
Vol.:(0123456789)

Journal of Cancer Research and Clinical Oncology (2024) 150:67 
https://doi.org/10.1007/s00432-023-05602-4

RESEARCH

Quantified treatment effect at the individual level is more indicative 
for personalized radical prostatectomy recommendation: implications 
for prostate cancer treatment using deep learning

Huiqing Pan1 · Jiayi Wang1 · Weizhong Shi2 · Ziqin Xu3 · Enzhao Zhu1

Received: 31 August 2023 / Accepted: 25 December 2023 / Published online: 1 February 2024 
© The Author(s) 2024

Abstract
Background  There are potential uncertainties and overtreatment existing in radical prostatectomy (RP) for prostate cancer 
(PCa) patients, thus identifying optimal candidates is quite important.
Purpose  This study aims to establish a novel causal inference deep learning (DL) model to discern whether a patient can 
benefit more from RP and to identify heterogeneity in treatment responses among PCa patients.
Methods  We introduce the Self-Normalizing Balanced individual treatment effect for survival data (SNB). Six models were 
trained to make individualized treatment recommendations for PCa patients. Inverse probability treatment weighting (IPTW) 
was used to avoid treatment selection bias.
Results  35,236 patients were included. Patients whose actual treatment was consistent with SNB recommendations had bet-
ter survival outcomes than those who were inconsistent (multivariate hazard ratio (HR): 0.76, 95% confidence interval (CI), 
0.64–0.92; IPTW-adjusted HR: 0.77, 95% CI, 0.61–0.95; risk difference (RD): 3.80, 95% CI, 2.48–5.11; IPTW-adjusted 
RD: 2.17, 95% CI, 0.92–3.35; the difference in restricted mean survival time (dRMST): 3.81, 95% CI, 2.66–4.85; IPTW-
adjusted dRMST: 3.23, 95% CI, 2.06–4.45). Keeping other covariates unchanged, patients with 1 ng/mL increase in PSA 
levels received RP caused 1.77 months increase in the time to 90% mortality, and the similar results could be found in age, 
Gleason score, tumor size, TNM stages, and metastasis status.
Conclusions  Our highly interpretable and reliable DL model (SNB) may identify patients with PCa who could benefit from 
RP, outperforming other models and clinical guidelines. Additionally, the DL-based treatment guidelines obtained can pro-
vide priori evidence for subsequent studies.
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Introduction

Prostate cancer (PCa)  is a common cancer in men aged 
65 or above, causing substantial mortality and morbidity 
worldwide. It is estimated that nearly 1.3 million people are 
newly diagnosed worldwide every year, and approximately 
400,000 suffer from treatment-related morbidity (Global 
regional and national incidence prevalence 2017; Foreman 
et al. 2018). Although various therapies and management 

of both primary and metastatic PCa have advanced rapidly 
(Sandhu et al. 2021), it is still difficult to balance treatments 
and risks of progression with therapy-related health prob-
lems (Donovan et al. 2016). This may imply that we should 
focus on recognizing those who can benefit from specific 
therapies.

Radical prostatectomy (RP) has been considered a stand-
ard treatment for TNM stage I–III PCa patients (Sekhoacha 
et al. 2022). It could prevent further metastatic seeding and 
late complications of aggressive PCa (Costello 2020). RP 
was widely applied to patients with low-risk PCa rather than 
those with high-risk PCa in the 1980s and 1990s (Costello 
2020). However, over the past 40 years, the role of RP in 
treating prostate cancer has changed considerably because 
of RP’s significant risk of overtreatment and accompanying 
adverse effects (Hamdy et al. 2023). For example, a shift in 
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the application of RP toward PCa patients with high risks 
occurred, and the survival time was similar in low-risk PCa 
patients who received RP or other therapies (Wilt et al. 2017, 
2020). A review also found that RP was related to decreased 
cancer-specific quality of life (Lardas et al. 2017) partly due 
to RP’s effect on biological functions (Litwin and Tan 2017), 
indicating that it might not always be appropriate to use RP. 
As such, identification of optimal candidates for RP is quite 
important to make PCa patients benefit more from therapies 
and avoid overtreatment.

