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Abstract
Gas signaling molecules, including carbon monoxide (CO), nitric oxide (NO), and hydrogen sulfide (H2S), have been shown 
to have cancer therapeutic potential, pointing to a new direction for cancer treatment. In recent years, a series of studies have 
confirmed that hydrogen (H2), a weakly reductive gas, also has therapeutic effects on various cancers and can mitigate oxi-
dative stress caused by radiation and chemotherapy, reducing tissue damage and immunosuppression to improve prognosis. 
Meanwhile, H2 also has immunomodulatory effects, inhibiting T cell exhaustion and enhancing T cell anti-tumor function. 
It is worth noting that human intestinal flora can produce large amounts of H2 daily, which becomes a natural barrier to 
maintaining the body’s resistance to diseases such as tumors. Although the potential anti-tumor mechanisms of H2 are still 
to be investigated, previous studies have shown that H2 can selectively scavenge highly toxic reactive oxygen species (ROS) 
and inhibit various ROS-dependent signaling pathways in cancer cells, thus inhibiting cancer cell proliferation and metas-
tasis. The ROS scavenging ability of H2 may also be the underlying mechanism of its immunomodulatory function. In this 
paper, we review the significance of H2 produced by intestinal flora on the immune homeostasis of the body, the role of H2 
in cancer therapy and the underlying mechanisms, and the specific application of H2 to provide new ideas for the compre-
hensive treatment of cancer patients.
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OXPHOS	� Oxidative phosphorylation
PD-1	� Programmed cell death 1
PD-L1	� Programmed cell death ligand 1
PGC-1α	� Peroxisome proliferators activate receptor-γ 

coactivator -1α
pH2	� Partial pressure of hydrogen
POCD	� Postoperative cognitive dysfunction
ROS	� Reactive oxygen species
SCFA	� Short-chain fatty acid
SMC3	� Chromosome stabilization protein 3
SOD	� Superoxide dismutase
SRB	� Sulfate-reducing bacteria
TCR​	� T cell receptor
TILs	� Tumor-infiltrating T cells
TNF-α	� Tumor necrosis factor-α
VDAC1	� Voltage-dependent anion channel 1
WHO	� World Health Organization

Introduction

According to recent World Health Organization (WHO) 
statistics (Sung et al. 2021; Wen et al. 2021; Siegel et al. 
2020), cancers are the first or second leading cause of death 
in 112 of 183 countries worldwide, posing a severe threat 
to human health, and overall the global burden of cancer 
morbidity and mortality will continue to increase (Wen et al. 
2021). Currently, surgery is still the primary method to treat 
solid cancers, combined with radiotherapy and chemother-
apy, including a variety of cytotoxic drugs, tyrosine kinase 
inhibitors, in addition to immunotherapy such as immune 
checkpoint inhibitors, such as anti-programmed cell death 
1 (PD-1), anti-programmed cell death ligand 1 (PD-L1), and 
anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) 
antibodies (Xu et al. 2018). However, these approaches often 
fail to achieve satisfactory clinical results in cancer treatment 
(Vasan et al. 2019).

Gas signaling molecules are small molecule gases that 
affect cellular biology by regulating signal transduction, 
such as nitric oxide (NO) (Tien Vo et al. 2021), carbon mon-
oxide (CO) (Oliveira et al. 2018), and hydrogen sulfide (H2S) 
(Flannigan and Wallace 2015). Studies have confirmed that 
multiple gas signaling molecules have anti-tumor properties 
and can be used directly or as products of specific agents for 
anti-tumor treatment.

Recently, studies have proved H2 to be another gas signal-
ing molecule showing intriguing potential in cancer therapy 
(Wu et al. 2019; Li et al. 2019). Since 1975, when Dole et al. 
(1975) found that high concentrations of H2 could cure squa-
mous cell carcinoma implanted in the skin of mice, numer-
ous laboratory and clinical studies have confirmed that H2 
is effective against various cancers (Wu et al. 2019; Li et al. 
2019; Hirano et al. 2021a). Furthermore, H2 effectively 

synergizes with anti-tumor therapies such as radiotherapy 
and cytotoxic drugs (Runtuwene et al. 2015; Meng et al. 
2015; Hirano et al. 2021b), reducing damage to body (Yang 
et al. 2012) and improving patient prognosis.

In a landmark study in 2007 (Ohsawa et al. 2007), Oshawa 
et al. found that H2 could selectively neutralize highly toxic 
reactive oxygen species (ROS) (hydroxyl radicals, ·OH, and 
peroxynitrite, ONOO–) without affecting other physiologi-
cal ROS. The ROS-scavenging capacity of H2 is likely to be 
a critical underlying mechanism for its anti-tumor activity. 
However, the underlying mechanism of hydrogen in tumor 
therapy is controversial due to the lack of specific signaling 
receptors that other gas signaling molecules have. In this 
review, we first discuss the importance of H2 metabolism 
by the intestinal flora under physiological conditions for the 
homeostasis of the human internal environment. Then we 
discuss the mechanism of H2 anti-tumor through its unique 
antioxidant capacity to provide a comprehensive account of 
the mechanism of hydrogen action in tumor therapy. At last, 
we discussed the specific role of different application modal-
ities of H2 and explored the prospect of hydrogen application 
in clinical tumor therapy.

