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Abstract
Background Lung cancer causes a huge disease burden, and early detection of positive pulmonary nodules (PPNs) as an 
early sign of lung cancer is extremely important for effective intervention. It is necessary to develop PPNs risk recognizer 
based on machine learning algorithm combined with central carbon metabolomics.
Methods The study included 2248 participants at high risk for lung cancer from the Ma'anshan Community Lung Cancer 
Screening cohort. The Least Absolute Shrinkage and Selection Operator (LASSO) was used to screen 18 central carbon-
related metabolites in plasma, recursive feature elimination (RFE) was used to select all 42 features, followed by five machine 
learning algorithms for model development. The performance of the model was evaluated using area under the receiver 
operator characteristic curve (AUC), accuracy, precision, recall, and F1 scores. In addition, SHapley Additive exPlanations 
(SHAP) was performed to assess the interpretability of the final selected model and to gain insight into the impact of features 
on the predicted results.
Results Finally, the two prediction models based on the random forest (RF) algorithm performed best, with AUC values of 
0.87 and 0.83, respectively, better than other models. We found that homogentisic acid, fumaric acid, maleic acid, hippuric 
acid, gluconic acid, and succinic acid played a significant role in both PPNs prediction model and NPNs vs PPNs model, 
while 2-oxadipic acid only played a role in the former model and phosphopyruvate only played a role in the NPNs vs PPNs 
model. This model demonstrates the potential of central carbon metabolism for PPNs risk prediction and identification.
Conclusion We developed a series of predictive models for PPNs, which can help in the early detection of PPNs and thus 
reduce the risk of lung cancer.

Keywords Pulmonary nodule · Predictive model · Central carbon metabolism · Machine learning · SHapley Additive 
exPlanations

Abbreviations
AUC   Area under the curve
DT  Decision tree
HPIC-MS  High-performance ion chromatography–mass 

spectrometry

LASSO  Least absolute shrinkage and selection 
operator

NB  Naive Bayes
NPNs  Negative pulmonary nodules
PNs  Pulmonary nodules
PPNs  Positive pulmonary nodules
RF  Random forest
SVM  Support vector machine
SHAP  SHapley Additive exPlanations

Introduction

Lung cancer is one of the major malignant tumors in the 
world, which poses a great threat to human health (Sung 
et al. 2021). Since lung cancer has no obvious symptoms in 
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the early stage, most patients have developed to the middle 
and late stages by the time they are detected, and survival 
rates are greatly reduced (Siegel et al. 2012). Pulmonary 
nodules (PNs) are an early sign of lung cancer. Early detec-
tion and intervention of PNs can significantly improve the 
prognosis of patients with lung cancer (Ost and Fein 2000).

PNs are a focal, circular, dense solid or solid pulmonary 
shadow with a diameter of 3 cm or less, without atelectasis, 
hilar lymph node enlargement, or pleural effusion (Swensen 
et al. 2002). Studies have confirmed that PNs of different 
sizes and properties have different abilities to develop 
into lung cancer. Compared with solid nodules, subsolid 
nodules are more prone to malignant changes, and their 
potential malignancy rate is significantly higher than solid 
nodules (Carreras and Gorini 2017). The larger the PNs are, 
the higher the likelihood of later deterioration, the study 
found (Mazzone and Lam 2022; Vachani et al. 2022). The 
prevalence of lung cancer is 0–1% in 6 mm nodules, 1–2% in 
6–8 mm nodules, and approximately 10% in 8 mm nodules. 
Therefore, it is necessary for early detection, diagnosis and 
intervention of PNs.