Therefore, this study aims to establish a model to discern 
whether an individual patient can benefit more from RP and 
to identify heterogeneity in treatment responses among PCa 
patients.

Materials and methods

Study design

All patients were included from the Surveillance, Epidemi-
ology, and End Results (SEER) database, which comprises 
data from 18 regions across the United States, accounting 
for approximately 30% of the national population (Islami 
et al. 2021). This study adhered to the Strengthening the 

Reporting of Observational Studies in Epidemiology report-
ing guidelines for observational research (Elm et al. 2007).

Men aged 18 or above who were diagnosed with PCa as 
a primary cancer and who received RP or did not undergo 
surgery between 2010 and 2017 were included. Anatomic 
site codes (C61.9) and histology subtypes (8140) were 
classified according to the International Classification of 
Disease for Oncology, 3rd edition. We excluded those fall-
ing under any of the following:

1)	 Age below 18;
2)	 Lack of clear data on Gleason scores, TNM stage, clini-

cal prostate-specific antigen (PSA) level, or tumor size;
3)	 Unknown demographic information;
4)	 Unknown survival months;
5)	 Unknown metastasis status.

Figure 1A provides a comprehensive illustration of the 
participant inclusion process. The focal outcome under 
examination was overall survival (OS), a metric provided 
by SEER, denoting the time period between all-cause 
death and the initial PCa diagnosis. Patients who were still 
alive in December 2020 were considered censored data, so 
the minimum follow-up time was 3 years.

Fig. 1   Flowchart of patient 
inclusion and schematic of the 
SNB architecture. A Flowchart 
of patient inclusion. B Sche-
matic of the SNB architecture. 
PCa prostate cancer; PSA 
prostate-specific antigen; SNN 
Self-normalizing neural net-
work; IPM integral probability 
metrics
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Deep learning algorithms

T-learner is a commonly used model for inferring the indi-
vidual treatment effect (ITE)(Künzel et al. 2019), which 
trains each base model on different intervention groups 
separately and obtains the conditional average treatment 
effect (CATE). However, T-learner has some drawbacks: 
(1) it relies heavily on the performance of the trained base 
models, whose performance can be affected by extremely 
imbalanced training numbers in two groups (Yao et al. 
2020); (2) the ignorability of T-learner only eliminates 
confounding artifacts, while imbalances in generating dis-
tributions due to biased treatment allocation could still be 
present.

Benefitting from the development of deep learning 
(DL) and representation learning, balancing the generat-
ing distributions of the different treatment groups has been 
proven to be effective for both covariate space (Li et al. 
2014) and latent representations (Johansson et al. 2020). 
Balanced Individual Treatment Effect for Survival data 
(BITES) (Schrod et al. 2022), a semiparametric survival 
regression DL model, contains a shared network and two 
risk networks. In a shared network, balanced generating 
distributions are obtained by using integral probability 
metrics (IPM) to maximize the p-Wasserstein distance of 
the latent representations of different treatment arms, and 
the smoothed optimal transport loss is calculated, which 
is called representation-based causal inference.

Self-normalizing neural networks (SNNs) enhanced 
feed-forward neural networks (FNNs) and significantly 
outperformed all competing FNN methods (Klambauer 
et al. 2017). The neuron activations of SNNs automati-
cally converge toward zero mean and unit variance, which 
in turn avoids exploding and vanishing gradients. Thus, in 
this study, we introduce the Self-Normalizing Balanced 
individual treatment effect for Survival data (SNB). SNB 
inherits the architecture of BITES, while scaled expo-
nential linear units (SELUs) are added in both shared 
networks and risk networks. Shared network contains a 
five-layered SNN with a dropout rate of 10%. The shared 
network receives input features and uses IPM to balance 
the latent representations between each treatment group. 
Risk networks are two identical four-layered SNNs, which, 
respectively, represent the regularized representations of 
Non-Surgery group and RP group. At time of inference, 
the SNB calculates the corresponding treatment-specific 
baseline hazards in each of the two risk networks. By vary-
ing the risk networks which an individual's features are 
entered and its baseline hazards, SNB can predict survival 
outcomes under the hypothesis of different treatments, 
thereby visualizing the advantages and disadvantages of 
different treatments. The architecture of SNB is presented 
in Fig. 1B.

