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Abstract
Background Pathogenic variants in BRCA genes play a crucial role in the pathogenesis of ovarian cancer. Intronic variants 
of uncertain significance (VUS) may contribute to pathogenicity by affecting splicing. Currently, the significance of many 
intronic variants in BRCA has not been clarified, impacting patient treatment strategies and the management of familial cases.
Method A retrospective study was conducted to analyze BRCA intronic VUS in a cohort of 707 unrelated ovarian cancer 
patients at a single institution from 2018 to 2023. Three splicing predictors were employed to analyze detected intronic VUS. 
Variants predicted to have splicing alterations were selected for further validation through minigene assays. Patient and 
familial investigations were conducted to comprehend cancer incidence within pedigrees and the application of poly (ADP-
ribose) polymerase inhibitors (PARPi) by the patients. In accordance with the guidelines of the American College of Medical 
Genetics and Genomics (ACMG), the intronic VUS were reclassified based on minigene assay results and clinical evidence.
Result Approximately 9.8% (69/707) of patients were identified as carriers of 67 different VUS in BRCA1/2, with four 
intronic variants accounting for 6% (4/67) of all VUS. Splicing predictors indicated potential splicing alterations in splicing 
for BRCA1 c.4358-2A>G and BRCA2 c.475+5G>C variants. Minigene assays utilizing the pSPL3 exon trapping vector 
revealed that these variants induced changes in splicing sites and frameshift, resulting in premature termination of translation 
(p. Ala1453Glyfs and p. Pro143Glyfs). According to ACMG guidelines, BRCA1 c.4358-2A>G and BRCA2 c.475+5G>C 
were reclassified as pathogenic variants. Pedigree investigations were conducted on patients with BRCA1 c.4358-2A>G 
variant, and the detailed utilization of PARPi provided valuable insights into research on PARPi resistance.
Conclusion Two intronic VUS were reclassified as pathogenic variants. A precise classification of variants is crucial for the 
effective treatment and management of both patients and healthy carriers.
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Introduction

Germline variants of BRCA1/2 have been demonstrated 
as significant pathogenic factors in hereditary breast and 
ovarian cancer syndrome (HBOC) (Ponti et al. 2023). As 
the number of genetic tests continues to rise, an increasing 
number of pathogenic variants are being identified, which 
contribute to a lifetime risk of breast cancer (BC), ovarian 
cancer (OC), and other cancers (Jimenez-Sainz et  al. 
2021). The American College of Medical Genetics and 
Genomics (ACMG) guidelines provide a classification 
system for BRCA gene sequence variants, dividing them 
into five categories: "pathogenic," "likely pathogenic," 
"VUS (variants of uncertain significance)," "likely 
benign," and "benign" (Richards et al. 2015). Definitive 
examination results hold significant implications for 
patient treatment, prognosis, as well as prevention 
and management for family members (Kuchenbaecker 
et al. 2017; Easton et al. 1997). However, up to 20% of 
BRCA1/2 tests will report genetic VUS (Eccles et  al. 
2015), thus impeding the clinical decision-making.

VUS refers to a change in the nucleotide sequence of 
DNA that produces inconclusive results regarding the loss 
of normal function of the corresponding protein or the 
potential risk of developing a disease (Fanale et al. 2022). 
Among VUS, intron variants occupy a certain proportion, 
they can potentially disrupt the regular splicing process 
of genes during transcription, leading to alterations in the 
resultant protein structure. In terms of splicing, intronic 
variants, particularly those occurring at or near the 
classical splice sites, are the most common type of splice-
affecting variants. In the past, more attention was paid to 
variants in the coding region, but with the advancement of 
sequencing technology and functional analysis methods, 
an increasing number of pathogenic intron variants that 
cause splicing changes have been identified (Hoberg-Vetti 
et al. 2020; Reuter et al. 2023; Sanz et al. 2010; Fraile-
Bethencourt et al. 2019; Valenzuela-Palomo et al. 2022). 
Splicing variants can have significant effects on protein 
sequence, structure, and function, and are frequently 
observed in various genetic diseases (Reuter et  al. 
2023; Wang and Cooper 2007). It is crucial to identify 
pathogenic splice variants for supporting their clinical 
interpretation. The ACMG guidelines consider functional 
studies as strong evidence to determine the pathogenicity 
of a specific variant, using the codes "PS3"/"BS3" 
(accepted functional analysis demonstrates [destructive/
non-destructive] effects on a gene or gene product) 
(Richards et al. 2015).

