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Abstract
Purpose To explore a subregion-based RadioFusionOmics (RFO) model for discrimination between adult-type grade 4 
astrocytoma and glioblastoma according to the 2021 WHO CNS5 classification.
Methods 329 patients (40 grade 4 astrocytomas and 289 glioblastomas) with histologic diagnosis was retrospectively col-
lected from our local institution and The Cancer Imaging Archive (TCIA). The volumes of interests (VOIs) were obtained 
from four multiparametric MRI sequences  (T1WI,  T1WI + C,  T2WI,  T2-FLAIR) using (1) manual segmentation of the non-
enhanced tumor (nET), enhanced tumor (ET), and peritumoral edema (pTE), and (2) K-means clustering of four habitats 
 (H1: high  T1WI + C, high  T2-FLAIR; (2)  H2: high  T1WI + C, low  T2-FLAIR; (3)  H3: low  T1WI + C, high  T2-FLAIR; and 
(4)  H4: low  T1WI + C, low  T2-FLAIR). The optimal VOI and best MRI sequence combination were determined. The per-
formance of the RFO model was evaluated using the area under the precision-recall curve (AUPRC) and the best signatures 
were identified.
Results The two best VOIs were manual  VOI3 (putative peritumoral edema) and clustering  H34 (low  T1WI + C, high 
 T2-FLAIR  (H3) combined with low  T1WI + C and low  T2-FLAIR  (H4)). Features fused from four MRI sequences ( F1,2,3,4

seq
 ) 

outperformed those from either a single sequence or other sequence combinations. The RFO model that was trained using 
fused features F1,2,3,4

seq
 achieved the AUPRC of 0.972  (VOI3) and 0.976  (H34) in the primary cohort (p = 0.905), and 0.971 

 (VOI3) and 0.974  (H34) in the testing cohort (p = 0.402).
Conclusion The performance of subregions defined by clustering was comparable to that of subregions that were manually 
defined. Fusion of features from the edematous subregions of multiple MRI sequences by the RFO model resulted in dif-
ferentiation between grade 4 astrocytoma and glioblastoma.
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MRI  Magnetic resonance imaging
nET  Non-enhanced tumor
ET  Enhanced tumor
pTE  Peritumoral edema

Introduction

Glioblastoma (GBM) is the most aggressive and malignant 
adult brain tumor that has a poor prognosis (Singh et al. 
2021). According to the 2016 edition of the World Health 
Organization (WHO) classification criterion, gliomas can 
be grouped as per both histopathologic appearance and 
well-established molecular parameters. The malignant 
GBM is categorized as isocitrate dehydrogenase (IDH) 
mutant and IDH wildtype (Aldape et  al. 2015; Chen 
et  al. 2017). However, these two IDH variants exhibit 
distinct biological characteristics and clinical prognosis. 
To this end, the latest WHO CNS5 makes it clear that 
GBM particularly refer to IDH wildtype gliomas owing 
to their intrinsic invasive nature. In doing so, the previ-
ous “GBM” are now separated into GBM (IDH wildtype) 
and grade 4 astrocytoma (IDH mutant) given that they are 
quite distinct from biological characteristics and clinical 
behavior (Gritsch et al. 2022; Louis et al. 2021; Wen and 
Packer 2021). Thus, preoperative differentiation between 
these two entities paves the way for more effective patient 
stratification, targeted therapeutics, and prediction of 
patient outcomes. Radiomics is an emerging method that 
can automatically provide a large number of quantitative 
image features from medical images. Therefore, exploring 
a novel radiomics model for noninvasive discrimination 
between grade 4 astrocytoma and GBM provides an impor-
tant reference for doctors to choose treatment options, 
which is of great significance to clinical practice.

Clinical decision-making on high-grade gliomas is 
determined by molecular genetic signatures, of which 
IDH status is the most important (Dang et al. 2016; Han 
et al. 2020). Due to the invasive procedures and limited 
samples for histology as well as the expensive cost of DNA 
sequencing for IDH testing, MRI-based radiographical 
examination is the most suitable option for non-invasive 
identification of IDH status, as it demonstrated excellent 
diagnostic capabilities for predicting IDH genotypes. 
Moreover, radiomics signatures from conventional, as 
opposed to advanced, MRI sequences were sufficient (Zhao 
et al. 2020). Nevertheless, most research has focused on 
lower-grade gliomas and their findings are thus possibly 
inapplicable to the 2021 WHO CNS 5 standard, albeit 
some studies showed promising performance (Chang et al. 
2018; Suh et al. 2019; Yu et al. 2017). Constructing radi-
omics models from conventional MRI sequences and using 
them for routine clinical use is an attractive alternative as 

it requires no advanced sequencing techniques. However, 
its effectiveness, as per WHO CNS 5 standards, needs to 
be validated.