Model development and treatment 
recommendation

Temporal validation(Cooray et al. 2023) was utilized to vali-
date models. We allocated patients diagnosed from 2010 
to 2015 (24,464 (69.4%) patients) to a training set that was 
used for building the models and a testing set which consists 
of patients diagnosed from 2016 to 2017 (10,772 (30.6%) 
patients) to evaluate the models’ performance and the effect 
of the models’ recommendation. During the training period, 
we used fivefold cross-validation to tune the model hyperpa-
rameters. The training process was terminated automatically 
if the validation loss did not decrease in 1,000 iterations. 
We trained SNB, BITES, Cox Mixtures with Heterogeneous 
Effects (CMHE) (Nagpal et al. 2022), DeepSurv (Katzman 
et al. 2016), Cox proportional hazards model (CPH), and 
random survival forest (RSF). CMHE, DeepSurv, CPH, and 
RSF were trained and used in the form of T-learner.

In estimating the individual treatment effect (ITE), only 
one fact can be observed per patient, and the outcome of the 
alternative scenario is unobservable. Thus, these outcomes 
need to be predicted by models. The individual survival dis-
tribution is obtained with the predicted log hazard ratios 
and treatment-specific baseline hazards, which describes the 
change in survival probability over time. We defined the 
outcome as the time it took for an individual patient to reach 
90% mortality under the predicted individual survival distri-
bution, called the time at risk (TaR). The TaR represents the 
time interval between PCa diagnosis and the time when his 
mortality rate reaches 90%. The ITE is therefore calculated 
as ITE = TaR

T=1
− TaR

T=0 , where T = 1 represents the situ-
ation in which the patient receives RP and T = 0 represents 
the situation in which he does not receive the procedure. In 
such cases, an individual patient was recommended for RP 
or non-surgery based on whether the ITE was greater than 
zero.

The ITE calculation methods of all models were identi-
cal. To explore the recommendation effect of the models, 
we divided the patients into the recommended (Consis.) and 
anti-recommended (Inconsis.) groups, based on whether the 
actual treatment they received was consistent with the model 
recommendations.

Statistical analyses

Statistical analyses were performed using R 4.1.3 and 
Python 3.8. Continuous variables are reported as medians 
and interquartile ranges (IQRs), and categorical variables 
are presented as numbers and percentages (%). Inverse prob-
ability treatment weighting (IPTW) was used to avoid treat-
ment selection bias. The log-rank test was used to compare 
Kaplan–Meier (KM) curves.
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Results

Study population

A total of 35,236 PCa patients with complete follow-up 
records who met the inclusion criteria were included in 
this study. The overall mortality rate was 6.3% (95% CI: 
6.1%–6.6%) over a median (IQR) follow-up time of 76 
(52–106) months. The median (IQR) age was 63 (57–68) 
years, and the median (IQR) tumor size was 17 (11–24) 
mm. A total of 6,265 (17.8%) patients were in the Non-
Surgery group, while 28,971 (82.2%) underwent radical 
RP. The baseline clinical characteristics of all patients are 
presented in Table 1.

Model performance

CPH achieved the best discrimination (integrated Brier 
score in Non-Surgery group (IBSa): 0.09, 95% CI, 
0.08–0.10; integrated Brier score in RP group (IBSb): 
0.04, 95% CI, 0.03–0.04), followed by SNB (IBSa: 0.10, 
95% CI, 0.09–0.12; IBSb: 0.04, 95% CI, 0.03–0.04).

