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Abstract
Purpose  Chemoresistance is a major challenge for acute lymphoblastic leukemia (ALL) treatment. Cysteine-rich protein 
61 (Cyr61) plays an important role in drug resistance modulation of tumor cells, and Cyr61 levels are increased in the bone 
marrow of patients with ALL and contribute to ALL cell survival. However, the effect of Cyr61 on B cell acute lymphoblas-
tic leukemia (B-ALL) cell chemosensitivity and the regulatory mechanisms underlying Cyr61 production in bone marrow 
remain unknown.
Methods  Nalm-6 and Reh human B-ALL cell lines were used in this study. Cyr61 levels were assessed using quantitative 
real-time PCR (qRT-PCR), western blot analysis, and enzyme-linked immunosorbent assay. The effect of Cyr61 on B-ALL 
cell chemosensitivity to daunorubicin (DNR) was evaluated using cell viability and flow cytometry analyses. The regulatory 
mechanisms of Cyr61 production in bone marrow were examined using qRT-PCR and western blot analysis.
Results  Cyr61 knockdown and overexpression increased and decreased the chemosensitivity of B-ALL cells to DNR, 
respectively. Cyr61 attenuated chemotherapeutic drug-induced apoptosis by upregulating B cell lymphoma-2. Notably, DNR 
induced DNA damage response and increased Cyr61 secretion in B-ALL cells through the ataxia telangiectasia mutated 
(ATM)-dependent nuclear factor kappa B pathway.
Conclusion  DNR induces Cyr61 production in B-ALL cells, and increased Cyr61 levels reduce the chemosensitivity of 
B-ALL cells. Consequently, targeting Cyr61 or related ATM signaling pathway may present a promising treatment strategy 
to enhance the chemosensitivity of patients with B-ALL.
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IC50	� 50% Inhibitory concentration
ATM	� Ataxia telangiectasia mutated
DDR	� DNA-damage respond

Background

B-acute lymphoblastic leukemia (B-ALL), the most com-
mon malignancy in children, is an affliction of uncontrolled 
B lymphocyte proliferation in the bone marrow (Terwilliger 
and Abdul-Hay 2017). Although combination chemotherapy 
has achieved relatively good therapeutic effects in patients 
with B-ALL, a subset of patients remain who suffer from 
relapses and chemotherapy resistance (Jabbour et al. 2015). 
As such, studying the mechanism of drug resistance in 
B-ALL cells is necessary.

The bone marrow microenvironment plays a pivotal role 
in leukemia (Hellinger et al. 2019). Abnormal cytokine, 
chemokine, and matrix protein expression in the bone mar-
row microenvironment promotes acute leukemia cell sur-
vival and migration and reduces sensitivity to chemothera-
peutic drugs (Hesler et al. 2016; Cao et al. 2019; Zhu et al. 
2016; Acharyya et al. 2012; Huber et al. 2015).

Cysteine-rich protein 61 (Cyr61/CCN1), a member of 
the CCN (Cyr61/CTGF/NOV) family, plays a pivotal role 
in maintaining normal bodily physiological functions (Song 
et al. 2019; Cao et al. 2019; Lum et al. 1993; Hazlehurst 
et al. 2003; Terada et al. 2012). Cyr61 expression becomes 
abnormal in tumors, and Cyr61 levels are correlated with 
poor prognosis in tumors (Sabile et al. 2012; Kok et al. 2010; 
Jiang et al. 2004; Jeong et al. 2014; D’Antonio et al. 2010; 
Holcik and Korneluk 2001). Notably, Cyr61 induces drug 
resistance in tumor cells, such as those in breast cancer and 
pancreatic adenocarcinoma (Hellinger et al. 2019; Hesler 
et al. 2016). Cyr61 levels are increased in the bone marrow 
of patients with ALL, and increased Cyr61 contributes to 
ALL cell survival and decreases their chemosensitivity to 
cytarabine (Cao et al. 2019; Zhu et al. 2016). Daunorubicin 
(DNR), an anthracycline, is widely used as a first-line chem-
otherapy in ALL. However, the effect of Cyr61 on DNR 
chemosensitivity has not yet been explored, and the regula-
tory mechanisms ofCyr61 production in the bone marrow 
are poorly defined.