Anti‑tumor barrier: H2 produced 
by intestinal flora

Under normal physiological conditions, adult gut microbiota 
can produce large amounts of H2 daily (Mego et al. 2017; 
Carbonero et al. 2012), and this H2 can regulate the balance 
of intestinal flora and their metabolites, which are essential 
for immune homeostasis in humans. It demonstrates that H2 
is the body’s natural anti-tumor barrier and provides new 
strategies for its clinical use.

H2 metabolism in  intestine

The intestinal hydrogenogenic bacteria mainly use various 
indigestible carbohydrates as substrates for anaerobic oxi-
dative energy production, including starch, cellulose, and 
some sugars (Jiang et al. 2020). This process can produce 
large amounts of H2, which is quickly absorbed and used 
by hydrogenotrophic bacteria. H2 participates in this series 
of reactions as an electron transporter and is a vital energy 
substance for the survival and proliferation of intestinal flora 
(Carbonero et al. 2012; Greening et al. 2016). Most of the H2 
not used by the flora is excreted through respiration and the 
anus, while the rest can enter the circulation or penetrate the 
intestinal lumen and peritoneum into the peritoneal cavity 
(Nishimura et al. 2013).

The hydrogenotrophic bacteria mainly include reductive 
acetate-producing bacteria, sulfate-reducing bacteria (SRB), 
and methanogenic bacteria, which, respectively, oxidize H2 
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to acetate, H2S, and CH4 (Carbonero et al. 2012). The H2 
concentration in the intestine not only passively responds to 
the balance of these florae but also controls the balance of 
hydrogenogenic and hydrogenotrophic flora by partial pres-
sure of hydrogen (pH2) (Carbonero et al. 2012). For exam-
ple, a study found (Ge et al. 2022) that hydrogen-rich water 
(HRW) supplementation significantly inhibited the expan-
sion of opportunistic pathogenic E. coli and increased intes-
tinal integrity in mice with colitis by modulating intestinal 
flora H2 metabolism.

Studies have confirmed that intestinal flora disorders 
can affect the occurrence and development of cancers in 
multiple organs throughout the body, including colorectal 
cancers (Song et al. 2020; Helmink et al. 2019). Although 
hydrogenogenic and hydrogenotrophic microbes cover most 
intestinal flora, the specific morphology and metabolism of 
the flora contained in them vary greatly and lack proper tax-
onomy, so there are few articles directly studying the rela-
tionship between intestinal H2 metabolizing and cancers. 
Several studies investigated the genomic and meta-genomic 
distribution of hydrogenases, the reversible enzymes that 
catalyze the oxidation and evolution of H2, to understand 
more about the contribution of H2 metabolism to gut ecosys-
tems (Greening et al. 2016; Peters et al. 2015; Suzuki et al. 
2018). According to the binding metal cofactor, Greening 
et al. identified 4 groups (22 subgroups) of [NiFe]-hydroge-
nases, 3 groups (6 isoforms) of [FeFe]-hydrogenases, and 
a small group of [Fe]-hydrogenases (Greening et al. 2016). 
This hydrogenase diversity supports crucial metabolic 
pathways of intestinal flora, such as H2-based respiration, 
fermentation, and carbon fixation processes, reflecting the 

scope of H2 metabolism in sustaining the growth and sur-
vival of microorganisms. Until now, the authors indicated 
that most related studies focus on only a few branches of the 
hydrogenase phylogenetic tree and a small fraction of organ-
isms within the universal tree of microorganisms.

However, it is easy to find that H2 produced by intestinal 
flora can participate in the regulation of various flora metab-
olites related to carcinogenesis (Ge et al. 2022; Fan and 
Pedersen 2021; Kalantar-Zadeh et al. 2019), such as H2 can 
scavenge ROS and promote the production of short-chain 
fatty acids (SCFAs). For example, a study demonstrated 
that oral administration of HRW in mice could promote the 
production of SCFAs in cecal contents and circulation by 
modulating the composition of intestinal flora (Higashimura 
et al. 2018).

In contrast, high SRB and sulfur protein diets are associ-
ated with the development of colon cancer (Nguyen et al. 
2020; Lee et al. 2022), which can disrupt cytochrome oxi-
dase, inhibit butyrate utilization, block mucus synthesis, and 
cause DNA methylation through the production of H2S. In 
addition, excessive H2S production by intestinal flora plays 
an important role in the carcinogenesis and development of 
intestinal tumors (Ngowi et al. 2021; Attene-Ramos et al. 
2010; Dalal et al. 2021). Paradoxically, various sulfur-con-
taining diets have long-proven anti-tumor properties, such as 
garlic and cruciferous vegetables (Rose et al. 2021; Abbaoui 
et al. 2018). We think part of the reason is the balance of 
SRB with other hydrogen-metabolizing flora in the lumen 
in those different dietary settings. Moreover, the balance of 
H2 and H2S metabolized by SRB may be the underlying 
mechanism (Fig. 1).