Subregional analysis has shown that radiomic metrics 
are capable of identifying distinct subpopulations that 
are more aggressive and treatment-resistant by explor-
ing imaging features across the whole tumor, whose first 
step is segmentation of the tumor into several subregions, 
e.g., necrosis, enhancing core and peritumoral edema, by 
neuroradiologists or using deep learning segmentation 
methods (Chen et al. 2019; Li et al. 2018a, b; Rudie et al. 
2019; Suhail et al. 2023). An alternative is use of cluster-
ing algorithms,—this method is also known as ‘habitat 
imaging’—which generates functionally coherent subre-
gions of the tumor (Gatenby et al. 2013; Juan-Albarracin 
et al. 2018; Kim et al. 2021). These two tumor subregion 
definition methods are not only yet to be compared for 
glioma classification, but also have unknown impact on 
subsequent radiomics modeling.

To address the above issues, we herein proposed an MRI-
based multisequence feature fusion model, namely RadioFu-
sionOmics (RFO), to discriminate between grade 4 astro-
cytoma and GBM using subregional radiomics signatures 
from conventional MRI sequences. Thus, the two specific 
goals of this study were: (i) to develop a subregion-based 
RFO model —which is designed for grade 4 gliomas — for 
the prediction of IDH genotype, and (ii) to determine the 
impact of the two subregion definition strategies — manual 
and clustering — on model performance.

Methods

Patients

Ethical approval for this retrospective study was granted 
by the local institutional review board, which waived the 
informed patient consent requirement. Patients who met 
the following criteria were enrolled: (1) age ≥ 18 years; (2) 
histologically reclassified as either grade 4 astrocytoma or 
GBM according to 2021 WHO CNS5; (3) had preopera-
tive MRI examinations; (4) had no previous related treat-
ments before MRI examination. Patients with a lesion with 
a pure solid or cystic component, or without enhancement, 
as well as poor MRI image quality were excluded. Thus, 259 
patients (grade 4 astrocytoma, n = 36; GBM, n = 223) from 
our institution (Jan 2016 ~ Dec 2021), as well as 70 patients 
(grade 4 astrocytoma, n = 4; GBM, n = 66) from The Can-
cer Imaging Archive (TCIA) (https:// www. cance rimag ingar 
chive. net/; accessed on 25 November 2021) were enrolled. 
They were randomly divided into a primary (n = 230) and 
testing cohort (n = 99) (Fig. 1).

https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
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Image acquisition

Preoperative MRI examinations were performed either on a 
3.0 T (Verio, Siemens, Erlangen, Germany) or a 1.5 T MR 
scanner (Signa EXCITE HD, GE Healthcare, Milwaukee, 
WI, USA), both of which were equipped with 12‐channel 
head coils. Details of the MRI protocol were described in 
the Supplementary Materials. Four MRI sequences  (T1WI, 
 T1WI + C,  T2WI, and  T2-FLAIR) from each patient were 
aligned and resampled to the same geometry to  T1WI using 
3D slicer (https:// www. slicer. org/).

Subregion definitions

Strategy 1: Manual delineation

Three volumes of interests (VOIs) of the lesion — the non-
enhanced tumor (nET,  VOI1), the enhanced tumor (ET, 
 VOI2), and the peritumoral edema (pTE  VOI3) — were 
delineated by two board-certified investigators (R.L Wei 
and R.M Yang, with 6 and 15 years of expertise in radio-
logical diagnosis, respectively) using the ITK‐SNAP soft-
ware (http:// www. itksn ap. org). Inter-expert conformity 
was validated using Dice similarity coefficient. For those 
with Dice indexes > 0.9, the unanimous segmentation 
was the intersection of the two individual segmentations, 
while Dice indexes < 0.9, discrepancies on lesion boundary 
were resolved by further discussions to reach consensus. 

Different Boolean operations (e.g., “OR” or “NOT”) on the 
three VOIs defined seven regions of the tumor which were: 
 VOI1 (putative non-enhanced tumor (nET)),  VOI2 (putative 
enhanced tumor (ET)),  VOI3 (putative peritumoral edema 
(pTE)),  VOI12,  VOI13,  VOI23, and  VOI123 (Fig. 2).