Chemotherapy-produced cytokines, growth factors, and 
matrix proteins may protect tumor cells from therapeutic 
killing (Liu et al. 2020; Gilbert and Hemann 2010; Tuncali 
et al. 2018). Doxorubicin induces interleukin (IL-6) produc-
tion in thymic epithelial cells (Gilbert and Hemann 2010). 
Furthermore, rituximab induces IL-6 release from diffuse 
large B cell lymphoma cells, which protect diffuse large B 
cell lymphoma cells from chemotherapy-induced apoptosis 
(Zhong et al. 2018). Acharyya et al. reported that the combi-
nation of doxorubicin and cyclophosphamide chemotherapy 

can induce CXCL1/2 expression in breast cancer cells, lead-
ing to chemoresistance (Acharyya et al. 2012). In addition, 
Huber et al. found that docetaxel induces glial cell line-
derived neurotrophic factor (GDNF) secretion in human 
prostate fibroblasts, which promotes resistance to prostate 
cancer treatment (Huber et al. 2015). However, whether 
chemotherapy induces Cyr61 release in B-ALL cells remains 
largely unknown.

In this study, we explored the effect of Cyr61 on DNR 
chemosensitivity and investigated the effect of DNR on 
Cyr61 production in B-ALL cells. Collectively, this study 
is the first to reveal that DNR induces Cyr61 production in 
B-ALL cells, which in turn promotes B-ALL cell resistance 
to treatment. Our findings suggest that targeting Cyr61 or 
related signaling pathways may present a promising option 
to enhance the chemosensitivity of patients with B-ALL.

Materials and methods

Patients and cell lines

Primary leukemic cells were isolated from two patients with 
B-ALL using a Ficoll gradient as previously described (Zhu 
et al. 2016). The Nalm-6 and Reh human acute B-lympho-
cytic leukemia cell lines were cultured with Roswell Park 
Memorial Institute (RPMI) 1640 medium (HyClone, Logan, 
UT, USA) supplemented with 10% fetal bovine serum (FBS, 
Gibco, Carlsbad, CA, USA) and 1% penicillin/streptomycin 
(HyClone, Logan, UT, USA) at 37 °C and 5% CO2. Reh 
and Nalm-6 both belong to B cell precursor leukemia cell 
line. Nalm-6 cell line was established from the peripheral 
blood of a 19-year-old man with acute lymphoblastic leu-
kemia (ALL) in relapse in 1976. Reh was established from 
the peripheral blood of a 15-year-old girl with acute lymph-
oblastic leukemia (ALL at first relapse) in 1973; carries t 
(12;21) leading to ETV6-RUNX1 (TEL-AML1) fusion gene. 
The cell lines were routinely evaluated for contamination 
using a mycoplasma contamination test and short tandem 
repeat (STR) DNA profiling.

Drugs

DNR (Selleckchem, Houston, TX, USA) was dissolved 
in dimethyl sulfoxide (DMSO) as per the manufacturer’s 
instructions. KU55933 (Selleckchem, Houston, TX, USA) 
was used as ATM phosphorylation inhibitor and PDTC 
(Selleckchem, Houston, TX, USA) was used as NF‐κB phos-
phorylation inhibitor. Two phosphorylation inhibitors were 
dissolved in DMSO as per the manufacturer’s instructions. 
All the drugs were stored in aliquots at − 20 °C.
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Enzyme‐linked immunosorbent assay (ELISA)

The Cyr61 concentrations in the culture supernatants were 
determined using human Cyr61 ELISA Systems (R&D Sys-
tems, Minneapolis, MN, USA), according to the manufac-
turer’s instructions. All samples were tested in triplicate, 
along with three internal quality control plasma and serum 
samples to assess inter-assay precision.

Cell viability assay

Cells were cultured in RPMI 1640 medium containing dif-
ferent concentrations of DNR for 24 h. The cell viability 
was measured using Cell Counting Kit-8 (CCK8, Beyotime 
Biotechnology, Jiangsu, China), according to manufacturer’s 
instructions. Cells (5.0 × 103) were seeded into a 96-well 
plate and cultured at 37 °C for 24 h. CCK8 reagent (10 μL) 
was added into each well and incubated for an additional 
2 h. The optical density (OD) of plates was determined at 
450 nm using a microplate reader (BIO-TEK), and the IC 50 
(the concentration of a drug that is required for 50% inhibi-
tion in vitro) was used to quantitatively indicate the different 
cell killing capabilities of DNR. Each sample was assayed in 
triplicate and the experiments were repeated thrice.