In this study, we presented a report on BRCA 
intronic variants in 707 unrelated cases of OC patients 
and subjected these variants to three in silico splice 

predictors. Minigene assays were conducted to validate 
the splicing and translation changes of variants predicted 
to have splicing alteration. We reclassified the variants 
and discussed the utilization of poly (ADP-ribose) 
polymerase inhibitors (PARPi) in the OC patients with 
the variant, aiming to offer precise guidance for clinical 
decision-making.

Methods

Patients and clinical information

We retrospectively reviewed BRCA1/2 testing results of 707 
unrelated patients with primary OC in Affiliated Hospital 
of Qingdao University from June 1, 2018, to March 1, 
2023. The family histories of these patients were followed 
up via telephone. Ethical approval has been obtained from 
the Ethics Committee of Affiliated Hospital of Qingdao 
University.

BRCA1/2 testing, nomenclature, and classification

Briefly, DNA was extracted from 2 ml of peripheral blood 
from each patient. Next-generation sequencing technology 
on the Illumina MiniSeq was utilized to detect variants of 
BRCA1 and BRCA2 across all coding exons and exon–intron 
boundaries. The nomenclature of variants followed the 
guidelines of the Human Genome Variation Society 
(HGVS), with the variants referenced as NM_007294.4 
for BRCA1 and NM_000059.4 for BRCA2. The identified 
BRCA1/2 variations were classified according to the 2015 
ACMG guidelines (Richards et al. 2015). To determine 
whether the detected variants had been previously reported, 
we searched the ClinVar database (http:// www. ncbi. nlm. 
nih. gov/ clinv ar/) (Li and Wang 2017) and BRCA Exchange 
database (http:// brcae xchan ge. org). We used the Genome 
Aggregation Database (GnomAD, https:// gnomad. broad insti 
tute. org/) to estimate the frequency of variants in diverse 
populations.

Functional prediction of VUS

The prediction of splicing alterations was performed with 
SpliceAI (Jaganathan et al. 2019) lookup tool (The δ score 
ranges from 0.11 to 0.99, https:// splic eailo okup. broad insti 
tute. org/, accessed on 25 March 2023), MaxEntScan (Yeo 
and Burge 2004) (for 3′ splice sites: http:// holly wood. mit. 
edu/ burge lab/ maxent/ Xmaxe ntscan_ score seq_ acc. html 
and for 5′ splice sites: http:// holly wood. mit. edu/ burge lab/ 
maxent/ Xmaxe ntscan_ score seq. html) using the maximum 
entropy model, and NNSplice (Reese et al. 1997) (https:// 
fruit fly. org/ seq_ tools/ splice. html).

http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
http://brcaexchange.org
https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://spliceailookup.broadinstitute.org/
https://spliceailookup.broadinstitute.org/
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq_acc.html
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq_acc.html
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
https://fruitfly.org/seq_tools/splice.html
https://fruitfly.org/seq_tools/splice.html
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Minigene assays

Wild‑type and mutated minigene construct

To construct the minigene assays, we followed established 
procedures utilizing the pSPL3 exon-trapping vector, as 
outlined in a previous study (Sanz et al. 2010; Weisschuh 
et  al. 2012). For the BRCA1 c.4358-2A > G variant, 
we initially amplified BRCA1 exon 13 along with its 
200 bp upstream and downstream intronic regions from a 
healthy human genome, employing specific primers. The 
ClonExpress II One Step Cloning Kit (C112-01, Vazyme, 
Nanjing, China) was employed to insert these amplified 
fragments into the pSPL3 vector, thereby creating the wild-
type minigene. For the c.4358-2A > G point mutant, a linear 
plasmid was generated through amplification using site-
specific mutant primers, based on the wild-type minigene. 
For the BRCA2 c.475 + 5G > C variant, a wild-type 
minigene was established using BRCA2 exon 5, along with 
its 200 bp upstream and 89 bp downstream intronic regions 
(the downstream of exon 5 only contains intronic regions of 
89 bp). The minigene for BRCA2 c.475 + 5G > C was then 
constructed through site-specific mutation. Subsequently, 
minigene-containing plasmids were transferred to DH5α 
competent cells and cultivated overnight at 37 °C on LB 
solid medium supplemented with ampicillin. The following 
day, single colonies were sequenced by the Beijing 
Genomics Institute.