Fig. 1   H2 metabolism in intes-
tinal flora regulates intestinal 
health. Hydrogenogens produce 
H2 during fermentation in the 
human colon and result in a 
rapid increase of pH2, which 
restrict further fermentation. 
Three groups of hydrogeno-
trophic (H2 utilizing) microbes 
can oxidize H2, simultaneously 
lowering pH2 and enabling 
fermentation to continue. H2S 
produced by SRB can dam-
age the intestinal epithelium 
and induce inflammation and 
tumorigenesis, while H2 can 
antagonize the malignant effects 
of H2S by producing SCFA 
and scavenging ROS. SCFAs: 
short-chain fatty acids; SRB: 
sulfate-reducing bacteria; pH2: 
partial pressure of hydrogen
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 H2 produced by intestinal flora can maitain 
homeostasis

Intestinal H2 metabolizing is not only fundamental to gut 
health but also crucial for redox balance and immune home-
ostasis in multiple organs (Fig. 2).

Studies have shown that H2 maintains the integrity of 
the intestinal barrier, reduces intestinal inflammation and 
damage in rat (Wu et al. 2017), and protects ischemia–rep-
erfusion of the brain, lung, liver, and other organs (Dong 
et al. 2018; Fang et al. 2018; Sano et al. 2018; Ishikawa 
et al. 2018). H2 is also fundamental to pelvic health and 
guarantees organ function (Zhang et al. 2021). In male 
and female organs, such as testes and ovaries, after dam-
age leading to dysfunction, H2 supplementation can effec-
tively reduce oxidative stress and promote recovery of 
organ function. Although many studies have focused on 
exogenous H2 supplementation, H2 production in the gut 
is as effective as H2 inhalation and H2 oral HRW in raising 
H2 levels in the body. For example, the administration of 
fructose promotes an 11-fold increase in intraperitoneal H2 

concentration and a significant increase in H2 in the blood 
system (Nishimura et al. 2013).

SCFA is an essential source of energy for intestinal epi-
thelium and multiple immune cells (Yip et al. 2021), as 
well as a communication material between the gut–lung 
axis and gut–brain axis (Fulling et al. 2019) that sustains 
immune homeostasis throughout the body. H2, produced 
by gut bacteria, is the substrate for SCFAs synthesis and 
promotes the synthesis of SCFAs. It was found that HRW 
can increase propionate, butyric acid, and total SCFAs 
in the gut by regulating gut flora to treat brain diseases 
such as Parkinsonism (Bordoni et al. 2019; Ostojic 2021). 
Diets or medications that promote H2 production in the 
gut, such as high-fiber diets and lactose, also promote the 
production of SCFAs (Chen and Vitetta 2018; Zhai et al. 
2018). A study in mice (Ge et al. 2022) suggested that 
HRW can strengthen the intestinal barrier by regulating 
specific mucositis-related mucolytic bacteria through the 
H2–H2 metabolic microbiota–SCFAs axis, ensuring the 
body’s internal environment.

Fig. 2   H2 produced by intestinal flora maintains multi-system health 
and immune homeostasis. The hydrogen produced in the intestine can 
penetrate the abdominal cavity or bloodstream, exerting a protective 
effect on multiple organs throughout the body. On the other hand, 
hydrogen is a substrate for SCFA production by intestinal flora. It 

promotes the production of SCFA, a vital energy substance for intes-
tinal epithelial cells and immune cells, maintaining the integrity of 
the intestinal barrier and the stability of the systemic immune system. 
COPD: chronic obstructive pulmonary disease; ARDS: acute respira-
tory distress syndrome; SCFA: short-chain fatty acid
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Anti‑tumor effect of H2 and the underlying 
mechanism

H2 anti‑tumor and synergistic anti‑tumor effects

Starting with the research by Dole et al. (1975) that high 
concentrations of H2 cured squamous carcinomas grown 
on mouse skin, several studies have confirmed the anti-
tumor effects of H2. Wang et al. (2018) reported that in 
cells and mice, H2 inhibited the proliferation, metastasis, 
and invasion of lung cancer cells and reduced lung cancer 
volume by inhibiting chromosome stabilization protein 3 
(SMC3). A clinical study by Akagi and Baba (2019) found 
that inhalation of H2 for 3 h daily significantly prolonged 
progression-free survival and overall survival in stage 
IV colon and rectal patients. A study of inhaled H2 in 82 
cases of intermediate to advanced cancer treatment also 
confirmed the anti-tumor effect of H2 (Chen et al. 2020).