Research on the factors influencing PNs is limited 
and focuses on traditional demographic factors such as 
smoking, history of lung disease, occupational exposure, 
and genetic factors (Peng et al. 2010; Ruparel et al. 2016). 
It has been suggested that metabolites in the body may also 
be involved in the development of nodules (Abooshahab 
et al. 2020; Gao et al. 2013). A plasma metabolomics and 
lipidomics study involving 1160 participants showed that 
metabolites associated with arginine and proline metabolism 
were elevated in benign isolated PNs, while metabolites 
associated with fatty acid and acylcarnitine metabolism 
were decreased (Zhou et al. 2022). These studies suggest 
that amino acid metabolism and lipid metabolism play an 
important role in the occurrence and development of PNs. 
Abnormal cell proliferation requires the consumption of 
additional energy and biosynthetic precursors relative 
to normal cells (Hensley et  al. 2016). Central carbon 
metabolism, also known as energy metabolism, is the core 
pathway of cell metabolism, which is closely related to 
abnormal cell proliferation. Previous studies have shown 
that central carbon metabolism plays an important role in 
the occurrence and development of lung diseases (Kim 
et al. 2022; Weckerle et al. 2022). Central carbon-related 
metabolites are expected to be effective predictors of PNs.

In the medical field, the powerful data processing and 
computing power of machine learning is very popular. 
Compared with traditional statistical analysis methods, 
machine learning algorithms not only have fewer restrictive 
assumptions about data distribution, but also can identify 
interaction effects and relationships among relevant factors 
(Burgos and Colliot 2020). At the same time, the machine 
learning algorithm reduces the influence of sample error 

by randomly selecting samples several times before model 
training, which makes the model results more reliable. 
Therefore, it is suitable for processing high-dimensional 
complex data and identifying and predicting diseases. 
Support vector machine (SVM) has been used to achieve 
accurate identification of esophageal squamous cell 
carcinoma (Yuan et  al. 2021). Michael K. Gould et  al. 
(2021) showed that the prediction model constructed using 
ML was better than previous models. Machine learning 
has also excelled in predicting lung cancer risk (Huang 
et al. 2022; Li et al. 2022). At the same time, in order to 
better explain the machine learning model, we introduce 
SHapley Additive exPlanations (SHAP). It is now widely 
used to build interpretable machine learning frameworks and 
interpret their predictions (Ballester et al. 2021; Fan et al. 
2022; Yang et al. 2021).

In order to investigate the influence of central carbon 
metabolites on the occurrence and development of positive 
pulmonary nodules, and then achieve the purpose of accurate 
identification of positive pulmonary nodules. In this study, 
we attempted to construct a predictive model using central 
carbon metabolite data to predict the risk of detecting PPNs 
in people at high risk for lung cancer.

Materials and methods

Study population

This study is based on the Ma’anshan Lung Cancer 
Screening Cohort (MALSC), a prospective cohort that 
has been described in previous study (Zhu et al. 2023). A 
total of 10,038 community populations were enrolled in 
the MALSC at the beginning of baseline survey. After risk 
assessment, 2289 high-risk individuals were screened with 
LDCT imaging and tested for central carbon metabolites 
in plasma. Then, there were 41 subjects missing important 
information such as central carbon metabolites and imaging 
findings. After that, the data of 2248 subjects were included 
in this analysis. The specific process of this study is shown 
in Fig S1.

This study was approved by the Ethics Committee of 
Ma’anshan Center for Disease Control and Prevention 
(Approval No.2020001), and all participants signed 
informed consent prior to the study.

Data collection

Due to the different nature and size of pulmonary nodules 
with different risk of developing into lung cancer, in order 
to stratify the risk of different pulmonary nodules, solid or 
partially solid nodules with diameter ≥ 5 mm, or non-solid 
nodules with diameter ≥ 8 mm and endotracheal nodules 
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detected were defined as positive pulmonary nodules (PPNs) 
in this study according to the national Cancer Screening 
guidelines. If the nodule diameter is smaller than this 
standard and no tracheal nodule is detected, it is defined 
as negative pulmonary nodule (NPNs) (Zhou et al. 2018).

From the questionnaire, we collected demographic 
characteristics (age, sex, annual household income and 
education), behavioral habits (smoking status, alcohol 
consumption status, and exercise status), personal disease 
history and family history. At the same time, we also 
collected basic clinical laboratory test data from hospitals.