Western blot analysis

Nalm-6 and Reh cells were harvested, washed with ice-cold 
phosphate-buffered saline (PBS), and added to radioim-
munoprecipitation assay (RIPA) lysis buffer for 20 min. 
Western blotting (protein immunoblotting) was performed 
as previously described (Zhu et al. 2016; Song et al. 2019; 
Cao et al. 2019). The following antibodies were used: anti-
human cyr61 monoclonal antibody (093G9) was kindly 
provided by Dr. Ningli Li (Shanghai Jiao Tong University 
School of Medicine, Shanghai, China) (Lin et al. 2012a, b; 
Zhang et al. 2009; Zhong et al. 2017), anti‐NF‐κBp65 (4764; 
Cell Signaling Technology, Danvers, MA, USA), anti-P-
NF‐κBp65 (3033; Cell Signaling Technology, Danvers, 
MA, USA), anti-Bcl-2 (4233; Cell Signaling Technology, 
Danvers, MA, USA), anti-PI3K/AKT (9272; Cell Signaling 
Technology, Danvers, MA, USA), anti-p- PI3K/AKT (9271; 
Cell Signaling Technology, Danvers, MA, USA), anti-p38 
MAPK (9212; Cell Signaling Technology, Danvers, MA, 
USA), anti-p-p38 MAPK (9211; Cell Signaling Technology, 
Danvers, MA, USA), anti-ERK (p44/42) (9202; Cell Signal-
ing Technology, Danvers, MA, USA), anti-p-ERK (p44/42) 
(9201; Cell Signaling Technology, Danvers, MA, USA), 
anti-p-H2A.X (2577; Cell Signaling Technology, Danvers, 
MA, USA), anti-ATM (2873; Cell Signaling Technology, 
Danvers, MA, USA), and anti-p-ATM (p44/42) (5883; Cell 
Signaling Technology, Danvers, MA, USA). AS p-ATM and 
ATM are very big. To detect them in western blotting is not 

that easy. It is convention to introduce the molecular weight 
marker (MM) above and below the detected protein (excep-
tion of for ATM because too high for a conventional MM. 
Therefore, the MM below is enough).

Quantitative real‑time PCR (qRT‑PCR)

Total RNA of specimens was extracted using RNAeasy™ 
Animal RNA Isolation Kit with a spin column (Beyotime, 
Shanghai, China) according to the manufacturer’s instruc-
tions. Total RNA (1 μg) was reverse‐transcribed into first‐
strand cDNA using the RevertAid First Strand cDNA Syn-
thesis Kit (Thermo Fisher Scientific, Waltham, MA, USA). 
RT-PCR was performed using SYBR Green Master Mix 
(Roche Diagnostics, Basel, Switzerland) according to the 
manufacturer’s instructions. The primers used in this study 
were as follows: Cyr61 forward: TCC​AGC​CCA​ACT​GTA​
AAC​ATCA reverse: GGA​CAC​AGA​GGA​ATG​CAG​CC; 
GAPDH forward: CAC​ATG​GCC​TCC​AAG​GAG​TA reverse: 
TGA​GGG​TCT​CTC​TCT​TCC​TCT​TGT; Bcl-2 forward: CTG​
GTG​GGA​GCT​TGC​ATC​AC reverse: ACA​GCC​TGC​AGC​
TTT​GTT​TC; Bcl-xl forward: TCA​GGC​TGC​TTG​GGA​TAA​
AGAT reverse: AGA​GGC​TTC​TGG​AGG​ACA​TTTG; Sur-
vivin forward: TGA​CGA​CCC​CAT​AGA​GGA​ACA reverse: 
CGC​ACT​TTC​TCC​GCA​GTT​TC; XIAP forward: TTG​AGG​
AGT​GTC​TGG​TAA​G reverse: CCA​TTC​GTA​TAG​CTT​CTT​
GT.

Apoptosis assay

Cell apoptosis was evaluated using a FACSCanto II cytom-
eter (BD Biosciences, San Jose, CA) and the Annexin V‐
APC Apoptosis Detection Kit (BD Biosciences, Franklin 
Lakes, NJ, USA) according to the manufacturers’ instruc-
tions. Cells (5.0 × 105) cells were washed with ice‐cold PBS, 
re-suspended in binding buffer (195 μL), and stained with 
APC-conjugated anti‐annexin-V antibody (5 µL) for 10 min 
at 25 °C. Unbound annexin-V antibody was washed off using 
binding buffer. The percentage of apoptotic Nalm-6 cells 
(annexin-V positive) was determined using flow cytometry 
analysis.