Chemotherapy and radiotherapy are still the main strat-
egies for cancer treatment. However, these treatment regi-
mens lead to significant oxidative stress and inflammation, 
causing damage to human organs, and H2 can be used as an 
adjuvant regimen to suppress these adverse effects due to 
its cytoprotective properties, such as antioxidant and anti-
inflammatory (Meng et al. 2015). Runtuwene et al. (2015) 
gave HRW drinking to colorectal cancer-bearing mice 
treated with 5-fluorouracil intravenously. They found that 
HRW enhanced apoptosis of cancer cells by causing sig-
nificant increases in the expression of p-AMPK, apoptosis-
inducing factor (AIF), and caspase-3 in non-cancer cells 
and prolonging the life span of cancer-bearing animals. 
Cisplatin causes the accumulation of ROS in humans, 
decreases glutathione activity, and causes increased oxi-
dative stress, while H2 reverses cisplatin-induced oxida-
tive stress in the body and restores antioxidant enzyme 
activity (Kikkawa et al. 2014). In addition, H2 reduces 
cisplatin’s nephrotoxicity without affecting its anti-tumor 
effect and enhances animal survival in mice experiments. 
Oral administration of HRW (0.55–0.65 mM, 1.5–2.0 L 
per day) to patients with hepatocellular carcinoma receiv-
ing radiotherapy suppressed the level of oxidative stress in 
patients and improved their quality of life without affect-
ing the effect of radiotherapy (Nakashima-Kamimura et al. 
2009). Some studies reported that the administration of 
inhaled H2 during radiotherapy treatment reduced the 
damage to the hematological and immune systems (Hirano 
et al. 2021b; Yang et al. 2012) and alleviated the growth 
of radiotherapy-induced thymic lymphoma (Zhao et al. 
2011).

Although a series of studies have confirmed the anti-
tumor effects of H2, it is indispensable to understand 
the underlying mechanisms in depth to support further 

H2 application in clinic. H2 has an extensive range of 
physiological effects, including anti-oxidative stress, 
anti-inflammation, and regulation of apoptosis (Li et al. 
2019). Furthermore, some studies proved that H2 has an 
anti-tumor effect by indirectly regulating gene expression 
(Hirano et al. 2021a). Through these studies, we believe 
that the ability of H2 to selectively scavenge highly toxic 
ROS may be the core and fundamental mechanism of its 
anti-tumor effects, so this paper mainly focuses on this 
point of discussion.

H2 anti‑tumor activity through anti‑oxidative stress

Intracellular ROS are mainly derived from catalytic reac-
tions regulated by oxidative phosphorylation (OXPHOS) of 
the mitochondrial respiratory chain and NADPH oxidase 
(NOX) in the cytoplasm (Holmstrom and Finkel 2014). On 
the one hand, ROS are extremely oxidative and destructive 
to biomolecules proteins, phospholipids, and nucleic acids; 
on the other hand, ROS are key intracellular signaling mol-
ecules that can affect cell proliferation and differentiation 
by regulating various signaling pathways, such as NF-κB 
and Akt/mTOR (Cheung and Vousden 2022; Zhang et al. 
2016). Under normal physiological conditions, the com-
plete system of antioxidant enzymes in the body keeps the 
ROS concentration in a precise dynamic balance, including 
superoxide dismutase (SOD), which converts O⋅−

2
 to H2O2, 

then glutathione peroxidase (GPx) and catalase (CAT) con-
vert H2O2 to water (Cheung and Vousden 2022; Meng et al. 
2021). However, the body lacks specific scavenging systems 
for ·OH and ONOO–, and these two ROS are highly cyto-
toxic and have damaging effects on almost all macromol-
ecules (proteins, nucleic acids, lipids), which can lead to 
DNA double-strand structure disruption and base pairing 
damage (Cheung and Vousden 2022; Jena 2012), resulting 
in carcinogenesis.

Activation of oncogenes altered mitochondrial function 
(Ismail et al. 2019), and hypoxia collectively contribute to 
increased ROS production in cancer cells. Unfortunately, the 
antioxidant enzyme system in tumor cells is often unable to 
counteract overgenerated ROS, resulting in a high ROS state 
in the tumor microenvironment (Cheung and Vousden 2022; 
Zhang et al. 2016; Liao et al. 2019; Hornsveld and Dansen 
2016). Indeed, cancer cells can not only adapt to a mod-
erately high ROS state but also take advantage of ROS to 
drive the malignant phenotype. This happens because ROS 
can enhance NF-κB, Akt/mTOR, Wnt/β-catenin pathways, 
and oncogenes such as Ras, Bcr/Abl, and c-Myc expression 
(Cheung and Vousden 2022; Liao et al. 2019; Hornsveld 
and Dansen 2016; Wojtovich et al. 2019), which maintain 
high-intensity metabolism and proliferation of tumor cells. 
Furthermore, ROS-dependent signaling pathways can pro-
mote cancer invasion and metastasis (Cheung and Vousden 
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2022; Liao et al. 2019). However, some reports (Cheung 
and Vousden 2022; Hornsveld and Dansen 2016) suggest 
that persistently elevated ROS in the cancer microenviron-
ment can limit further cancer progression after reaching a 
certain level. Thus, non-selective antioxidant therapy in can-
cer treatment may lead to further cancer progression (Meng 
et al. 2021; Sayin et al. 2014; Chandel and Tuveson 2014). 
H2 selectively removes strongly oxidizing without affecting 
other ROS, making it an ideal therapy antioxidant.