Cell culture and transfection

HEK293T cells were cultured in their dedicated medium 
(Wuhan Procell Life Science and Technology Co. Ltd., 
Wuhan, China) at 37 °C in an incubator with 5%  CO2. After 
48 h, HEK293T cells were seeded and transfected with the 
respective pSPL3_wild-type and mutation vectors using 
lipofectamine 8000 (C0533, Beyotime Biotechnology, 
Shanghai, China). The empty vector pSPL3 served as the 
negative control.

Product analysis

Total RNA was extracted and reverse transcribed to cDNA 
using the  Hifair® III 1st-Strand cDNA Synthesis SuperMix 
(11141ES10, YEASEN, Shanghai, China). Subsequently, 
pSPL3 vector-specific primers were employed for PCR 
amplification. The resulting PCR products were separated 
by electrophoresis on a 1.8% agarose gel and subsequently 
sequenced to analyze the nucleic acid changes. All the 
primers used in the minigene assays are provided in 
supplementary material 1.

Homology modeling of protein structure

The BRCA1 structure (UniProt: P38398) was obtained 
from the AlphaFold Protein Structure Database (Jumper 
et  al. 2021; Varadi et  al. 2022). Homology modeling 
of BRCA1_G1453A was performed using the SWISS-
MODEL server (Waterhouse et al. 2018; Bienert et al. 
2017). By inputting the FASTA sequence of BRCA1_
G1453A, a monomeric structure of the BRCA1_G1453A 
protein was generated with a Global Model Quality 
Estimate (GMQE) of 0.36.

Result

VUS of BRCA1/2 in 707 OC patients

We conducted a retrospective review of BRCA1/2 testing 
results for 707 patients diagnosed with primary OC. Among 
these patients, a total of 69 (9.8%) were found to carry 67 
different VUS in BRCA1/2 (Supplementary material 1). 
Within these 67 VUS of BRCA1/2, we identified 4 intronic 
variants (BRCA1: c.4358-2A > G; BRCA2: c.475 + 5G > C, 
c.1909 + 22delT, c.7618-15_7618-14del), which accounted 
for 6% (4/67) of all VUS. Two of them (BRCA2: 
c.475 + 5G > C, c.7618-15_7618-14del) were novel variants 
that had never been reported before.

We utilized three in silico prediction tools (SpliceAI, 
MaxEntScan, NNSplice) to assess the splicing effects of the 
four VUS (Table 1). Notably, one intronic variant, BRCA1 
c.4358-2A > G, consistently exhibited splice-affecting results 
across all three predictors. Additionally, another variant, 
BRCA2 c.475 + 5G > C, appeared to have the potential for 
splicing alterations. Consequently, we conducted in vitro 
minigene assays to validate these predictions.

Minigene assays to validate the splicing alteration

The pSPL3 splicing reporter minigene assays were sub-
sequently conducted to assess the splicing alterations of 
BRCA1 c.4358-2A > G and BRCA2 c.475 + 5G > C. For 
the variant of BRCA1 c.4358-2A > G, as demonstrated in 
Fig. 1a, both the wild-type and the mutant plasmids pro-
duced single RT-PCR products, indicating no change in 
length. However, the RT-PCR products were subsequently 
sequenced to analyze the nucleic acid changes, and a 1-bp 
splicing frameshift was detected in the mutant variant 
(r.4357_4358insG) (Fig. 1b, c). In the case of the BRCA2 
c.475 + 5G > C variant, we observed transcripts that skipped 
exon 5 of BRCA2 (r.426_475del), resulting in an in-frame 
deletion (Fig. 2a–c).
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Table 1  Intronic mutant spectrum of VUS

Freq Frequence, NR Not Yet Reviewed, VUS Variants of Uncertain Significance

Gene name cDNA change Freq Intron BRCA Exchange ClinVar GnomAD SpliceAI (Δ 
score)/pre-
mRNA position