Strategy 2: Clustering algorithm

The largest VOI (i.e.,  VOI123), which encompassed the 
entire lesion, was used for subregion auto-clustering. Two 
regions of equal size in  T1WI + C and  T2-FLAIR (termed 
as VOIT1WI+C

123
 and VOIT2−Flair

123
 ) were extracted using the 

same  VOI123 defined in  T2-FLAIR (the four MRI sequences 
had been geometrically aligned). With intensities normal-
ized between intra subject in VOIT1WI+C

123
 and VOIT2−Flair

123
 , 

the intensity of each voxel (x, y, z) in  VOI123 was separated 
into high intensities and low intensities by K-means cluster-
ing algorithm (see Supplementary Materials) with a preset 
number of classes(n = 2), then the divided two regions of 
VOI

T1WI+C

123
 and VOIFlair

123
 were combined with Boolean opera-

tion (“AND”) into four clustering subregions  H1,  H2,  H3, 
and  H4 such that VOI123 = H1 ∪ H2 ∪ H3 ∪ H4 . These sub-
regions coincided with different radiographic metaphors for 
MRI sequences, i.e., (1)  H1: high  T1WI + C, high FLAIR (2) 
 H2: high  T1WI + C, low FLAIR (3)  H3: low  T1WI + C, high 
FLAIR and (4)  H4: low  T1WI + C, low FLAIR (Fig. 2).

Fig. 1  Flowchart of the subregion-based RadioFusionOmics pipeline used in this study, which includes segmentation, subregion definition, fea-
ture extraction and fusion, model development, and performance evaluation

https://www.slicer.org/
http://www.itksnap.org
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Feature extraction

Features (n = 109 features) were extracted from the seven 
manual and fifteen clustering VOIs of all four MRI 
sequences, using an open-source python package Pyradiom-
ics (https:// pyrad iomics. readt hedocs. io/ en/ stable/), the dif-
ferent types were first-order features (n = 19), shape features 
(n = 15) and texture features (n = 75).

RFO modeling

We developed a RadioFusionOmics (RFO) model to dis-
criminate between GBM and astrocytoma. The RFO model 
not only integrates radiomics information from different 
MRI sequences but also combines strengths of various clas-
sifiers via ensemble learning.

Briefly, using the feature level fusion of RFO, a feature-
wise fusion scheme was performed by finding a transfor-
mation matrix W  to map the feature matrix X with a given 
number of MRI sequences (e.g., dimension = 4) to a lower 
dimensional space (e.g., dimension = 1). By incorporating 
the class structure information (i.e., memberships of the 
training samples in class) in the calculation of the transfor-
mation matrix, the RFO reduced between-class correlations 
within the fused feature domain.

Using the model (or classifier) level fusion of RFO, dif-
ferent models were trained and ranked based on the fused 
features. The three best-performing models were identified 
and their predictions were unified via a multi-disciplinary 
team (MDT)-like fusion method, to create a consensus clas-
sification. Twenty-four models (6 feature selection methods: 
CMIM, DISR, ICAP, JMI, MIM, SPEC × 4 base classifiers: 
Extratrees Classifier, Gradient Boosting Classifier, eXtreme 
Gradient Boosting, Light Gradient Boosting Machine) were 
trained, and their discriminative performances were assessed 
and ranked using stratified fivefold cross-validations. The 
MDT-like model fusion was done by the weighted fusion 
method. Technical details regarding the RFO are in the Sup-
plementary Materials. Data imbalance was addressed using 
the SMOTE (Synthetic Minority Over-Sampling Technique) 
method(García et al. 2012).

Model evaluations

Study 1: Comparison of lesion VOIs
To identify the best lesion VOIs for discriminating 

between GBM and astrocytoma, the discriminative perfor-
mances of features extracted from all MRI sequences using 
the seven manual  (VOI1,  VOI2,  VOI3,  VOI12,  VOI13,  VOI23, 
and  VOI123) and fifteen clustering VOIs  (H1,  H2,  H3,  H4,  H12, 

Fig. 2  Representatives of two subregion definition strategies (man-
ual (left) vs. K-means clustering (right)). Upper row: a 43‐year‐
old female with pathologically confirmed grade 4 astrocytoma. 
Lower row: a 45‐year‐old female of GBM. For manual segmen-
tation, the  VOI1 (orange) and  VOI12 (magenta) are delineated by 

 T1WI + C images, while the  VOI123 (green) is delineated by the 
 T2-FLAIR image. For clustering, four clusters corresponded to  H1: 
high  T1WI + C, high  T2-FLAIR (dark red);  H2: high  T1WI + C, low 
 T2-FLAIR (light red);  H3: low  T1WI + C, high  T2-FLAIR (dark blue); 
 H4: low  T1WI + C, low  T2-FLAIR (light blue)

https://pyradiomics.readthedocs.io/en/stable/
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 H13,  H14,  H23,  H24,  H34,  H123,  H124,  H134,  H234 and  H1234) 
were compared.

Study 2: Comparisons of MRI sequences combinations
Different numbers and combinations of the four MRI 

sequences ( F1,2
seq
,F1,3

seq
,… ,F1,2,3,4

seq
 ) were used as inputs for 

the RFO model that used the best lesion VOIs from Study 
1. Then, their discriminative powers were compared and the 
best combinations of MRI sequences (for manual and clus-
tering, respectively) for fusion were determined.