On the one hand, H2 can inhibit the damage of cellular 
DNA by ·OH and ONOO– to prevent cancer development; 
on the other hand, H2 can remove ROS from cancer cells 
and inhibit multiple ROS-dependent metabolic signaling 
pathways to suppress cancer development. Studies have con-
firmed that H2 can effectively reduce oxidative stress caused 
by various pathological conditions, including cancers, and 
promote the restoration of redox homeostasis (Adzavon et al. 
2022; Shi et al. 2016; Kawai et al. 2012).

H2 can also elevate the expression of some antioxidant 
enzymes that play a crucial role in regulating redox homeo-
stasis in cancer cells (Li et al. 2019; Slezak et al. 2021), 
which exerts anti-tumor effects. Some non-cancer studies 
proved that H2 treatment induced a significant increase in 
the expression of intracellular SOD, GPx, CAT (Zhou et al. 
2019), and heme oxygenase-1 (HO-1) (Fang et al. 2018; 
Iketani et al. 2017), enhancing their potential to eliminate 
ROS.

H2’s ability to modulate various signaling pathways is 
another essential mechanism for its antioxidant action, such 
as Nrf2/ARE and p38/MAPK (Fang et al. 2018; Slezak et al. 
2021; Xie et al. 2020). A series of subsequent studies have 
found that H2 also maintains redox balance in the body by 

activating the Keap1-Nrf2-ARE, and Nrf2-HO-1 pathways 
(Slezak et al. 2021; Xie et al. 2020; Yu et al. 2019; Chen 
et al. 2015), which exerts immunomodulatory, anti-inflam-
matory, and cancer pro-apoptotic effects. Wang et al. (2018) 
found that H2 inhibited ROS expression and increased SOD, 
IL-1β, IL-8, IL-13, and tumor necrosis factor-α (TNF-α) 
expression in lung tissue of cancer-bearing mice. (Fig. 3).

The immunoprotective function of H2

Many clinical trials have confirmed the role of H2 in modu-
lating cancer immunity. A 2018 clinical study involving 55 
stage IV colon cancer patients showed that inhalation of H2 
reduced PD-1 expression on CD8+ T cells in the patient’s 
peripheral blood, reduced CD8+ T cell depletion, and 
improved prognosis (Akagi and Baba 2019). In a clinically 
advanced small cell lung cancer study, continuous H2 inhala-
tion for 2 weeks reversed the suppressed intrinsic and adap-
tive immune systems in patients’ peripheral blood, reduced 
depleted CD8+ T cells, and restored functional CD4+, CD8+ 
T cells, and natural killer cell ratios to normal levels (Chen 
et al. 2020). Although few studies investigate the underlying 
mechanisms, the ability to selectively clear toxic ROS and 
protect T cell mitochondria may be the core mechanism of 
H2’s immune protection function.

After T cell receptor (TCR) activation by antigen-pre-
senting cancer antigens, downstream signal transduction 
enhances mitochondrial metabolism, and ROS, the appar-
ent byproducts of mitochondrial metabolism, are significant 
molecules that regulate multiple core pathways involved in T 
cell metabolic recombination (Franchina et al. 2018; Franco 
et al. 2020). However, as previously noted, overgrowing 

Fig. 3   Mechanisms of H2 in anti-oxidative stress. SOD: superoxide 
dismutase; CAT: catalase; GPx: glutathione peroxidase; HO-1: heme 
oxygenase 1; MPO: myeloperoxidase; GSS: glutathione synthetase; 
MAPK: mitogen-activated protein kinase; JNK: c-Jun N-terminal 
kinase; Nrf2: nuclear factor-erythroid-2-related factor 2; ARE: anti-

oxidant response elements; NF-κB: nuclear factor kappa B; TNF-α: 
tumor necrosis factor-alpha; ICAM-1: intercellular cell adhesion 
molecule-1; IFN-γ: interferon-gamma; IL-1β: interleukin beta; IL-8: 
interleukin 8; IL-13: interleukin 13; HMGB-1: high-mobility group 
box protein 1
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cancer cells can cause elevated ROS in the cancer micro-
environment, and mitochondria produce high ROS when T 
cells are activated, in addition to increased ROS in T cells 
due to factors such as hypoxia (Scharping et al. 2021), which 
results in tumor-infiltrating lymphocytes (TILs) facing a far 
higher physiological state of ROS when activated (Franco 
et al. 2020). Sustained high ROS levels disrupt T cell mito-
chondria, inhibit T cell activation and lead to T cell dys-
function by deflecting T cell metabolic restructuring (Laura 
2012; Scharping et al. 2016), and promote PD-1 expression 
to induce apoptosis (Najjar et al. 2019) (Fig. 4). H2, on the 
other hand, combats oxidative stress in various disease con-
ditions and restores redox balance in the body’s environment 
by regulating the NADH/NADPH pathway (Adzavon et al. 
2022; Tao et al. 2019), thereby safeguarding T cell activa-
tion and preventing apoptosis. Moreover, in this condition, 
compared with routine anti-tumor medicine, the high perme-
ability of H2 grants it to easily penetrate inside the tumor, 
even into structures such as the mitochondria of the TILs.