A total of 2248 serum samples were analyzed by central 
carbon metabolomics. As there are few metabolomic studies 
on PNs at present, we also considered those related to lung 
cancer while reviewing the metabolomic literatures related to 
PNs. We identified candidate metabolites through literature 
review and non-targeted metabolomics experiments. An 
exploratory preliminary trial was then conducted in a small 
sample of findings that included 16 lung cancers and 32 
controls. Finally, after reviewing the literature and exploring 
a small sample, we determined to use high-performance ion 
chromatography-mass spectrometry (HPIC-MS) to target the 
detection of 18 central carbon-related metabolites.

Statistical analysis

Continuous variables have been expressed as mean ± SD 
or medians with IQRs, and compared using the Wilcoxon 
test when data were not normally distributed. Categorical 
variables have been reported as numbers and percentages, 
and compared using a Chi-square test or Fisher exact test. 
All analyses were conducted using Python, version 3.9.5.

Feature selection

First, we removed metabolites with a deletion rate 
of ≥ 30%. For metabolites with less than 30% of the missing 
metabolite, the lowest detectable limit for that substance 
is used. Spearman rank correlation method was used to 
calculate the correlation between the concentrations of 
18 metabolites. Then, the Least Absolute Shrinkage and 
Selection Operator (LASSO) penalty regression was used 
to screen the central carbon-related metabolites. In short, 
LASSO is a regression contraction and selection method that 
imposes a penalty on the component regression coefficient 
and is suitable for working with complex multicollinearity 
data (Dai et al. 2016).

Recursive feature elimination (RFE) was applied feature 
selection with a tenfold cross-validation during the elimi-
nation process. The ultimate determination of the selected 
features was made by taking into account both the number 

of variables and the area under the receiver operating char-
acteristic curve (AUC).

Model training

The objective of this study is to construct a prediction model 
of PPNs based on machine learning algorithm combined 
with central carbon metabolism data. We partitioned the 
dataset into training and testing sets, using an 80% to 20% 
split. The training set is used for model development, in 
which grid search is used for hyperparameter tuning and 
optimal threshold determination. Adhere to the testing set, 
the model is not seen in training, only used in performance 
evaluation. Regarding the algorithm used in the development 
of prediction models, we chose five machine learning 
algorithms, including random forest (RF), XGBoost, SVM, 
naive Bayes (NB) and decision tree (DT), to construct 
models based on the results of the feature selection. We 
chose these five learning algorithms because they were 
recommended in a multidisciplinary machine learning guide 
(Luo et al. 2016).

In order to better predict and identify PPNs, in this study, 
we developed two PPNs prediction models using the same 
training method. The first model predicted PPNs in all lung 
cancer high-risk groups, and the other model was developed 
only in PNs, with the purpose of distinguishing PPNs and 
NPNs.

Model introduction

Decision tree

The decision tree proposed in this study is based on a binary 
tree algorithm-classification regression tree (CART). Gini 
coefficient is used as the partitioning standard. The larger 
the Gini coefficient, the higher the uncertainty of the data is.

Random forest

Random forest is an integrated algorithm that can fuse 
multiple decision trees together. In RF, each decision tree 
is equivalent to a classifier with lower strength. When all 
decision trees are successfully constructed, the random 
forest can summarize the voting classification results made 
by each decision tree to get the final result.

SVM

SVM algorithm would learn by giving inputs of label-data 
statistics to build a binary discriminative classifier. It defines 
a separating hyperplane or finds the “maximum-margin” 
to discriminate between groups. The weight representing 
importance in classification for all features was generated.
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Naive Bayes

Naive Bayes algorithm is based on simplified Bayes 
algorithm, and its simplicity lies in its very simple 
ideological foundation. In the case of a given target, 
the properties are assumed to be mutually conditional 
independent. In the given training sample, based on the 
assumed joint probability distribution of input and output, 
the output of the maximum posterior probability is obtained 
on the basis of the model. The implementation of naive 
Bayes algorithm is very simple and has good learning and 
prediction ability.

XGBoost

XGBoost is an excellent ensemble learning model, the 
main idea is to take decision tree as the base learner, and 
then build them in parallel based on boosting framework, 
and finally integrate them into a strong learner with higher 
accuracy. When fitting the model, XGBoost first calculates 
the predicted value of each tree, then carries out the second-
order Taylor expansion on the residual of the previous tree, 
and has its own regularization term, which can effectively 
prevent over-fitting and improve the generalization 
performance of the model. Finally, the results of multiple 
decision trees are weighted and averaged.