We calculated the multivariate hazard ratio (HR), the 
difference in restricted mean survival time (dRMST) 
(month), and risk difference (RD) (%) to evaluate the pro-
tective effect of each model. HR describes the multiplicity 
of changes in mortality resulting from following model 
recommendations. dRMST describes the average addi-
tional survival time of patients in the Consis. compared 
to the Inconsis. group. RD describes absolute mortality 
reductions resulting from following model recommenda-
tions. To avoid imbalances of prognostic factors between 
the Consis. and Inconsis. groups, we used IPTW to correct 
for the above metrics, in which covariates, including age, 
tumor size, histological grades, TNM stages, metastatic 
sites, lymph node involvements, PSA level, and Gleason 
scores, were corrected. In such cases, these metrics were 
expected to reflect the debiased treatment recommendation 
performance. All metrics were calculated based on overall 
survival (OS) with a time horizon of 10 years. The detailed 
model performance is presented in Table 2.

Among all models, only SNB achieved the best IPTW-
adjusted HR (HRc) and IPTW-adjusted dRMST (dRMSTc) 
(HR: 0.76, 95% CI, 0.64–0.92; HRc: 0.77, 95% CI, 
0.61–0.95; RD: 3.80, 95% CI, 2.48–5.11; IPTW-adjusted 
RD (RDc): 2.17, 95% CI, 0.92–3.35; dRMST: 3.81, 
95% CI, 2.66–4.85; dRMSTc: 3.23, 95% CI, 2.06–4.45). 
CMHE had the best RD and dRMST (HR: 0.74, 95% CI, 
0.60–0.88; HRc: 1.67, 95% CI, 0.91–3.10; RD: 8.62, 95% 
CI, 6.62–10.62 RDc: 6.48, 95% CI, 4.25–8.71; dRMST: 
9.08, 95% CI, 7.22–10.94; dRMSTc: -12.38, 95% CI, 

-14.48–-10.68); BITES had the best HR (HR: 0.71, 95% 
CI, 0.58–0.84; HRc: 0.56, 95% CI, 0.23–1.34; RD: 8.15, 
95% CI, 6.26–10.05; RDc: 6.33, 95% CI, 4.16–8.52; 
dRMST: 8.49, 95% CI, 6.74–10.24; dRMSTc: 2.98, 95% 
CI, 1.60–4.28); and RSF had the best RDc (HR: 0.70, 
95% CI, 0.58–0.84; HRc: 0.57, 95% CI, 0.24–1.33; RD: 
8.17, 95% CI, 6.27–10.05; RDc: 6.54, 95% CI, 4.43–8.65; 
dRMST: 8.47, 95% CI, 6.73–10.24; dRMSTc: 2.96, 95% 
CI, 1.34–4.27). However, no model, except for SNB, can 
achieve a statistically significant HRc.

We compared the 2023 National Comprehensive Cancer 
Network (NCCN) guideline(Schaeffer et al. 2022). Patients 
whose actual treatment was consistent with the NCCN rec-
ommendation were compared with those who were incon-
sistent. However, the protective effect of NCCN recommen-
dation (HR: 0.87, 95% CI, 0.72–1.07; HRc: 1.06, 95% CI, 
0.79–1.40; RD: 5.19, 95% CI, 3.49–4.83; RDc: 5.38, 95% 
CI, 2.98–7.78; dRMST: 6.88, 95% CI, 5.17–8.58; dRMSTc: 
2.02, 95% CI, 0.67–3.64; P of log-rank test < 0.001; P of 
IPTW-adjusted log-rank test = 0.240) was inferior to our 
best model, SNB, particularly on multivariate and IPTW-
adjusted metrics.

We present the KM curves of Consis. versus Inconsis. 
regarding OS and prostate cancer-specific survival (PCSS) in 
Fig. 2A and B, respectively. Better OS outcomes (P of log-
rank test < 0.001; P of IPTW-adjusted log-rank test < 0.001) 
and PCSS outcomes (P of log-rank test < 0.001; P of IPTW-
adjusted log-rank test = 0.044) were observed. Figure 2C and 
D shows the KM curves of RP versus Non-Surgery group for 
OS and PCSS. The OS (P of log-rank test < 0.001) and PCSS 
(P of log-rank test < 0.001) advantages of RP were observed; 
however, this advantage no longer existed after IPTW cor-
rection (P of IPTW-adjusted log-rank test of OS = 0.716; P 
of IPTW-adjusted log-rank test of PCSS = 0.754).