Study 3: Comparisons of manual vs. clustering VOIs
Comparisons were made between manual and clustering 

classification performances using either the best lesion VOIs 
and best MRI sequences or their combinations.

Study 4: Top features
The top-ranked features associated with grade 4 astrocy-

toma and their respective GBM classifications were identi-
fied by the RFO model and their discriminative capabilities 
were analyzed.

Statistical analysis

Continuous variables were reported as mean ± SD, and cat-
egorical variables were reported as numbers and propor-
tions. Normality of the data distribution was assessed by 
the Shapiro–Wilk test. The chi-square and Fisher’s exact 
tests were used to assess statistical significance of respec-
tive categorical variables in two and multiple groups. The 

Mann–Whitney U test was used to assess the statistical sig-
nificance of non-normally distributed continuous variables. 
Statistical assessments of comparisons among the 15 feature 
types were performed using the Independent t-test to adjust 
the significance level in pairwise comparisons. For com-
prehensive evaluations of the classification performance on 
the imbalanced dataset, the area under the precision‐recall 
curves (AUPRC) were calculated for both primary and test-
ing cohorts. All statistical analyses were conducted on SPSS 
version 20 (IBM). Two-tailed p < 0.05 was considered sta-
tistically significant.

Results

Patient characteristics

The patients’ demographic and radiological character-
istics are summarized in Table 1. A total of 329 patients 
(51.70 ± 15.31 years) were enrolled —40 had grade 4 astro-
cytomas and 289 had GBM corroborating the low preva-
lence of mutations in the IDH gene of grade 4 astrocyto-
mas (Cohen et al. 2013; Parsons et al. 2008). There were no 
significant differences in age, gender, tumor location, and 
tumor cross midline patterns between the primary and test-
ing cohorts (p > 0.05), except for age and tumor dominant 
location within the primary cohort.

Table 1  Demographics and characteristics of the study cohort

The median age was 53 years, and the patients were categorized as either above or below 53 years of age
Unless otherwise specified, the data is presented as frequencies, with percentages in parentheses. *p < 0.05

Variables Primary cohort (n = 230) p (Intra) Testing cohort (n = 99) P (Intra) P (Inter)

Grade 4 astrocy-
toma (n = 28)

GBM (n = 202) Grade 4 astrocy-
toma (n = 12)

GBM (n = 87)

Gender 0.699 1.000 0.538
 Male 15 (53.6) 116 (57.4) 7 (58.3) 53 (61.0)
 Female 13 (46.4) 86 (42.6) 5 (41.7) 34 (39.0)

Age 0.001* 0.263 0.801
  ≤ 53 22 (78.6) 93 (46.0) 8 (66.7) 43 (49.4)
  > 53 6 (21.4) 109 (54.0) 4 (33.3) 44 (50.6)

Dominant location 0.001* 0.058 0.696
 Frontal lobe 22 (78.6) 67 (33.2) 8 (66.7) 25 (28.7)
 Parietal lobe 3 (10.7) 40 (19.8) 3 (25.0) 12 (13.8)
 Temporal lobe 0 41 (20.3) 1 (8.3) 22 (25.3)
 Occipital lobe 3 (10.7) 20 (9.9) 0 12 (13.8)
 Insular lobe 0 2 (1.0) 0 0

Midline region 0 27 (13.4) 0 15 (17.2)
 Cerebellum 0 5 (2.5) 0 1 (1.1)

Tumor cross midline 0.083 1.000 0.813
 Yes 5 (17.9) 13 (6.4) 1 (8.3) 6 (6.9)
 No 23 (82.1) 189 (93.6) 11 (91.7) 81 (93.1)
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Optimal VOI and best sequence combination

With strategy 1, seven manual VOIs  (VOI1,  VOI2,  VOI3, 
 VOI12,  VOI13,  VOI23, and  VOI123) were individually gener-
ated for each MRI sequence and used in subsequent feature 
extraction. With strategy 2, subregions were coincided with 
different radiographic metaphors for MRI sequences, i.e., (1) 
 H1: high  T1WI + C, high  T2-FLAIR; (2)  H2: high  T1WI + C, 
low  T2-FLAIR; (3)  H3: low  T1WI + C, high  T2-FLAIR; and 
(4)  H4: low  T1WI + C, low  T2-FLAIR, resulting in fifteen 
clustering VOIs  (H1,  H2,  H3,  H4,  H12,  H13,  H14,  H23,  H24,  H34, 
 H123,  H124,  H134,  H234 and  H1234).