Cyr61 down‑regulation

Cyr61 knockdown was performed as previously described 
(Song et al. 2019). Nalm-6 cells (5 × 104 cells/mL) were 
infected by a lentivirus carrying shNC or shCyr61 (Shang-
hai GeneChem Co., Ltd, Shanghai, China). Upon ensur-
ing > 95% cell infection efficiency, 4 μg/mL puromycin 
(Sigma-Aldrich, St. Louis, MO) was used for selection for 
5 days. Cyr61 knockdown efficiency was measured using 
western blot analysis and the frequency of GFP+ cells was 
measured using flow cytometry.
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Cyr61 overexpression

Lentiviral particles containing the Cyr61 sequence were 
purchased from Shanghai GeneChem Co., Ltd. (Shanghai, 
China). Nalm-6 cells (5 × 104 cells/mL) were infected with 
the Cyr61-containing lentiviral particles for 18–24 h accord-
ing to the manufacturer’s protocol. Upon ensuring > 95% 
infection efficiency of Nalm-6 cells, 4 μg/mL puromycin 
(Sigma-Aldrich, St. Louis, MO) was used for selection for 
5 days. Cyr61 knockdown efficiency was measured using 
western blot analysis and the frequency of GFP+ cells was 
measured using flow cytometry.

Statistical analysis

SPSS 22.0 statistical software (Version 22.0 SPSS, Chicago, 
IL; USA) was used for statistical analyses. All data were 
expressed as mean ± standard error of the mean (SEM). Stu-
dent’s test was used to compare two groups and P < 0.05 was 
considered statistically significant (*P < 0.05; **P < 0.01).

Results

Cyr61 decreased the chemosensitivity of B‑ALL cells 
to DNR

Cyr61 overexpression and knockdown were constructed in 
B-ALL cell lines using lentivirus vector transfection and the 
efficacy was confirmed (Fig. 1a). Cell viability was assessed 
using a CCK8 assay and the results showed that Cyr61 over-
expression in Nalm-6 cells led to a higher IC50 value to 
DNR and a lower DNR-induced apoptosis rate than that in 
the Nalm-6-LV-NC cell group, suggesting that Cyr61 over-
expression reduced the chemosensitivity of Nalm-6 cells to 
DNR (Fig. 1b). Conversely, Cyr61 knockdown in Nalm-6 
cells resulted in a lower IC50 value to DNR and a higher 
DNR-induced apoptosis rate than that in the Nalm-6-shNC 
cell group, indicating that Cyr61 knockdown enhanced the 
chemosensitivity of Nalm-6 cells to DNR (Fig. 1c). To fur-
ther identify the effect of Cyr61 on the chemosensitivity of 
Nalm-6 cells to DNR, exogenous purified Cyr61 protein was 
used, and the results showed that exogenous Cyr61 increased 
the IC50 of B-ALL cells to DNR and decreased the DNR-
induced apoptosis rate, which could be blocked by the Cyr61 
monoclonal antibody (093G9) (Fig. 1d). These findings 
demonstrate that Cyr61 decreases the chemosensitivity of 
B-ALL cells to DNR.

Cyr61 upregulated BCL‑2 levels in B‑ALL cells

Cyr61 knockdown downregulated Bcl-2 expression, 
whereas Cyr61 overexpression upregulated Bcl-2 expression 

(Fig. 2a). However, Bcl-xl, Survivin, and XIPA expression 
remained significantly unchanged. In addition, western blot 
indicated that the Bcl-2 levels were significantly decreased 
in Cyr61-knockdown Nalm-6 cells (Fig. 2b) and increased in 
Cyr61-overexpression Nalm-6 cells (Fig. 2d). These results 
suggested that Cyr61 can upregulate Bcl-2 in B-ALL cells.

DNR promoted Cyr61 production in B‑ALL cells

We examined Cyr61 production in DNR-treated B-ALL cells 
using qRT-PCR and western blotting. Cyr61 mRNA and 
protein levels were significantly increased in DNR-treated 
Nalm-6 and Reh cells (Fig. 3a, b). To further validate this 
finding, we collected culture supernatants from DNR-treated 
B-ALL cells and examined the Cyr61 levels using ELISA. 
Cyr61 expressions were increased in the culture superna-
tants of DNR-treated B-ALL cells (Fig. 3c). Moreover, we 
collected primary B-ALL cells from patients and found that 
Cyr61 mRNA levels were significantly increased in DNR-
treated primary B-ALL cells (Fig.  3d). Together, these 
results suggested that DNR promotes Cyr61 production in 
B-ALL cells.