Measuring model performance

The differential ability of several models to predict positive 
pulmonary nodules from negative pulmonary nodules and 
normal subjects was evaluated and compared using receiver 
operator characteristic (ROC) curve analysis. AUC greater 
than 0.5 indicates better predictive performance of the 
models. Accuracy, precision, recall, and F1 scores were 
also used to evaluate the performance and generalization of 
each of models, where accuracy represents the proportion 
of all samples correctly classified by the model and is 
used to measure the accuracy of the overall prediction, but 
accuracy may not be the most appropriate evaluation criteria 
in unbalanced categories or cost sensitivity; precision, 
which is the proportion of true positives among predicted 
positives, measures how correct the model is in the case of 
predictions in the positive category, and it is important in 
medical diagnosis where you want to avoid misdiagnosis; 
recall rate refers to the proportion of true positives among 
all positive instances, and measures the degree to which 
the model captures true positive cases, which is even more 
important in cases such as cancer detection where the hope 
is to minimize missed diagnoses; F1 score is the harmonic 
average of precision and recall, and is a comprehensive 
indicator for situations where there is a balance between 
accuracy and recall.

Model interpretability

In order to enhance the explainability of the model, the 
method of SHapley Additive exPlanations (SHAP) is 
introduced in this study. SHAP, which originated from game 
theory, can provide an explanation of the model’s output, so 
as to answer the question of how much a particular feature 
contributes to the overall model's predictive effectiveness 
(Yanamala et al. 2021). The resulting SHAP values quantify 
the direction and magnitude of the feature's influence on a 
given prediction. The greater the absolute SHAP value of 
the feature is, the greater its influence on the prediction. 
The direction of the SHAP value in the diagram indicates 
whether the feature is influential or indicative on the negative 
or positive class.

Results

Descriptive statistics

Of the 2248 participants, 284 had PPNs and 537 had 
NPNs. Compared to normal and NPNs, PPNs were older 
(64.5 ± 6.2), more likely to be male, ever smokers, current 
alcohol consumer and those exposed to indoor incense. The 
general demographic characteristics of the participants are 
detailed in Table 1. Table S1 shows that the basic clinical 
indicators were basically similar among the three groups, 
and total cholesterol in the PPNs group was lower than that 
in the normal and NPNs groups.

The analysis of 18 plasma central carbon-related 
metabolites of participants showed that plasma 
concentrations of 2-ketoglutaric acid, 3-hydroxybutyric 
acid, gluconic acid, phosphoenolpyruvic acid, glyceric 
acid, succinic acid, hippuric acid, citric acid, malic acid, 
L-lactic acid, cis-aconite acid and isocitric acid in PPNs 
were significantly higher than those in no pulmonary 
nodules and negative pulmonary nodules groups (P < 0.001). 
Plasma concentrations of 2-oxadipic acid, homogentisic 
acid, maleic acid and ortic acid in pulmonary nodule group 
were significantly lower than those in non-pulmonary nodule 
group (P < 0.05). There was no significant difference in the 
concentration of fumaric acid and glucaric acid between 
groups (P > 0.05), as shown in Table  S2. Spearman 
correlation coefficients among these metabolites ranged 
from – 0.14 to 0.71 (Fig S2).

PPNs risk prediction model in high‑risk lung cancer 
population

Based on the results of LASSO regression screening, a total 
of 7 central carbon metabolites were selected for subsequent 
prediction model construction. They are homogentisic acid, 
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2-oxadipic acid, fumaric acid, maleic acid, succinic acid, 
gluconic acid, hippuric acid (Fig S3). To develop the predic-
tive model, all features were screened using the RFE method. 