Since the mitochondrial respiratory chain is the primary 
source of ROS production in cells, high local concentra-
tions of ROS can lead to mutations of mitochondrial DNA 
and direct disruption of mitochondrial dynamics, ultimately 
leading to mitochondrial metabolic dysfunction (Deng et al. 
2020) and apoptosis of T cells(Scharping et al. 2021). The 
study shows that TILs in renal cell carcinoma contain hyper-
polarized, fragmented mitochondria producing significant 
ROS (Siska et al. 2017). Akagi et al. found in clinical stud-
ies of lung cancer patients (Akagi and Baba 2019, 2020) 
that inhalation of H2 enhances the mitochondrial function of 
CD8+ T cells and decreases PD-1 expression in the patient’s 
peripheral blood, suggesting that H2 may act by regulating 
peroxisome proliferators activate receptor-γ coactivator-1α 
(PGC-1α). Mo et al. (2019) suggested that in vitro H2 can 
enter mitochondria to neutralize toxic ROS, attenuate mito-
chondrial oxidative stress damage, protect Na+/Ka+ ATP 
pumps, enhance Bcl-2 expression, inhibit voltage-dependent 
anion channel 1 (VDAC1) expression and opening, protect 
mitochondrial membranes, and also inhibit the release of 
apoptotic factors such as caspase 9.

Fig. 4   H2 anti-tumor activity by selectively eliminating ROS in the 
tumor microenvironment. ROS can cause tumorigenesis by damag-
ing DNA, leading to genetic mutations, and regulating various cru-
cial signaling pathways leading to tumor development and metastasis. 
ROS in the tumor microenvironment can infiltrate T cells, increasing 
the oxygen pressure burden of continuously activated T cells. Exces-
sive ROS in T cells can interfere with mitochondrial energy metabo-

lism, damage T cell DNA, and promote PD-1 expression, leading 
to T cell dysfunction and apoptosis. ROS: reactive oxygen species; 
EMT: epithelial–mesenchymal transition; Teff: effector T cells; Tex: 
exhausted T cells. NF-κB: nuclear factor kappa B; MAPK: mitogen-
activated protein kinase; mTORC1: mammalian target of rapamycin 
complex 1
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Application of H2

Exogenous H2 administration

The conventional ways of exogenous administration of 
H2 are inhalation, oral HRW, injection of saline contain-
ing H2, and external use, such as eye drops and HRW 
baths (Fig. 5). Some reviews have compared the rates of 
H2 concentration increase in different body organs caused 
by different H2 application methods and their therapeutic 
effects (Li et al. 2019; Hirano et al. 2021a), and we will not 
present them here individually. However, we cannot simply 
correlate the role of different H2 application methods in 
disease treatment with H2 concentrations in the circulatory 
and respiratory systems—for example, the unique role of 
HRW in regulating intestinal flora and energy metabolism.

Some studies suggest that HRW can regulate intestinal 
flora and contribute to restoring and maintaining the intes-
tinal flora’s homeostasis (Higashimura et al. 2018; Kajiy-
ama et al. 2008). In 2018, Japanese scholars (Higashimura 
et al. 2018) found that oral administration of HRW for 
4 weeks improves the distribution of flora in the colon, 
increases SCFA production, and decreases plasma cho-
lesterol concentration. Xiao et al. (2018) found that HRW 
could affect intestinal flora by regulating the expression 
of MyD88, thereby reducing the injury from abdominal 
radiotherapy and increasing survival and body weight after 
radiotherapy in mice. HRW has also interacted with diet to 
enhance and prolong hepatic H2 accumulation (Kamimura 

et al. 2011), lower blood lipids and glucose, and promote 
the direct secretion of brain intestinal peptides from 
intestinal epithelial cells (McCarty 2015). In one arti-
cle (Ito et al. 2012), HRW prevented the development of 
6-hydroxydopamine-induced Parkinson’s disease in mice, 
whereas continuous H2 inhalation and oral lactulose were 
less effective. Although the article did not explore the 
underlying mechanisms of this phenomenon, the unique 
physiological effects of HRW, such as the regulation of 
intestinal flora, may contribute to it.

Some scientists have designed nanoparticles that can 
release large amounts of H2 at cancer sites (Wu et al. 2019, 
2021; Sun et al. 2020), providing the possibility of precise 
local production of sustained high concentrations of H2 to 
enhance the anti-tumor effect, and the combined application 
of nanotechnology and H2 may be an important direction for 
future precision cancer therapy. For example, Zhang et al. 
constructed covalently loaded liposomes with semicon-
ductor polymers-Pdots as catalysts (Zhang et al. 2019), a 
“nanoscale H2 factor” containing reactants, intermediates, 
and byproducts, which can continuously produce H2 at 
the site by laser stimulation and effectively reduce cancer 
growth in mice. Sun et al. designed a laser-triggered H2 
release nanoparticle to enhance the chemotherapeutic effect 
of mouse bladder cancer and reduce the toxic response of 
chemotherapeutic drugs (Sun et al. 2020). Wu et al. con-
structed Au-TiO2@ZnS nanoparticles that can release H2 
triggered by in vitro X-ray under the guidance of in vitro 
photoacoustic imaging, achieving an excellent therapeutic 

Fig. 5   Various applications of 
H2
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effect and mild inflammatory response in combination with 
radiotherapy for in situ liver cancer in mice (Wu et al. 2021).