In addition, we presented the causal path of the protective 
effect of SNB in Fig. 3. RP was treated as a mediator vari-
able, while all covariates were treated as potential confound-
ers. Thus, the natural direct effect (NDE) and natural indirect 
effect (NIE) of SNB recommendation was calculated. These 
values were presented as the slope of a linear regression. 
After excluding the effect of RP, the protective effect of 
SNB remained statistically significant (NDE: – 0.04, 95% 
CI, – 0.04–-0.04).

The deep learning‑based treatment guidelines

To explain the recommendation behavior of SNB, we 
derived a mixed effect linear regression that predicts ITE 
from the covariates. Household income and reporting 
region were set as random effects. Thus, the beta val-
ues obtained indicate the presence of this covariate or 
an increase of one that causes the difference in the time 
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Table 1   Baseline demographic 
and pathological features

Surgery (n = 28,971) Non-Surgery (n = 6265)

Age, median (IQR), y 62 (57–67) 68 (62–73)
Tumor size, median (IQR), mm 17 (12–24) 14 (8–25)
Married 22,180 (76.6) 4165 (66.5)
Race––White 23,173 (80.0) 4885 (78.0)
Income––Higher than 70,000$ 14,082 (48.6) 3,645 (58.2)
Region––Urban 26,100 (90.1) 5714 (91.2)
Grade
 I 1509 (5.2) 1283 (20.5)
 II 13,252 (45.7) 2,540 (40.5)
 III 14,191 (49.0) 2,4331 (38.8)
 IV 19 (0.1) 11 (0.2)

T stage
 T1 94 (0.3) 3210 (51.2)
 T2 19,851 (68.5) 2226 (35.5)
 T3 8934 (30.8) 653 (10.4)
 T4 86 (0.3) 175 (2.8)

N stage
 N0 27,708 (95.6) 5896 (94.1)
 N1 1257 (4.3) 368 (5.9)

M stage
 M0 28,893 (99.7) 5860 (93.5)
 M1 72 (0.2) 404 (6.4)

TNM stage
 I 1434 (4.9) 1684 (26.9)
 IIA 2666 (9.2) 2092 (33.4)
 IIB 15,670 (54.1) 1389 (22.2)
 III 7,850 (27.1) 474 (7.6)
 IV 1351 (4.7) 626 (10.0)

Distant metastasis
 Bone 53 (0.2) 353 (5.6)
 Brain 0 (0.0) 4 (0.1)
 Liver 0 (0.0) 15 (0.2)
 Lung 1 (< 0.1) 27 (0.4)

Lymph node-removed
 None 9982 (34.5) 6243 (99.6)
 1 ≤ Num ≤ 3 5000 (17.3) 5 (0.1)
  ≥ 4 13,789 (47.6) 17 (0.3)

Prostate-specific antigen, median (IQR), ng/mL 6.2 (4.8–9.2) 7.6 (5.2–13.1)
Primary Gleason Score
 1 1 (< 0.1) 0 (0.0)
 2 7 (< 0.1) 8 (0.1)
 3 19,453 (67.1) 3725 (59.5)
 4 9064 (31.1) 2195 (35.0)
 5 446 (1.5) 337 (5.4)

Secondary Gleason Score
 1 1 (< 0.1) 0 (0.0)
 2 15 (0.1) 9 (0.1)
 3 14,145 (48.8) 3067 (49.0)
 4 13,137 (45.3) 2490 (39.7)
 5 1673 (5.8) 699 (11.2)

Survival time, median (IQR), month 80 (55–108) 58 (43–90)
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it took for the patient to reach 90% mortality of RP over 
no surgery to increase beta. This result is presented in 
Fig. 4A.