The RFE results are shown in Table 2. Considering the sim-
plicity and Accuracy of the prediction model, we finally 
chose a model containing 10 features (Accuracy = 0.9163, 

Table 1  Demographic 
characteristics of high-risk 
groups for lung cancer

Variables Normal (n = 1427) Negative (n = 537) Positive (n = 284)

Age (years, mean ± SD) 63.0 ± 6.7 63.2 ± 6.7 64.5 ± 6.2
Sex (n, %)
 Male 987 (63.7) 353 (22.8) 210 (13.5)
 Female 440 (63.0) 184 (26.4) 74 (10.6)

Education level (n, %)
 Elementary school or below 451 (64.1) 152 (21.6) 101 (14.3)
 Middle school 563 (62.3) 234 (25.9) 107 (11.8)
 High school/technical school 328 (64.8) 116 (22.9) 62 (12.3)
 College or above 85 (63.4) 35 (26.1) 14 (10.4)

Household income (RMB/per year) (n, %)
 < 30,000 151 (63.7) 52 (21.9) 34 (14.3)
 30,000 ~ 449 (64.4) 158 (22.7) 90 (12.9)
 60,000 ~ 507 (61.5) 199 (24.2) 118 (14.3)
 > 90,000 320 (65.3) 128 (26.1) 42 (8.6)

Asbestos exposure (n, %)
 Yes 1359 (63.6) 507 (23.7) 12 (10.9)
 No 68 (61.8) 30 (27.3) 272 (12.7)

Smoking status (n, %)
 Never 798 (64.0) 302 (24.2) 146 (11.7)
 Ever 629 (62.8) 235 (23.5) 138 (13.8)

Drinking status (n, %)
 Never 756 (63.6) 303 (25.4) 135 (11.3)
 Current 540 (62.6) 193 (22.4) 129 (15.0)
 Ever 131 (68.2) 41 (21.4) 20 (10.4)

Indoor incense burning (n, %)
 Yes 1307 (64.2) 486 (23.9) 42 (19.7)
 No 120 (56.3) 51 (23.9) 242 (11.9)

History of pulmonary disease (n, %)
 Yes 1272 (64.0) 469 (23.6) 37 (14.2)
 No 155 (59.6) 68 (26.2) 247 (12.4)

Family history of cancer (n, %)
 Yes 739 (63.1) 279 (23.8) 130 (12.1)
 No 688 (63.9) 258 (24.0) 154 (13.1)

Table 2  Recursive feature 
elimination coupled with the 
random forest is employed for 
selecting features

Number of 
features

AUC Accuracy Kappa Accuracy SD Kappa SD

PPNs risk prediction model 
in high-risk lung cancer 
population

42 0.8499 0.9140 0.5612 0.0353 0.2848
22 0.8452 0.9118 0.5605 0.0367 0.2930
10 0.8346 0.9163 0.5762 0.0353 0.2701
5 0.8257 0.9140 0.5683 0.0349 0.2566

PPNs versus NPNs 42 0.8365 0.7963 0.5355 0.0780 0.2194
22 0.8462 0.8086 0.5515 0.0775 0.2165
10 0.8372 0.8025 0.5434 0.0826 0.2274
5 0.8122 0.7901 0.5236 0.0885 0.2410
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Kappa = 0.5762). The features included in the model are as 
follows homogentisic acid, 2-oxadipic acid, fumaric acid, 
maleic acid, succinic acid, gluconic acid, hippuric acid, 
Monocyte ratio (MR), basophil count (BLC) and triglyc-
eride (TG). The performance of each model was evaluated 
on the test set.

The ROC curve analysis indicated that RF and XGBoost 
attained the highest predictive performance with an AUC 
of 0.87. The AUC values of DT, NB and SVM are 0.78, 
0.77 and 0.72, respectively, showing a relatively worse per-
formance (Fig. 1A). The performance evaluation indexes 
of each model, such as Accuracy, Recall, Precision and F1 
score, are shown in Table 3. RF had the best performance, 
with an accuracy of 0.93, comparable to XGBoost, fol-
lowed by DT, SVM and NB, which were 0.88, 0.87 and 
0.84, respectively.