Regulating intestinal flora production of H2

In addition to the exogenous H2 supplementation men-
tioned above, supplementation with high fiber, indigestible 
starches, and sugars can also increase intestinal H2 produc-
tion through intestinal flora, which is the most suitable and 
economical treatment for daily life (Fig. 5).

Lactulose is a disaccharide that cannot be absorbed by the 
body and can promote large amounts of H2 production by 
intestinal flora, thus effectively increasing the concentration 
of H2 in the human abdominal cavity and blood. Studies have 
confirmed that lactulose can relieve inflammation and injury 
in multiple organs such as the intestine and brain by promot-
ing intestinal H2 production, such as mitigating ulcerative 
colitis caused by the carcinogenic substance dextran sodium 
sulfate (DSS) (Zhai et al. 2013; Chen et al. 2013). Perla-
mutrov et al. (2016) found that lactulose can treat dermatitis 
by stimulating H2 and SCFA production. Studies have con-
firmed that oral administration of lactulose or dietary fiber 
containing indigestible starch and dietary fiber can regulate 
intestinal flora (Jiang et al. 2020; Trompette et al. 2014), bal-
ance the intestinal environment, and have therapeutic effects 
on multi-system diseases such as chronic obstructive pulmo-
nary disease (COPD) and neurological disorders (Vaughan 
et al. 2019; Kong et al. 2021). Although some researchers 
have attributed much of the clinical effects of lactulose and 
fibrates to specific intestinal flora and SCFAs, H2 may be 
an overlooked link in these experiments (Kalantar-Zadeh 
et al. 2019; Desai et al. 2016). Similar drugs, fructans, and 

inulin, also have anti-inflammatory and metabolic-modulat-
ing effects by promoting intestinal H2 production (Nishimura 
et al. 2013).

Perioperative dietary management has profound meaning 
for the long-term prognosis of cancer patients. To ensure 
the energy requirements and enhance the immunity of can-
cer patients, some researchers have proposed the concept of 
an immunonutrition diet (Adiamah et al. 2021; Svetikiene 
et al. 2021; Prieto et al. 2017), including glutamine, argi-
nine, sulfur-containing amino acids, and polyunsaturated 
fatty acids. However, such a high-protein, high-fat diet may 
cause elevated blood glucose and lipids and metabolic dis-
orders in patients on the one hand, and poor dietary choice 
may cause adverse emotions in patients on the other hand. 
As mentioned earlier, oral HRW has a good energy regula-
tion function, which can improve the liver energy metabo-
lism of the body, lower blood lipid glucose, and reduce the 
side effects of a high-fat diet (Qiu et al. 2020). In contrast, 
some studies show that fiber and indigestible starch diets 
have anti-inflammatory and anti-tumor effects (Jiang et al. 
2020; Trompette et al. 2014; Desai et al. 2016). Therefore, a 
fiber-rich diet or oral HRW combined with an immunonutri-
tional diet may be a more suitable dietary strategy for cancer 
patients in the perioperative period.

H2 in perioperative applications

Clinically, tumors often need surgical treatment, so they 
inevitably face multiple perioperative stress factors such 
as trauma, anesthesia, and mental stress. Rapidly elevated 
oxidative stress can lead to an imbalance of internal envi-
ronmental homeostasis and immune system suppression 

Fig. 6   The multiple roles of 
hydrogen in the perioperative 
period for oncology patients. 
Hydrogen has been reported 
to have antioxidant and anti-
inflammatory effects and to 
improve ischemia–reperfusion 
in the heart, brain, lungs, and 
other organs, making it possible 
to alleviate perioperative oxida-
tive stress and ischemia–rep-
erfusion injury in vital organs. 
Hydrogen also has a neuropro-
tective function, antagonizing 
the damage to the central nerv-
ous system caused by anesthet-
ics and systemic inflammation. 
In addition, hydrogen-rich water 
has energy-regulating and intes-
tinal flora-modulating effects, 
which are also valuable in the 
perioperative dietary manage-
ment of oncology patients
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in tumor patients while promoting tumor recurrence and 
metastasis (Hsiao et al. 2021; Matzner et al. 2020; Seck-
ler et al. 2020). H2 has physiological effects of antioxidant, 
anti-inflammatory, and immune modulation, which can 
effectively antagonize these unfavorable factors (Sano et al. 
2018) (Fig. 6).