For each MRI sequence, we extracted radiomics fea-
tures from 22 VOIs (7 manual + 15 clustering). Each type 
of feature (n(manual) = 4 × 7 types; n(clustering) = 4 × 15 types) 

was independently assessed in twenty-four models and 
evaluated by the five-fold cross-validation. As shown in 
Fig. 3A and B, image features from manual  VOI12,  VOI13 
and  VOI3, and clustering  H12,  H134 and  H34 achieved the 
high AUPRC (  VOI12: maximum AUPRC = 0.969 on  T2WI, 
mean AUPRC = 0.946 over all sequences;  VOI13: maximum 
AUPRC = 0.972 on  T1WI + C, mean AUPRC = 0.952 over 
all sequences;  VOI3: maximum AUPRC = 0.975 on  T1WI, 
mean AUPRC = 0.951 over all sequences;  H12: maximum 
AUPRC = 0.966 on  T1WI + C, mean AUPRC = 0.938 over 
all sequences;  H134: maximum AUPRC = 0.962on  T2WI, 
mean AUPRC = 0.944 over all sequences;  H34: maximum 
AUPRC = 0.969 on  T1WI, mean AUPRC = 0.935 over all 
sequences).

Fig. 3  Prediction performances of a seven manual VOIs and b fifteen clustering VOIs

Fig. 4  Performance comparisons of different combinations of the MRI sequences based on manual  VOI12,  VOI13,  VOI3, and clustering  H12,  H134, 
 H34
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Using the optimal subregions  VOI12,  VOI13,  VOI3, 
and clustering  H12,  H134,  H34, the features of either four 
MRI sequences ( F1

seq
 , F2

seq
 , F3

seq
 , F4

seq
 ) or their fusions 

( F1;2
seq
,F1;3

seq
,F1;4

seq
 , F2;3

seq
 , F2;4

seq
 , F3;4

seq
 , F1;2;3

seq
 , F1;2;4

seq
 , F1;3;4

seq
 , F2;3;4

seq
 , 

F1;2;3;4
seq

 ) were compared using the RFO model in Fig. 4 and 
Table 2. From these comparisons, we observed that fusion of 
two/three/four MRI sequences generally outperformed that 
using a single sequence. This was consistent for both  VOI3 
and  H34. Second, when fusing two/three MRI sequences, 
 VOI3 generally achieved better performance than  H34. Third, 
the highest mean AUPRC = 0.976 was obtained by  H34 with 

fusion of all four MRI sequences ( F1,2,3,4
seq

 ), and this was 
slightly better than its  VOI3 counterpart that had a mean 
AUPRC = 0.972 ( F1,2,3,4

seq
).

We used the best sequence fusion F1,2,3,4
seq

 as well as 
optimal subregions  (VOI3 and  H34) for further independ-
ent evaluations of the testing cohort (Table 3, Fig. 5). In 
RFO, models were ranked during the training stage, and 
the three best-performing models were identified and 
fused to yield a final classification system for use in the 
testing stage. For F1,2,3,4

seq
 +  H34, the RFO model achieved 

mean AUPRC = 0.974, ACC = 0.758, SEN = 0.759 and 

Table 2  Performances of the top manual and clustering VOIs (feature fusion of  T1WI +  T1WI + C +  T2WI +  T2-FLAIR in the RFO model) in the 
primary cohort

Primary cohort N = 230

Top 3 models Model 1 Model 2 Model 3 Mean Model 1 Model 2 Model 3 Mean Model 1 Model 2 Model 3 Mean

Manual  VOI12 Manual  VOI13 Manual  VOI3

AUPRC 0.961 0.971 0.964 0.965 0.964 0.967 0.971 0.967 0.971 0.973 0.974 0.972
AUC 0.800 0.800 0.817 0.806 0.824 0.833 0.835 0.831 0.857 0.872 0.874 0.868
ACC 0.817 0.781 0.781 0.793 0.732 0.823 0.798 0.784 0.817 0.835 0.826 0.826
SPE 0.650 0.550 0.600 0.600 0.700 0.650 0.700 0.683 0.793 0.793 0.793 0.793
SEN 0.836 0.807 0.802 0.815 0.736 0.843 0.810 0.796 0.822 0.842 0.832 0.832
F1-SCORE 0.871 0.862 0.869 0.867 0.836 0.886 0.871 0.864 0.877 0.897 0.891 0.888
PRECISION 0.947 0.940 0.940 0.942 0.950 0.948 0.959 0.952 0.953 0.960 0.965 0.959
RECALL 0.836 0.807 0.802 0.815 0.736 0.843 0.810 0.796 0.822 0.842 0.832 0.832