NF‑κB signaling pathway involved in DNR‑induced 
Cyr61 production in B‑ALL cells

To address the mechanism by which DNR promotes Cyr61 
production in B-ALL cells, we evaluated the phosphoryla-
tion of the AKT, p38, ERK1/2, and NF-κB pathways in 
DNR-treated B-ALL cells. The phosphorylation of NF-κB/
p65 was markedly increased in the presence of DNR, while 
the phosphorylation of AKT, p38, and ERK1/2 was not sig-
nificantly affected compared with that in the control group 
(Fig. 4a). Further analysis showed that pyrrolidine dithiocar-
bamate (PDTC) (a NF-κB activation inhibitor) decreased 
Cyr61 mRNA expression in DNR-treated Nalm-6 and Reh 
cells (Fig. 4b). Similar results were found using western 
blotting (Fig. 4c). Our results indicated that DNR can effec-
tively upregulate Cyr61 production via NF-κB pathway 
activation.

ATM signaling pathway promoted NF‑κB activation 
in DNR‑induced Cyr61 production in B‑ALL cells

DNA damage repair proteins were assessed using western 
blotting and the results showed that the phosphorylation of 
ATM and H2A·X was significantly increased in DNR-treated 
Nalm-6 cells (Fig. 5a). Next, we investigated whether the 
ATM/NF-κB signaling pathway is involved in Cyr61 expres-
sion regulation in B-ALL cells. KU55933 (a specific ATM 
phosphorylation inhibitor) decreased NF-κB phosphorylation 
in DNR-treated B-ALL cells (Nalm-6 and Reh cells) (Fig. 5b). 
Simultaneously, the Cyr61 production was markedly decreased 
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in the presence of DNR together with KU55933 than that in 
DNR alone (Fig. 5c). Collectively, ATM signaling pathway 

promoted NF-κB activation in DNR-induced Cyr61 produc-
tion in B-ALL cells.

Fig. 1   Cyr61 decreased the chemosensitivity of B cell acute lympho-
blastic leukemia (B-ALL) cells to daunorubicin (DNR). a Nalm-6 
cells were infected with lentivirus for 72 h. The infection efficiency 
was determined using a fluorescence microscope. The Cyr61 pro-
tein levels in Nalm-6-shNC, Nalm-6-shCyr6, Nalm-6-LV-Cyr61, and 
Nalm-6-LV-NC cells were detected using western blotting. b Nalm-
6-LV-Cyr61 and Nalm-6-LV-NC cells were treated with DNR, and 
the cell viability analyzed using cell counting kit-8 (CCK8) assays 

and the apoptotic rates determined using flow cytometric analysis. 
c Nalm-6-shNC and Nalm-6-shCyr6 cells were treated with DNR, 
and the cell viability analyzed using CCK8 assays and the apoptotic 
rates determined using flow cytometric analysis. d Nalm-6 cells were 
treated with DNR, exogenous Cyr61 with/without Cyr61 monoclo-
nal antibody (1 μg/mL), and the cell viability analyzed using CCK8 
assays and the apoptotic rates determined using flow cytometric anal-
ysis
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Discussion

Despite recent advances in B-ALL treatment, relapse and 
drug resistance remain major challenges (Jabbour et al. 
2015). In this study, we reported that DNR effectively 
induced Cyr61 production in B-ALL cells via the ATM-
dependent NF-κB pathway, and increased Cyr61 decreases 
the chemosensitivity of B-ALL cells to DNR via Bcl-2 
upregulation. Our findings suggest that targeting Cyr61 
or related ATM signaling pathways may present a promis-
ing treatment strategy to enhance the chemosensitivity of 
patients with B-ALL.