NNSplice % 
decrease of 
splice site 
strength

MaxEntScan % 
decrease of splice 
site strength

BRCA1 c.4358-2A > G 2 Intron13 NR VUS None Ass loss 
(0.8)/ – 2 bp

ASS gain 
(0.97)/ – 1 bp

 – 100%  – 100%

BRCA2 c.475 + 5G > C 1 Intron5 Novel Novel None DSS loss 
(0.24)/ – 5 bp

 – 14%  – 26%

BRCA2 c.1909 + 22delT 1 Intron10 NR VUS None No effect No effect No effect
BRCA2 c.7618-15_7618-

14del
1 Intron15 Novel Novel None No effect  + 3% No effect

Fig. 1  Splicing change of BRCA1 c.4358-2A > G. a Nucleic acid electrophoresis of the RT-PCR products. b Sequencing analysis of the RT-PCR 
products. c Schematic diagram of the splicing change of BRCA1 c.4358-2A > G
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Transcript analysis and protein structure homology 
modeling

We analyzed the translation sequence after frameshift 
splicing and found that both variants caused early termi-
nation of translation after frameshift (p. Ala1453Glyfs, p. 
Pro143Glyfs) (Fig. 3a, b, Supplementary material 2). We 
referred to the BRCA1 protein model in the AlphaFold 
Protein Structure Database and employed the SWISS-
MODEL server for homology modeling of the mutated 
protein. The predicting structure of wild-type BRCA1 pro-
tein is exhibited in Fig. 3c, with the red region represent-
ing the protein structure after amino acid 1453. However, 
in the c.4358-2A > G mutated protein model (Fig. 3d), 
amino acid 1453 is altered to glycine, resulting in the loss 
of important functional domains (indicated by the blue 
box) and changes in the protein's spatial structure. For 
BRCA2 c.475 + 5G > C variant, no additional modeling 
was conducted, as translation terminates at an early stage.

Characteristics and pedigrees of patients

We analyzed the pedigrees of two OC patients harboring 
BRCA1 c.4358-2A > G variant (A II:2 and B II:2 in Fig. 4), 
and identified another OC patient (A II:3) with the same 
variant by pedigree investigation. Patient A II:2 and A II:3 
suffered a single type of cancer, while patient B II:2 under-
went two cancer types, BC and OC. She received surgery, 
chemotherapy, and endocrine therapy for cure of BC at 
the age of 33, which was 13 years before the onset of OC 
(Table 2). The pedigrees revealed that the parents of the two 
probands had experienced distinct types of cancer, includ-
ing esophageal, lung, and ureteral cancers. To investigate 
the applicability of PARPi in patients with this variant, we 
compiled the clinical data of the three OC patients from the 
aforementioned pedigrees. In family A, patients A II:2 and A 
II:3 received olaparib following recurrent chemotherapy but 
experienced recurrence after 8 and 6 months, respectively. 
Unfortunately, despite ongoing treatment for two years 

Fig. 2  Splicing change of BRCA2 c.475 + 5G > C. a Sequencing results of wild-type and mutant minigenes. b Agarose gels of the RT-PCR prod-
ucts. c Schematic diagram of the splicing change of BRCA2 c.475 + 5G > C
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following the second recurrence, patient A II:3 ultimately 
passed away in September 2022 due to multiple organ fail-
ure. On the other hand, proband B II:2 underwent mainte-
nance therapy with olaparib after first-line chemotherapy, 
which yielded favorable outcomes. The patient discontinued 
olaparib after 3 years and remained relapse-free until the end 
of the observation period.

Discussion

HBOC-associated BRCA1 and BRCA2 genes have been 
discovered for more than two decades (Miki et al. 1994; 
Wooster et al. 1995). Patients with pathogenic or likely 
pathogenic variants show better response to PARPi, and 
carriers of pathogenic or likely pathogenic variants can 
choose to undergo prophylactic surgery or intensive 
screening (Finch et al. 2014). However, the clinical relevance 
of VUS remains uncertain and cannot serve as a basis for 
guiding patient and familial management (Domchek et al. 
2013).