Clustering  H12 Clustering  H134 Clustering  H34

AUPRC 0.949 0.955 0.951 0.952 0.966 0.969 0.971 0.969 0.979 0.974 0.976 0.976
AUC 0.787 0.805 0.809 0.800 0.843 0.845 0.851 0.846 0.890 0.883 0.879 0.884
ACC 0.800 0.839 0.826 0.822 0.874 0.887 0.848 0.870 0.878 0.857 0.870 0.868
SPE 0.607 0.673 0.647 0.642 0.680 0.720 0.647 0.682 0.647 0.647 0.753 0.682
SEN 0.827 0.862 0.852 0.847 0.901 0.911 0.876 0.896 0.911 0.886 0.886 0.894
F1-SCORE 0.879 0.904 0.896 0.893 0.926 0.934 0.910 0.923 0.929 0.916 0.923 0.923
PRECISION 0.938 0.951 0.945 0.945 0.953 0.958 0.947 0.953 0.948 0.947 0.962 0.952
RECALL 0.827 0.862 0.852 0.847 0.901 0.911 0.876 0.896 0.911 0.886 0.886 0.894

Table 3  Performances of the manual  VOI3 and the clustering  H34 (feature fusion of T1WI + T1WI + C + T2WI + T2-FLAIR in the RFO model) 
in the testing cohort

*p < 0.05

Top 3 models Model 1 Model 2 Model 3 Mean Model 1 Model 2 Model 3 Mean p(AUPRC) P(AUC)
Manual  VOI3 Clustering  H34

AUPRC 0.974 0.966 0.973 0.971 0.975 0.975 0.971 0.974 0.402 0.023*
AUC 0.824 0.824 0.823 0.824 0.842 0.842 0.830 0.838
ACC 0.737 0.545 0.717 0.666 0.778 0.778 0.717 0.758
SPE 0.833 0.833 0.833 0.833 0.750 0.750 0.750 0.750
SEN 0.724 0.506 0.701 0.644 0.782 0.782 0.713 0.759
F1-SCORE 0.833 0.652 0.819 0.768 0.861 0.861 0.816 0.846
PRECISION 0.982 0.956 0.984 0.974 0.958 0.958 0.954 0.957
RECALL 0.724 0.506 0.701 0.644 0.782 0.782 0.713 0.759
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SPE = 0.750, whereas values for F1,2,3,4
seq

+VOI3, were mean 
AUPRC = 0.971, ACC = 0.666, SEN = 0.644, SPE = 0.833 
(p = 0.402). 

Radiomics signatures

High-ranking features associated with discriminating 
between grade 4 astrocytoma and GBM were identified by 
the RFO models (using features of F1,2,3,4

seq
 +  H34). The heat-

map of the ten highest-ranked features is shown in Fig. 6 and 
summarized in Table 4. The ten most frequently selected 
features included seven first-order statistics features (all with 
p <  10–3, except for the “MeanAbsoluteDeviation”) and three 
shape-based features (“Maximum2DDiameterRow” with 
p < 0.05). Using the average of the mean feature values of 
the two groups (i.e., “M” in Table 3) as the threshold for 
discrimination between grade 4 astrocytoma and GBM, all 
the first-order features demonstrated satisfactory discrimina-
tive capabilities. 

Discussion

The accurate prediction of IDH status in gliomas is crucial 
for guiding therapeutic decisions and management strate-
gies. In this study, the proposed RFO model showed poten-
tial feasibility of IDH prediction for grade 4 gliomas which 
is not adequately predicted on the basis of histologic diag-
nosis. The fusion models from multiparametric MR images 
outperformed that from a single sequence. The comparison 
between two different subregion strategies revealed that 
voxel-wise habitats defined by the clustering procedure 
yielded a higher discriminative capability. Our results also 
implied that tumor edema may contain underlying hetero-
geneous metrics between grade 4 astrocytoma and GBM.

In several prior studies, investigators have used machine 
learning approaches for IDH prediction of gliomas. For 
example, Looze et al. (De Looze et al. 2018) devised a 
machine learning algorithm to determine a newly diag-
nosed glioma’s IDH status with an accuracy of 0.779, and 
ROC analysis yielded an AUC of 0.880 for the classification 
of IDH status in grade 2/3/4 gliomas. Chang et al. 2018 

Fig. 5  The precision-recall curve of the top-ranked models of a manual  VOI3 and b the clustering  H34

Fig. 6  Heat maps of the ten best features
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achieved an AUC of 0.950 for differentiating IDH muta-
tion status in low- and high-grade gliomas by applying a 
residual convolutional neural network. Chen et al. (Chen 
et al. 2018) proposed a multi-label nonlinear classification 
model to predict both MGMT and IDH genotypes of patients 
with high-grade gliomas, resulting in AUCs of 0.787 and 
0.886 respectively. In accordance with the latest WHO 
CNS5 classification, a recent study also developed a mul-
tiple gene prediction model incorporating mutual informa-
tion of each genetic alteration in glioblastoma and grade 4 
astrocytoma, IDH-mutant (Sohn et al. 2021). The authors 
demonstrated that IDH mutation status was predicted with 
the highest AUC of 0.967. In our study, the mean AUPRC of 
the top-rank models was 0.971 for manual  VOI3 and 0.974 
for clustering  H34 respectively, similar to the performance 
of the previous study.