Cyr61 is abnormally expressed in tumors, and dysregu-
lated Cyr61 promotes tumor proliferation and mediates drug 
resistance in tumor cells (Zhu et al. 2016; Xie et al. 2001, 
2004; Lin et al. 2005; Gery et al. 2005). Our previous study 
confirmed that Cyr61 levels are elevated in the bone marrow 
of patients with ALL, and increased Cyr61 promotes ALL 
cell survival and decreases the chemosensitivity of ALL 
cells to cytarabine (Cao et al. 2019). Not surprisingly, in 
this study, we showed that Cyr61 decreases the chemosen-
sitivity of B-ALL cells to DNR via Bcl-2 production. Our 
findings are consistent with previous results that the Bcl-2 
pathway is involved in Cyr61-induced cytarabine resistance 

Fig. 2   Cyr61 up-regulates B cell lymphoma-2 (BCL-2) levels in B 
cell acute lymphoblastic leukemia (B-ALL) cells. a Nalm-6-shCyr61 
and Nalm-6-shNC cells were treated with daunorubicin (DNR) for 
24  h, and Bcl-2, Bcl-xl, survivin, and X-linked inhibitor of apopto-
sis protein (XIAP) mRNA expression levels were detected using real‐
time polymerase chain reaction (PCR). b Nalm-6-shNC and Nalm-6-
shCyr61 cells were treated with DNR for 24  h, and BCL-2 protein 
production was detected using western blotting. c Nalm-6-LV-NC and 
Nalm-6-LV-Cyr61 cells were treated with DNR for 24 h, and the Bcl-

2, Bcl-xl, survivin, and XIAP mRNA expression was detected using 
real‐time PCR. d Nalm-6-LV-NC and Nalm-6-LV-Cyr61 cells were 
treated with DNR for 24  h, and the BCL-2 protein production was 
detected using western blotting. The band intensity of BCL‐2 was 
quantified by densitometry and normalized to glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH). Data represented the mean ± stand-
ard error of the mean (SEM) of at least three independent experi-
ments. *P < 0.05, **P < 0.01
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in ALL cells (Cao et al. 2019). According to the present and 
previous studies (Cao et al. 2019; Song et al. 2019), Cyr61 
plays important roles in the drug resistance of B-ALL, and 
blocking the Cyr61 pathway may improve B-ALL treatment.

DNR is a common first-line chemotherapy drug used 
to treat ALL. In this study, we found that DNR can pro-
mote Cyr61 production in B-ALL cells. Chemotherapy can 
induce drug resistance by stimulating the release of various 
cytokines that shield tumor cells from the cytotoxic effects 
of chemotherapy agents (Chen et al. 2019; Duan et al. 2014; 
Anthony and Link 2014). Our finding suggests that Cyr61 
upregulation in B-ALL cells in response to DNR may rep-
resent a self-protective mechanism for B-ALL cell survival. 
In other words, increased Cyr61 in response to DNR may 
protect B-ALL cells from its cytotoxic effects. Thus, DNR-
induced Cyr61 contributes to B-ALL therapy resistance, 
which presents a possible reason for relapse and drug resist-
ance in patients with B-ALL.

We next explored the molecular mechanism of Cyr61 
production in B-ALL cells. The NF-κB signal pathway is 
involved in regulating Cyr61 expression in multiple can-
cer cell types (Lin et al. 2004; Lee et al. 2012). First, we 
found that NF-κB activation was markedly increased in 

DNR-treated B-ALL cells and NF-κB activation inhibitor 
can decrease Cyr61 production, suggesting that NF-κB sign-
aling pathway is involved in DNR-induced Cyr61 produc-
tion in B-ALL cells. Chemotherapy drug induces DNA dam-
age and subsequent DNA damage repair (DDR) response. 
ATM, a key molecule in the DDR response, can promote 
anti-apoptotic gene expression via NF-κB activation in leu-
kemic cells (Panta et al. 2004) (Bagci et al. 2006). We next 
explore ATM effects on DNR-induced Cyr61 in B-ALL cells 
using specific chemical inhibitor. As expected, blockade of 
ATM kinase activity markedly decreased the NF-κB activa-
tion and Cyr61 production. Our study findings are consistent 
with previous reports in which DNR/doxorubicin activated 
the NF-κB signaling pathway and subsequently conferred 
chemotherapy drug resistance to malignant cells in breast 
and ovarian cancer (Vasiyani et al. 2022; Lee et al. 2018; 
Fang et al. 2014; Esparza-López et al. 2013). Collectively, 
DNR induced Cyr61 production via ATM/NF-κB signaling 
in B-ALL cells.