PPNs versus NPNs

To further distinguish between negative and positive 
pulmonary nodules, we trained another five machine 
learning models in PNs in the same way. When LASSO 
was used to screen the specific central carbon metabolites 
between negative and positive pulmonary nodules, seven 
metabolites were selected, namely homogentisic acid, 
phosphoenolpyruvic acid, fumaric acid, maleic acid, 
succinic acid, gluconic acid, and hippuric acid (Fig S4). As 
before, the results of recursive feature elimination feature 
selection are shown in Table 2. The features included in the 
model are as follows homogentisic acid, phosphoenolpyruvic 
acid, fumaric acid, maleic acid, succinic acid, gluconic acid, 
hippuric acid, low-density lipoprotein (LDL), high-density 
lipoprotein (HDL) and mean corpuscular volume (MCV).

Fig. 1  ROC curves of positive pulmonary nodules prediction models 
constructed by different machine learning algorithms in the test set. 
A PPNs risk prediction model in high-risk lung cancer population. 

B PPNs versus NPNs. XGBoost: Extreme Gradient Boosting; SVM: 
support vector machine

Table 3  Performance indicators 
of different machine learning 
models for predicting PPNs

XGBoost Extreme Gradient Boosting, SVM support vector machine

Model AUC ACC Precision Recall F1 score

PPNs risk prediction model 
in high-risk lung cancer 
population

Random forest 0.87 0.93 0.92 0.93 0.92
XGBoost 0.87 0.92 0.92 0.93 0.92
Decision tree 0.78 0.88 0.88 0.88 0.88
Naive Bayes 0.77 0.84 0.82 0.84 0.83
SVM 0.72 0.87 0.83 0.87 0.83

PPNs versus NPNs Random forest 0.83 0.86 0.92 0.93 0.92
XGBoost 0.81 0.84 0.89 0.93 0.91
Decision tree 0.71 0.67 0.74 0.88 0.81
Naive Bayes 0.71 0.58 0.64 0.84 0.72
SVM 0.73 0.61 0.67 0.87 0.76
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The ROC curve analysis indicated that RF attained the 
highest predictive performance with an AUC of 0.83, closely 
trailed by XGBoost with an AUC of 0.81. SVM had rela-
tively poor performance (AUC = 0.73), and DT and NB 
models both had the lowest AUC of 0.71 (Fig. 1B).

Model interpretability

The SHAP method was used to gain insights into the 
importance of features and interpret the predictions of the 
RF model for the risk of PPNs in high-risk lung cancer 
population. Through SHAP analysis (Fig. 2A), we found 
that the top 7 features that contributed most to the predic-
tion of PPNs in the lung cancer high-risk population were 
central carbon-related metabolites. Intuitively, higher suc-
cinic acid, gluconic acid and hippuric acid lead to a greater 
risk of PPNs, while higher homogentisic acid, 2-oxadipic 
acid, fumaric acid and maleic acid leads to a lower risk of 
PPNs. Similarly, in the PPNs versus NPNs models, higher 
phosphoenolpyruvic acid, succinic acid, gluconic acid and 
hippuric acid led to a greater risk of PPNs, while higher 
homogentisic acid, fumaric acid and maleic acid led to a 
lower risk of PPNs (Fig. 2B).

The SHAP diagram shown in Fig. 3 is intended to pro-
vide an explanation for the individual predictions made by 
our model. Figure 3a shows an encounter that was correctly 
classified as PPNs, with multiple central carbon metabolites 
having the greatest impact on model output. The selected 
individuals had succinic acid of 6693 ng/mL, homogentisic 
acid of 6.16 ng/mL, gluconic acid of 7263 ng/mL and hip-
puric acid of 317.2 ng/mL, which increased the predicted 