RP was more effective in patients with higher PSA 
levels (1.77, 95% CI, 1.73–1.81), non-metastatic disease 
(30.64, 95% CI, 20.69–40.57), larger tumor size (0.27, 
95% CI, 0.26–0.28), Gleason score 6 (3.52, 95% CI, 
1.37–5.66), Gleason score 7 (2.57, 95% CI, 0.63–4.49), 
and Gleason score 8 (3.10, 95% CI, 1.01–5.19). Older 
( – 0.14, 95% CI,  – 0.20–  – 0.08), white-raced ( – 1.58, 
95% CI,  – 2.63– – 0.52), TNM stage I (-10.80, 95% 
CI,  – 17.08  – 4.54), and stage III ( – 7.60, 95% CI, 
– 13.69– – 1.54) patients were not optimal candidates 
for RP.

In addition, we used the restricted cubic spline model 
to assess the non-linear relationship between tumor size 
and ITE, which is presented in Fig.  4B. The optimal 
knot was tested between 3 and 5 using R2. Patients with 
tumors larger than 16 mm were found to benefit from RP 
(ITE > 0).

Model interpretation based on SurvSHAP(t)

We used SurvSHAP(t) to interpret the functional output 
of SNB, which is the first method introduced to date that 
can provide a time-dependent interpretation with a solid 
theoretical basis (Krzyzi’nski et al. 2022). Figure 4C visu-
alizes the aggregation of the eight most important vari-
ables, sorted by aggregated Shapley values, rankings over 
500 observations. The horizontal bars represent the num-
ber of observations where the importance of the variable 
is ranked first, second, and so on, indicated by the given 
color. It should be noted that RP in SNB is treated through 
different risk networks and using different baseline haz-
ards rather than a routine variable. Histological grade was 
deemed the most important prognostic factor in 247 sam-
ples. In addition, Gleason scores and metastasis sites were 
both important.

To evaluate the importance of features, Table S1 visual-
izes the changes of overall IBS, IBSa, and IBSb of SNB after 

Table 1   (continued) Surgery (n = 28,971) Non-Surgery (n = 6265)

Prostate cancer-specific mortality 338 (1.2) 350 (5.6)
Overall mortality 1284 (4.4) 948 (15.1)

Table 2   Detailed model performance and treatment recommendation effect

All metrics are calculated based on a 10-year time horizon. Bolded font indicates that the model performs best in this metric. NCCN, National 
Comprehensive Cancer Network. According to 2023 NCCN Guideline, risk groups are classified into 6 categories: Very low, Low, Favorable 
intermediate, Unfavorable intermediate, High, and Very high, among which intermediate, High risk, and M0 stage plus N1 stage are recom-
mended for radical prostatectomy. Patients whose actual treatment was consistent with the NCCN recommendation were compared with those 
who were inconsistent
SNB Self-Normalizing Balanced individual treatment effect for survival data; BITES Balanced Individual Treatment Effect for Survival data; 
CMHE Cox Mixtures with Heterogeneous Effects; CPH Cox proportional hazards model; RSF random survival forest
IBSa, integrated Brier score in the Non-Surgery group; IBSb, integrated Brier score in the prostatectomy group; HR, multivariate hazards ratio; 
RD, risk difference; dRMST, the difference in restricted survival time; c, adjusted for all covariates using inverse probability treatment weighting

Model IBSa IBSb HR HRc RD (%) RDc (%) dRMST 
(month)

dRMSTc 
(month)

SNB 0.10 (0.09–
0.11)

0.04 (0.03–
0.05)

0.76 (0.64–
0.92)

0.77 (0.61–
0.95)

3.80 (2.48–
5.11)

2.17 (0.92–
3.35)

3.81 (2.66–
4.85)

3.23 (2.06–
4.45)

BITES 0.12 (0.11–
0.12)

0.05 (0.05–
0.06)

0.71 (0.58–
0.84)

0.56 (0.23–
1.34)

8.15 (6.26–
10.05)

6.33 (4.16–
8.52)

8.49 (6.74–
10.24)

2.98 (1.60–
4.28)

CMHE 0.14 (0.13–
0.15)

0.07 (0.07–
0.07)

0.74 (0.60–
0.88)

1.67 (0.91–
3.10)