However, our study is limited to cell-based in vitro exper-
iments, and lacked in vivo experimental study. Considering 
the complexity of the bone marrow microenvironment with 
a variety of cells and cytokines, in vitro studies seem to 

Fig. 3   Daunorubicin (DNR) promoted Cyr61 production in B cell 
acute lymphoblastic leukemia (B-ALL) cells. a Nalm-6 and Reh 
cells were treated with different concentrations of DNR for 24  h, 
and Cyr61 mRNA expression was detected using real‐time polymer-
ase chain reaction (PCR). b Nalm-6 and Reh cells were treated with 
2.50 μg/mL DNR for 24 h, and Cyr61 protein levels detected using 
western blotting. The band intensity of Cyr61 was quantified by den-
sitometry and normalized to glyceraldehyde 3-phosphate dehydroge-

nase (GAPDH). c Nalm-6 and Reh cells were treated with 2.50 μg/
mL DNR for 24 h, and Cyr61 protein levels in cell culture superna-
tants were measured using enzyme-linked immunosorbent assay 
(ELISA). d Primary leukemic cells from two patients with B-ALL 
were isolated and treated with 2.50  μg/mL DNR for 24  h, and the 
Cyr61 mRNA expression detected using real‐time PCR. Data repre-
sented the mean ± standard error of the mean (SEM) of at least three 
independent experiments. *P < 0.05, **P < 0.01
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Fig. 4   Nuclear factor kappa B (NF-κB) signaling pathway involved 
in daunorubicin (DNR)-induced Cyr61 production in B cell acute 
lymphoblastic leukemia (B-ALL) cells. a Nalm-6 cells were treated 
with DNR for 10 min and 30 min, and the PI3K/AKT, p38 MAPK, 
ERK (p44/p42), and NF-κB pathway phosphorylation detected using 
western blotting. b Nalm-6 and Reh cells were treated with DNR 
with or without 40μΜ pyrrolidine dithiocarbamate (PDTC) for 24 h. 
The Cyr61 mRNA levels were detected using real‐time polymerase 

chain reaction (PCR). c Nalm-6 and Reh cells were treated with DNR 
with or without 40  μΜ PDTC for 24  h, and the Cyr61 protein lev-
els detected using western blotting. The band intensity of Cyr61 was 
quantified by densitometry and normalized to glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH). Data represented the mean ± stand-
ard error of the mean (SEM) of at least three independent experi-
ments. *P < 0.05, **P < 0.01
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Fig. 5   Ataxia telangiectasia 
mutated (ATM) signaling path-
way promoted nuclear factor 
kappa B (NF-κB) activation in 
daunorubicin (DNR)-induced 
Cyr61 production in B cell 
acute lymphoblastic leukemia 
(B-ALL) cells. a Nalm-6 cells 
were treated with DNR for 
30 min, and H2A·X (left panel) 
and ATM (right panel) phos-
phorylation was detected using 
western blotting. b Nalm-6 and 
Reh cells were treated with 
DNR with or without 10 μM 
KU55933 for 30 min, and the 
NF‐κB/p65 phosphorylation 
levels detected using western 
blotting. c Nalm-6 and Reh cells 
were treated with DNR with 
or without 10 μM KU55933 
for 24 h, and the Cyr61 protein 
levels detected using western 
blotting. The band intensity 
of Cyr61 was quantified by 
densitometry and normalized 
to glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH). AS 
p-ATM and ATM are very 
big. To detect them in western 
blotting is not that easy. It is 
convention to introduce the 
molecular-weight marker (MM) 
above and below the detected 
protein (exception of for ATM 
because too high for a conven-
tional MM. Therefore, the MM 
below is enough). Data repre-
sented the mean ± standard error 
of the mean (SEM) of at least 
three independent experiments. 
*P < 0.05, **P < 0.01
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be insufficient to elucidate the role of Cyr61 in the drug 
resistance of B-ALL. Thus, further in vivo studies should be 
carried out to confirm the role of Cyr61 in B-ALL cell resist-
ance and the signaling pathways underlying DNR-induced 
Cyr61 production in B-ALL cells.

In summary, our results for the first time provided com-
pelling evidence that DNR promoted Cyr61 production via 
an ATM-dependent NF-κB pathway in B-ALL cells. More-
over, increased Cyr61 could protect B-ALL cells against 
chemo-induced apoptosis, which led to increased drug 
resistance of B-ALL cells. Our findings suggest that target-
ing Cyr61 or related ATM signaling pathways may present a 
promising treatment strategy to enhance the chemosensitiv-
ity of patients with B-ALL.
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