, high neutrophil cell infiltration, and low 
NK cell infiltration. LDHA knockdown impeded the prolif-
eration and migration of iCCA in vitro and in vivo. These 
findings offer novel insights into potential targeted treatment 
for iCCA patients.
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