8.62 (6.62–
10.62)

6.48 (4.25–
8.71)

9.08 (7.22–
10.94)

-12.38 
(-14.48–-10.68)

DeepSurv 0.22 (0.19–
0.23)

0.29 (0.28–
0.28)

0.96 (0.78–
1.19)

0.92 (0.41–
2.10)

-4.93 (-6.72–-
3.15)

-4.45 (-6.52–-
2.39)

-5.27 (-6.94–-
3.61)

-10.15 
(-12.39–-8.31)

CPH 0.09 (0.09–
0.10)

0.04 (0.03–
0.05)

0.83 (0.69–
0.97)

0.85 (0.67–
1.06)

3.39 (2.16–
4.51)

3.52 (2.49–
4.76)

3.22 (2.15–
4.26)

-8.56 (-9.77–-
7.34)

RSF 0.10 (0.10–
0.11)

0.05 (0.04–
0.06)

0.70 (0.58–
0.84)

0.57 (0.24–
1.33)

8.17 (6.27–
10.05)

6.54 (4.43–
8.65)

8.47 (6.73–
10.24)

2.96 (1.34–
4.27)

NCCN . . 0.87 (0.72–
1.07)

1.06 (0.79–
1.40)

5.19 (3.49–
4.83)

5.38 (2.98–
7.78)

6.88 (5.17–
8.58)

2.02 (0.67–
3.64)
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excluding the eight most important variables in the testing 
set, whose conclusions are essentially the same as the find-
ings of SurvSHAP(t).

Discussion

PCa is the most common non-skin cancer in men and ranks 
second in cancer-related death in the United States, caus-
ing 76,234 deaths in all ages in 2018 (Siegel et al. 2021). 
Although advances in treatment and earlier stage diagnosis 
continue to emerge (Luh et al. 2018), these treatments are 
not yet widely used in clinical practice, which highlights the 
need of constructing an individualized RP recommendation 

Fig. 2   KM curves comparison. A KM curves of Consis. versus 
Inconsis. regarding overall survival. B KM curves of Consis. versus 
Inconsis. regarding prostate cancer-specific survival. C KM curves 
of radical prostatectomy versus Non-Surgery group regarding overall 

survival. D KM curves of radical prostatectomy versus Non-Surgery 
group regarding prostate cancer-specific survival. IPTW inverse prob-
ability treatment weighting; OS overall survival; PCSS, prostate can-
cer-specific survival

X SNB RP Y

-0.04  (-0.04,  -0.04)

-0.02  (-0.02,  -0.19)

Fig. 3   Causal path of SNB recommendations. SNB Self-Normaliz-
ing Balanced individual treatment effect for survival data; RP, radi-
cal prostatectomy; X indicates the covariates of patients. Y indicates 
patients' mortality
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system to extend life expectancy. Therefore, we introduced 
and carefully evaluated SNB in this study, which outper-
formed recently proposed or widely used models, real-world 
physician choices, and NCCN guideline. After adjusting for 
confounders, SNB led to 6% reduction in patient mortality. 
Treatment selection often needs to consider complex feature 
interactions rather than being based on fixed guidelines, and 
our study demonstrated that DL models are well suited to 
accomplish this, as clearly evidenced by the stronger pro-
tective effect of SNB than NCCN guideline. We hypoth-
esized that there might be other factors that influence treat-
ment choice, not found by existing studies. DL models can 
identify this complex, potential interaction, embodying the 
rationality and reliability of SNB.

We believed that the superiority of SNB is attributed to 
the better predictive power and stability of SNNs over FNNs 
and single-layer linear regression. On the drug discovery 
benchmark, SNNs have outperformed other FNNs with and 
without normalization techniques, such as batch, layer, and 
weight normalization, or specialized architectures, such as 
Highway (Zilly et al. 2016) or Residual networks (Klam-
bauer et al. 2017; Xie et al. 2017). It has been proven that 
SNNs do not face vanishing and exploding gradient prob-
lems (Klambauer et al. 2017), which may explain the better 
performance of SNB compared to BITES.