risk of PPNs. Conversely, 2-oxadipic acid of 123 ng/mL, 
fumaric acid of 215 ng/mL, maleic acid of 321 ng/mL, 
platelet of 247  109/L, monocyte ratio of 6% and triglyceride 
of 2.14 mmol/L reduced the predicted risk of PPNs. The 
final model output value is 0.15, which is greater than the 
base value 0.1244, so it is correctly classified as PPNs. Fig-
ure 3b illustrates an encounter that was correctly classified 
as NPNs. The selected individuals had homogentisic acid of 
25.62 ng/mL, hippuric acid of 1653 ng/mL, maleic acid of 
77.2 ng/mL and HDL of 1.75 mmol/L, which reduced the 
predicted risk of PPNs. This offset the increased risk asso-
ciated with fumaric acid of 47.46 ng/mL, succinic acid of 
1251 ng/mL, phosphoenolpyruvic acid of 179.2 ng/mL and 
mean corpuscular volume of 97 fL. Finally, this individual 
was correctly classified as NPNs. With these interpretability 
methods, we are able to clearly determine the reasons for the 
model’s output and ensure they can be scrutinized.

Discussion

The aim of this study was to develop a series of well-
performing machine learning-based models for assessing the 
risk of detecting PPNs in people at high risk for lung cancer. 
To our knowledge, this may be the first machine learning 
model built based on central carbon metabolism to predict 
PPNs in people at high risk of lung cancer. This study fills 
an important gap in the knowledge of the concentration 
levels of various plasma central carbon metabolites and their 
relationship with PPNs in lung cancer high-risk populations. 
Using LASSO regression, we identified the most important 

Fig. 2  SHapley Additive exPlanations (SHAP) summary for A PPNs 
risk prediction model in high-risk lung cancer population. B PPNs 
versus NPNs. The summary plot combines feature importance with 
feature effects. The features on the y-axis are ordered according to 
their importance. Each point on the summary plot is a SHapley value 

for a feature and an instance in the dataset. The position of each point 
on the x-axis shows the impact that feature has on the classification 
model’s prediction for a given instance. The color represents the high 
(red) to low (blue) values of the feature
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metabolites in the mixture and used them for subsequent 
modeling. The results show that central carbon-related 
metabolites have a surprising predictive power for PPNs risk 
in people at high risk for lung cancer. By comparing different 
algorithms for predicting PPNs in people at high risk of lung 
cancer, we propose two RF models based on demographic 
factors, basic clinical examination indicators, and blood 
levels of central carbon-related metabolites. Similar to our 
results, random forest also performed best in a study of 
survival predictions for head and neck cancer (Salmanpour 
et al. 2023). The model achieves good performance, with 
AUC values of 0.87 and 0.83, respectively. These results 
were internally verified to show that the results were not 
found by chance, which is acceptable reliability. In terms of 
accuracy, the two models in this study (ACC = 0.93 and 0.86) 
are superior to the integrated model based solely on image 
information (ACC = 0.790) of Huang et al., which is similar 
to the study of Heydarheydari et al. (ACC = 0.9403 ± 0.0444) 
(Huang et al. 2022; Heydarheydari et al. 2023).

Referring to previous studies (Hosseinzadeh et al. 2023; 
Rezaeijo et al. 2022), we trained the model in metabolite-
only datasets, demographic characteristics and clinical 
general detection indicators datasets respectively. The 
results showed that the performance of the metabolite-only 
model was similar to the model in this study, and was much 
better than the model with demographic characteristics and 
clinical general indicators, which also showed the good risk 
prediction ability of central carbon-related metabolites for 
PPNs (Fig S5). The model of demographic characteristics 
plus clinical general detection indicators did not perform 

well, because the study population was assessed based on 
the high-risk criteria for lung cancer screening, and the 
distribution of demographic characteristics such as smoking 
was similar among the groups.

To enhance the interpretability of the model, we 
employed SHAP values, which provided both global and 
local explanations for the model’s predictions. The global 
explanations highlighted the average contribution of each 
feature across the entire dataset, while the local explanations 
demonstrated the influence of each feature on individual 
sample predictions (Martin et  al. 2023). This aspect of 
interpretability is valuable for understanding the underlying 
factors driving the predictions of the model and can be 
utilized for clinical decision-making and interventions.