While the majority of VUS are typically found in the 
coding region of exons, it is important to note that some of 
the variants located in introns with uncertain significance 
can also be reclassified as pathogenic or likely pathogenic 
variants after validation (Reuter et al. 2023). The BRCA 
exchange database has identified numerous intronic 
BRCA variants as pathogenic, yet there are still over 
40,000 intronic variants that remain uncharacterized. 
In 707 unrelated OC patients of our study, four intronic 
variants were initially classified as VUS. Despite the 
splicing predictors consistently indicated that BRCA1 
c.4358-2A > G and BRCA2 c.475 + 5G > C resulted in 
abnormal splicing, it is undeniable that the classification 
of VUS did not provide meaningful guidance for patients' 
treatment decisions and family management. In order to 
clarify its clinical significance, functional analysis was 
performed for this variant, which are considered by the 
ACMG/AMP guidelines as the strong evidence to evaluate 
the pathogenicity of the variant. As expected, the variant 
of the BRCA1 c.4358-2A > G induced a change in the 
splicing site and caused frameshift in the translation region. 
We attempted to amplify cDNA fragments of BRCA1 from 
patient B II:2, but no product was obtained, which may be 
attributed to nonsense-mediated decay (NMD) (Perrin-Vidoz 
et al. 2002). According to the guidelines of ACMG, BRCA1 

c.4358-2A > G variant can be reclassified as a pathogenic 
variant (PVS1 + PS3_supporting + PM2 + PP3 + PP4) 
(Abou Tayoun et  al. 2018). Our findings indicate that 
this variant has been previously reported in the Chinese 
population, suggesting a potentially higher prevalence 
among individuals of Chinese descent (Table 3) (Moradian 
et al. 2021; Hu et al. 2022). For BRCA2 c.475 + 5G > C, the 
minigene assay revealed the skipping of exon 5, inducing a 
frameshift in the translational region. In our experiments, 
the wild-type minigene was constructed solely with exon 5 
and its upstream and downstream introns. The absence of 
natural flanking exons might result in partial exon 5 skipping 
in the wild-type construct, an issue that can be mitigated 
by constructing the minigene with exons 2–9 (Fraile-
Bethencourt et al. 2019). Following ACMG guidelines, 
BRCA2 c.475 + 5G > C can be categorized as a pathogenic 
variant (PVS1 + PS3_supporting + PM2 + PP3).

The therapeutic value of PARPi in OC patients with path-
ogenic/likely pathogenic BRCA variants has been widely 
recognized. The reclassification of BRCA1 c.4358-2A > G 
suggested a promising response to PARPi in carriers. How-
ever, patients A II:2 and A II:3 exhibited poorer response to 
PARPi. The lack of anticipated efficacy of PARPi within the 
family A has also spurred us to conduct a deeper discussion 
into whether the resistance mechanism of PARPi may be 
connected to the mutation site. Data from preclinical studies 
in mouse models suggest that different pathogenic variants 
may not all result in the same level of homologous recom-
bination deficiency, which lead to primary PARPi resist-
ance (Drost et al. 2011; Bouwman et al. 2013). Research 
on BRCA1 missense variants has demonstrated that the 
conserved N- and C-terminal domains play a crucial role 
in determining the response to therapies targeting homolo-
gous recombination deficiency (Bouwman et al. 2013). 
Mutated proteins that lose CtIP (C-terminal-binding pro-
tein 1 interacting protein) binding due to alterations in the 
BRCT domain can still support homologous recombination 
and confer resistance to PARPi, especially when they are 
present at high levels (Johnson et al. 2013). Reactivation 
of homologous recombination (HR) is recognized as one 
of the mechanisms of secondary PARPi resistance (Noor-
dermeer and Attikum 2019). Reversion mutations of BRCA 
are reported to initiate HR reactivation, resulting in PARPi 
resistance (Barber et al. 2013; Edwards et al. 2008; Lheureux 
et al. 2017). Human pancreatic cancer cell lines resistant 
to PARPi demonstrated the expression of new BRCA2 iso-
forms resulting from the c.6174delT frameshift mutation. 
This mutation led to the restoration of the open reading 
frame of BRCA2, consequently reactivating the homologous 
recombination repair (Sakai et al. 2008). In addition, cells 
with tumor suppressor p53-binding protein 1 deficiency that 
retain a mutated BRCA1 protein with an intact coiled-coil 
(CC) domain––that is required for PALB2 binding––show 

Fig. 3  Prediction of protein structural changes. a Schematic diagram 
of truncated mutant of BRCA1 c.4358-2A > G; b Schematic diagram 
of truncated mutant of BRCA2 c.475 + 5G > C; Homology modeling 
of protein structures of BRCA1 (UniProt: P38398) (c) and BRCA1_
A1453G (d), with the amino acid residues at the A1453-C-terminus 
and G1453-C-terminus labeled in red, where different amino acids in 
site of 1453 are labeled with the ball-and-stick model

◂
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Fig. 4  Pedigree of the two families (A and B) with variant of BRCA1 c.4358-2A > G
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increased reactivation of HR (Nacson et al. 2018). Therefore, 
it is crucial to further investigate and gather variant-specific 
information to understand the responses to PARPi more 
comprehensively (Bouwman and Jonkers 2014).