The nature of artificial intelligence-guided intervention 
studies gives us the opportunity to obtain DL-based treat-
ment guidelines by interpreting the treatment recommenda-
tion behavior of the model. We considered and excluded 
the influence of confounders on treatment recommenda-
tions by holding other parameters unchanged. Consistent 
with previous studies, we found that baseline features like 
age (Mottet et al. 2021) worked together with tumor char-
acteristics including TNM stages (Miao et al. 2023), PSA 
level (Drobner et al. 2023), and Gleason scores (Lam et al. 
2019a) significantly affect RP selection, owing to the fact 

that they are essential factors in life expectancy (Daskivich 
2015). However, our models quantified those elements in 
detail. We found that patients with 1 ng/mL increase in PSA 
levels receiving RP caused 1.77 months increase in the time 
to 90% mortality, and the similar results could be found in 
age, Gleason Score, tumor size, TNM stages, and metastasis 
status.

Another crucial finding of our research is that 16 mm is 
the recommended value of tumor size for RP. Exact tumor 
size indicator for RP was not unified by available evidence 
(e.g., some chose 5 mm as the critical value for selection 
of RP (Zhou et al. 2021), while others recommend 10 mm 
(Sanguedolce et al. 2018; Lam et al. 2019b)), which was 
considered as the demonstration of disease stratification 
and prognosis. Our finding was generally inconsistent with 
Zhou et al.’s conclusion (Zhou et al. 2021). We hypothesized 
that this result may attribute to the improvement of modern 
imaging and treatment efficacy that gave opportunities to 
early intervene small-size tumors. By applying multipara-
metric magnetic resonance imaging, Park et al. pointed 
that tumor size ≥ 15 mm was significantly associated with 
adverse pathology (Baboudjian et al. 2023), which was simi-
lar with us and deserve to be further investigated. Based 
on this situation, DL might provide a new potential for the 
suggestion of exact tumor size.

Our model (SNB) may serve as a useful analytical tool 
for treatment recommendation in patients with PCa, given 
its evidence of the significant prognostic benefits of follow-
ing the treatment recommendation, which clearly outweigh 
those associated with not following the recommendation. 
It is a surgeon’s duty to introduce clinical information to 
patients. To facilitate discussion of different potential surgi-
cal options, surgeons and patients need an informative tool 
that focuses on survival benefits. In real cases, the estab-
lishment of a treatment recommendation system based on a 
DL model will be key to effectively conveying results and 

Fig. 4   Model interpretation. A Interpretation of SNB recommen-
dation behavior. B The non-linear relationship between tumor size 
and individual treatment effect. C SNB interpretation based on 

SurvSHAP(t). The individual treatment effect measures the time it 
took for a patient to reach 90% mortality receiving radical prostatec-
tomy
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illustrating complex analyses, including prognostic pre-
diction, treatment recommendation to patients and family 
members, and improving the surgeons’ understanding of the 
treatment benefits (Wang et al. 2019; Simon et al. 2019; Zhu 
et al. 2023).

This study has several inevitable limitations. The SEER 
database did not include information about comorbidities 
and details of gene panels, which are important for RP selec-
tion. Second, although the OS outcome is critical for therapy 
decisions, the individual preferences of PCa patients and 
surgeons may reduce the applicability of the model. Third, 
since OS was the focal outcome, we did not analyze other 
outcomes, such as quality of life and progression-free sur-
vival. Finally, subsequent studies are encouraged to continue 
to validate the SNB in real-world cohorts to ensure its reli-
ability in clinical practice. Therefore, it remains more vari-
ous data to maximize the efficacy of models.

Conclusion

In conclusion, SNB successfully predicted which patients 
with PCa would benefit from receiving RP. The DL-based 
treatment guidelines were generally consistent with clinical 
knowledge and may provide priori evidence for subsequent 
studies. Subsequent studies are needed to further analyze 
more comprehensive clinical data. DL models have the 
potential to obtain information with complex heterogeneity 
of real-world practice and to recommend treatment precisely 
for individual PCa patients.
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