Feature-importance analysis and overall interpretation of 
SHAP indicate that central carbon-related metabolites are 
important predictors of PPNs risk in high-risk lung cancer 
populations. For PPNs risk prediction model and PPNs 
recognition model, homogentisic acid, phosphoenolpyruvic 
acid, fumaric acid, maleic acid, succinic acid, gluconic acid 
and hippuric acid play an important role in both models. 
Succinic acid and fumaric acid are two metabolites in 
the TCA cycle, which may affect the occurrence and 
development of PPNs through energy metabolism and 
cellular hypoxia (Beloborodova et al. 2019; Lee et al. 2020). 
Homogentisic acid and maleic acid are upstream substances 
of fumaric acid, which can affect PPNs through fumaric acid. 
Hippuric acid is a metabolomic marker of gut microbiota 
diversity (Pallister et al. 2017). Studies have found that gut 
microbiota can influence the development of lung diseases 

Fig. 3  SHapley Additive exPlanations (SHAP) force plots. A PPNs risk prediction model in high-risk lung cancer population. B PPNs versus 
NPNs
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through the gut-lung axis (Zhao et al. 2021). Our study found 
that the level of hippuric acid was higher in PPNs group, 
and the imbalance of intestinal flora may play a role in the 
development of PPNs. A study found that gluconic acid and 
markers of oxidative stress, we speculate that gluconic acid 
affects the occurrence and development of PPNs through 
oxidative stress, and the specific process needs more 
research to explore (Feng et al. 2018). 2-oxadipic acid is 
present only in PPNs prediction models of lung cancer high-
risk populations and is a metabolite of the breakdown of 
essential amino acids lysine and tryptophan. The tryptophan 
pathway is thought to play a key role in inflammation and 
immune regulation (Shibata et al. 2011). Our study found 
that PPNs participants had lower levels of 2-oxadipic acid 
concentration than controls, suggesting that the lysine and 
tryptophan catabolic pathways may be involved in the 
occurrence of PPNs. Similarly, phosphoenolpyruvic acid, 
which only plays a role in PPNs recognition models, is an 
intermediate product of sugar degradation, a process that 
has been shown to be associated with lung fibrosis as well 
as smooth muscle cell proliferation in COPD.

Our research has several advantages. First, to our 
knowledge, this may be the first study to use a machine 
learning algorithm combined with central carbon 
metabolism to predict PPNs in people at high risk for 
lung cancer. The addition of central carbon metabolism 
allows us to more accurately assess the risk of PPNs, so 
as to detect, diagnose and intervene in PPNs as early as 
possible to reduce the harm of lung cancer. Second, we 
conducted a comprehensive comparison of five commonly 
used machine learning algorithms and determined that 
RF models performed best in predicting PPNs risk. This 
comparison not only helps to select the most suitable model 
for this study, but also provides valuable guidance for future 
research and practical application. In addition, this study 
separately established the prediction model suitable for 
different situations. It can not only predict the likelihood 
of detecting PPNs in lung cancer high-risk groups, but also 
assess the risk of converting PNs to PPNs. Finally, we use 
SHAP values to provide global and local interpretations 
of our predictive model. Global interpretations highlight 
the average contribution of each feature across the entire 
dataset, while local interpretations show the impact of each 
feature on individual sample predictions. SHAP attempts 
can visually assess the likelihood of PPNs in people at high 
risk of lung cancer, and this information can help researchers 
develop appropriate intervention strategies to reduce the 
occurrence of PPNs.

There are also some limitations to this study. First, 
the cross-sectional design limits our ability to infer a 
causal relationship between plasma metabolite levels 
and PPNs. Long-term follow-up studies are necessary to 
refine our model. Second, in recent years, central carbon 

metabolism has gradually become a hot research direction, 
but few relevant tests have been carried out in lung cancer 
screening. Due to the lack of variables in other studies, 
only internal verification was carried out in this study. 
In the follow-up study, it is necessary to find a suitable 
independent cohort for external verification, so as to better 
evaluate the performance of the model.

Conclusion

In this study, we developed a series of predictive models 
based on machine learning algorithms combined with 
central carbon metabolism to identify risk factors for 
developing PPNs in people at high risk for lung cancer. 
The model showed good performance and provided 
explainable insights that could lead to early detection of 
PPNs and thus reduce the risk of lung cancer.
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