In addition, H2 can effectively alleviate ischemia–reperfu-
sion injury in multiple organs (Dong et al. 2018; Xie et al. 
2020; Fu and Zhang 2022). For example, in a randomized 
controlled clinical trial of 26 patients (Ono et al. 2017), 
Ono et al. found that 3% H2 inhaled twice daily for 1 h sig-
nificantly improved vital signs, stroke scale scores, physi-
otherapy index, and 2-week brain MRI in stroke patients 
compared with conventional treatment.

Postoperative cognitive dysfunction (POCD) is a post-
operative complication in patients undergoing clinical 
procedures and is particularly prevalent in older patients. 
Currently, the recognized etiology of POCD is neuroinflam-
mation caused by the combined effects of anesthetics and 
surgery-induced systemic inflammation (Lai et al. 2021). 
H2 supplementation alleviates symptoms of central nerv-
ous system disorders such as Parkinson’s disease and autism 
by redressing intestinal flora imbalance (Suzuki et al. 2018; 
Kong et al. 2021; Doifode et al. 2021). Li et al. (2010) 
reported that intraperitoneal injection of hydrogen-rich 
saline effectively alleviated central nervous system inflam-
mation and oxidative stress and reduced cognitive impair-
ment in mice. Therefore, some researchers have stated that 
H2 can be used for neuroprotection in perioperative patients 
(Wang et al. 2020) (Fig. 6).

Conclusion and perspectives

The H2 produced by intestinal flora is a natural antioxidant in 
the body’s internal environment, which can regulate oxida-
tive stress caused by various reasons in the body’s internal 
environment and become a natural barrier against carcino-
genesis and development. H2 is also a substrate for the pro-
duction of SCFAs through the intestinal flora, essential sub-
stances for maintaining the stability of the body’s immune 
system and affecting the gut–brain axis and the gut–lung 
axis. However, there may be more potential mechanisms 
for why H2 has such a wide range of effects. For example, 
HRW can promote the production of ghrelin (McCarty 
2015), which is crucial in regulating food intake and energy 
homeostasis. Therefore, whether H2 can affect the body’s 
immune system by regulating the secretion of other flora 
metabolites or affecting energy metabolism by other gastro-
intestinal hormones needs further investigation.

Intestinal flora and cancers have long attracted wide-
spread medical attention, and scholars in several countries 
have actively studied the relationship between genomics and 

metabolomics of intestinal flora and cancers (Song et al. 
2020; Fulling et al. 2019; Erny and Prinz 2020). In those 
studies, researchers suggest that sulfate-reducing bacteria 
are related to colorectal cancer (Nguyen et al. 2020). More 
analysis of a large sample of intestinal flora genomics from 
the perspective of H2 metabolizing flora and insight into the 
association between intestinal flora H2 metabolism and can-
cer may be able to find new drug targets and guide the subse-
quent application of H2 in cancer therapy. For example, some 
researchers explored the significance of the H2 metabolism 
of microbiota through genomic and meta-genomic surveys 
of the distribution of hydrogenase subtypes (Greening et al. 
2016; Peters et al. 2015).

Studies have shown that H2 inhalation for about 2 weeks 
can restore the body’s redox balance and enhance immune 
cells’ function in the peripheral blood of cancer patients, 
which indicates that H2 has a protective effect on the overall 
immune system of the body. However, in-depth studies on 
the specific effects of H2 on TILs in the cancer microen-
vironment and its potential mechanisms are still lacking. 
However, according to some studies (Akagi and Baba 2020), 
H2 can protect the mitochondria of TILs by scavenging ROS, 
preventing the differentiation of TIL toward the end-stage 
phenotype, and acting as a qualified adjuvant immunothera-
peutic agent. Therefore, its synergistic therapeutic effects 
with immune checkpoint blockers are yet to be studied.

Furthermore, some studies suggested HRW can regu-
late the energy metabolism of hepatocytes and adipocytes 
(Kajiyama et al. 2008; Kamimura et al. 2011; Acker et al. 
2021; Iio et al. 2013). Although it remains to be investigated 
whether H2 can play a role in energy metabolism in cancer 
cells or immune cells similar to that in hepatocytes and adi-
pocytes, those researches indicated that HRW may exert a 
more comprehensive potential in anti-tumor immunotherapy 
by regulating immunometabolism.

There is often cross-talk between gas signaling molecules. 
For example, H2S and NO can regulate each other’s produc-
tion and enhance each other’s anti-tumor effects (Jing et al. 
2021). Moreover, it is not difficult to find the intrinsic con-
nection between H2 and other gas signaling molecules, such 
as sulfate-reducing bacteria can metabolize H2 to produce 
H2S, which are in some delicate balance in the intestine. H2 
can regulate CO production through HO-1 (Yu et al. 2019), 
and H2 can inhibit inducible nitric oxide synthase (iNOS) 
and enhance the expression of endothelial nitric oxide syn-
thase (eNOS) (Slezak et al. 2021). Combining H2 with other 
gas signaling molecules may be the development direction 
of H2 for cancer treatment, and some studies have suggested 
this idea in nanotechnology (Jing et al. 2021).
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