Subregion identification is a critical step in defining 
anatomically (or radiographically) meaningful localized 
zones for characterization of a glioma lesion (Cui et al. 
2016; O'Connor et al. 2015). Image signal-wise segmenta-
tion relies on the subjective judgment of neuroradiologists 
who visually analyze the MRI signal intensity to delineate 
tumor subregions. It is a widely adopted method in clini-
cal practice, as it leverages the expertise of neuroradiolo-
gists which is relatively straightforward to implement and 
interpret. However, it can be prone to inter-observer vari-
ability, as different radiologists may have different interpre-
tations. It may fail to capture all the heterogeneity within 

the tumor and unable to identify subtle differences in tumor 
subpopulations. For example, manual identification is per-
formed by radiologists with the assumption that MRI signal 
characteristics correlate with specific anatomical regions/
tissues — enhancement on  T1WI + C is typically considered 
a tumor entity and central non-enhancing hypointense signal 
represents necrosis. Nevertheless, global signal trends (e.g., 
enhancing, non-enhancing) usually define relatively large 
anatomical zones, and might not necessarily reflect mor-
phological/pathological complexities within a much smaller 
scale (e.g., pixel-level). This hypothesis was supported by 
emerging evidence that high tumor cellularity is detected 
in both enhancing and non-enhancing regions of the GBM 
(Ye et al. 2020). The clustering algorithm has been used to 
characterize subregions —so-called “habitats”— that were 
pertinent to distinct subpopulations harboring divergent 
biological behaviors, which had therapeutic and prognostic 
implications (Fan et al. 2021; Shen et al. 2021; Zhang et al. 
2021). Habitat imaging segmentation involves the analysis 
of the entire tumor volume and the identification of distinct 
subpopulations based on similarities in voxel characteris-
tics, including intensity, texture, spatial location, and more. 
This approach allows for the capture of more detailed and 
nuanced information about tumor heterogeneity by explor-
ing multiple voxel characteristics. Furthermore, it can iden-
tify subpopulations that may not be easily discernible based 
solely on signal intensity. Ultimately, this method has the 
potential to provide more objective and reproducible results 

Table 4  The ten most frequently 
selected features (using F_
seq^1,2,3,4 + H34 in the RFO)

‘M’ is the average of the mean feature value of the Grade 4 astrocytoma group and the mean feature value 
of the GBM group. ‘(< M |> M)’ represents the percentage of patients with a feature value less than or 
larger than the ‘M’ value. Values in bold indicate satisfactory discriminative capacities — ~ 70% of one 
group had larger or smaller feature values than the other group

Category Top10 Features p-Value M (< M|> M)

First-order (n = 7) Energy  <  10–3 0.14 Grade 4 astrocytoma (42.86% | 57.14%)
GBM (70.30% | 29.70%)

Kurtosis  <  10–3 0.13 Grade 4 astrocytoma (57.14% | 42.86%)
GBM (78.22% | 21.78%)

MeanAbsoluteDeviation 0.0801 0.47 Grade 4 astrocytoma (50.00% | 50.00%)
GBM (70.79% | 29.21%)

Mean  <  10–5 0.18 Grade 4 astrocytoma (35.71% | 64.29%)
GBM (76.73% | 23.27%)

Median  <  10–6 0.16 Grade 4 astrocytoma (35.71% | 64.29%)
GBM (79.21% | 20.79%)

RootMeanSquared  <  10–4 0.28 Grade 4 astrocytoma (28.57% | 71.43%)
GBM (74.26% | 25.74%)

Skewness  <  10–6 0.15 Grade 4 astrocytoma (42.86% | 57.14%)
GBM (68.81% | 31.19%)

Shape (n = 3) MajorAxisLength 0.0827 0.51 Grade 4 astrocytoma (53.57% | 43.43%)
GBM (63.37% | 36.63%)

Maximum2DDiameterRow 0.0180 0.37 Grade 4 astrocytoma (57.14% | 42.86%)
GBM (65.84% | 34.16%)

SphericalDisproportion 0.5515 2.07 Grade 4 astrocytoma (60.71% | 39.29%)
GBM (60.40% | 39.60%)
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compared to segmentation based solely on image signal. In 
this study, we compared the two aforementioned subregion 
definition strategies and the best performance was seen in 
clustering subregion  H34 with all four sequences  T1WI, 
 T2WI,  T2-FLAIR and  T1WI + C fused in the RFO model. 
This suggests that voxel-based clustering subregions might 
also define heterogeneity-related intratumoral territories 
when reliable radiomics signatures are extracted.

The two optimal VOIs, manual  VOI3 and clustering  H34, 
were composed of tumor peripheral edematous regions. This 
indicates that the edema area contains informative spatial 
diversity signatures associated with either molecular altera-
tions or aggressive tumor behavior, both of which contrib-
ute to differentiating grade 4 astrocytoma from GBM. This 
corroborates tumor heterogeneity phenotypes manifesting in 
surrounding edematous regions (Dong et al. 2020; Li et al. 
2018a, b). Information that was useful for discrimination 
was obtained from clustering  H4. This subregion  H4 (with 
low  T1WI + C and low  T2-FLAIR signals) presumably rep-
resents a region with low blood flow but high cell density. 
Such regions are correlated with potential treatment-resist-
ant tumor cells that have adapted to the hypovascular tumor 
microenvironment (Gatenby et al. 2013). For example, a pre-
liminary study found that GBM patients with poor prognosis 
had large subregions with low enhancement and relatively 
high cellularity, which is possibly due to compensatory 
adaptations of tumor cells in regions of poor vascularity, 
which result in either increased proliferation or utilization 
of substrates — due to Warburg physiology — to increase 
glucose uptake or toxic acid production in well-perfused 
regions (Zhou et al. 2014). Similarly, Stringfield et al. found 
that long-term GBM survivors had smaller subregions of 
low enhancement and high/low  T2-FLAIR (corresponding to 
 H34 in this study) than their short-term counterparts (String-
field et al. 2019). Thus, both tumor edema and subregions 
with low  T1WI + C and high/low  T2-FLAIR are crucial for 
distinguishing the underlying genetic changes between grade 
4 astrocytoma and GBM.

In this study, seven first-order statistics features, and three 
shape-based features were the top-performing radiomics 
signatures. In particular, the ‘Energy’, ‘Kurtosis’, ‘Mean’, 
‘Median’, ‘RootMeanSquared’, ‘Skewness’ and ‘Maximum-
2DDiameterRow’ features exhibited statistically significant 
differences (p < 0.05) between the two groups. These imag-
ing phenotypes may harbor underlying biological or genetic 
heterogeneity information in GBM patients (Park et  al. 
2021). For example, a higher degree of necrosis possibly 
explains the lower ‘mean’, ‘median’ and ‘RootMeanSquared’ 
values in GBM than in grade 4 astrocytoma, and hence the 
quantitative values characterizing the intensity distribution 
(e.g., ‘Energy’: measures the degree of intensity contained 
in a single bin in the histogram, ‘Kurtosis’ and ‘Skewness’: 

measures the peak height/width ratio and the symmetry of 
intensity distribution). Moreover, the grade 4 astrocytoma 
group had smaller ‘Maximum2DDiameterRow’ values than 
the GBM group (p = 0.018), indicating that tumors in the 
GBM are more stretched in the sagittal direction.

Several limitations should be addressed. First, the patient 
cohort size was limited due to its retrospective nature. How-
ever, the number of grade 4 astrocytoma patients (i.e., glio-
blastoma, IDH mutant in the 2016 standard) in our cohort 
corroborated their population prevalence (Figini et al. 2018). 
Second, according to the 2021 WHO CNS5, IDH wildtype 
diffuse astrocytic glioma (grade 2, 3) in adults with TERT 
promoter mutation, or EGFR gene amplification, or + 7/ − 10 
chromosome copy number changes are now classified as 
GBM. However, only one case of the IDH wildtype diffuse 
astrocytoma with TERT promoter mutation and + 7/ − 10 
copy number changes was included in our study due to a 
lack of routine molecular testing in our institution. Third, 
four clustering subregions were derived from  T1WI + C 
and  T2-FLAIR sequences. Whether more clustering subre-
gions could achieve better performances is worth further 
investigation. Lastly, interpreting the generated clusters and 
assigning meaningful labels to the subregions could pose 
a greater challenge. Validating and correlating them with 
clinical outcomes would still be necessary to establish their 
clinical usefulness. While habitat imaging segmentation has 
the potential to capture more intricate tumor heterogene-
ity, it may demand additional computational resources and 
validation to prove its clinical efficacy. Further studies are 
required to generate insights that explain the links between 
clinical phenotypes (e.g., hypoxia and acidosis) and their 
radiographical phenotypes.

Conclusion

In conclusion, subregions defined by clustering achieved 
discriminative accuracy comparable to manual delineation. 
Fusion of features from edematous subregions of multiple 
MRI sequences by the RFO model identified IDH genotypes 
of adult type grade 4 gliomas in line with current WHO CNS 
5 criteria.
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