Currently, there is no internationally accepted standard 
for reporting BRCA tests, nor is there an agreed-upon 
classification system. Different laboratories employ 
varying approaches: some merely report variations 
without providing any interpretation, while others use 
narrative methods or rely on locally developed guidelines 
or published protocols (Moghadasi et al. 2013; Ryu et al. 
2017). The majority of reports typically include only basic 
variant information, along with routine details such as age 
and family history. Nonetheless, given the widespread use 
of PARPi, it is essential to describe the therapeutic effects 
of these inhibitors on patients with different variants in a 
more informative manner. This would provide additional 
supporting information for research on drug resistance 
related to PARPi.

In addition to the OC patients, the variant BRCA1 
c.4358-2A > G was also identified in the daughter (B III:1) 
of patient B II:2, leading to an elevated risk of cancer. Car-
riers of a pathogenic BRCA1 variant face an estimated 72% 
cumulative risk of BC by age 80 and a 48.3% cumulative 
risk of OC by age 70 (Kuchenbaecker et al. 2017; Chen 
et al. 2020). When it comes to BC screening, breast MRI is 
favored over mammography due to its heightened sensitivity. 

For the early screening of OC, although there is controversy, 
the combination of transvaginal ultrasound and serum 
CA-125 testing persists as the prevailing approach (Jacobs 
et al. 2016). The effectiveness of risk-reducing mastectomy 
(RRM) and risk-reducing salpingo-oophorectomy (RRSO) 
in reducing the risk of breast and ovarian cancer among car-
riers has been established through research (Rebbeck et al. 
2009, 2004). However, the decision to undergo RRM or 
RRSO is a complex one, involving various considerations 
such as impacts on body image, psychological well-being 
and reproduction, as well as the potential risks associated 
with premature menopause (Honold and Camus 2018). Cur-
rently, the BRCA1 c.4358-2A > G carrier B III:3 is undergo-
ing annual gynecological ultrasound, regular serum CA-125 
testing, and periodic breast monitoring.

Our study also has several limitations. Firstly, it is a 
retrospective study conducted at a single center; therefore, 
the results may only reflect the regional incidence. A 
larger-scale investigation is required to determine the 
prevalence of VUS and intronic variants in the broader 
population. Additionally, the functional assays performed 
for the variant focused on the splicing changes. We only 
performed homologous modeling to analyze the structure 
of the mutated protein. Further investigations are necessary 
to determine the actual structure of the mutated protein and 
its potential impact on PARPi resistance.

Table 2  Clinicopathological characteristics of OC patients with BRCA1 c.4358-2A > G variant

PC Paclitaxel + Carboplatin

Patient Age of onset Stage Pathology First-line 
chemotherapy

PFS (m) Occasion of PARPi application Time interval for recurrence 
after PARPi application (m)

A II:2 41 IIIC Serous adenocarcinoma PC*6 8 Maintenance therapy after 
chemotherapy for recurrence

8

A II:3 37 IIIC Serous adenocarcinoma PC*6 12 Maintenance therapy after 
chemotherapy for recurrence

6

B II:2 46 (OC) IIIC Serous adenocarcinoma PC*6 55 Maintenance therapy after first-
line chemotherapy

–

33 (BC) I Ductal carcinoma PC*6 211 Tamoxifen (3 years for maintenance therapy after first-line 
chemotherapy)

Table 3  Previous studies reporting the BRCA1 c.4358-2A > G variant

LC lung cancer, RC rectal cancer, EC esophagus cancer, UC ureteral cancer, Pat paternal, G grand, Moth mother, Fath father; Sis sister, Bro 
brother

Num Variant (cDNA) Reported protein change Nationality Age Cancer type Family history of cancer References

1 c.4358-2A > G – Armenian 40 OC&BC Moth OC (50); Pat G. Moth LC; 
Sis OC

Moradian et al. (2021)

2 c.4358-2A > G – Chinese 55 OC Sis OC (50); Bro RC (55) Hu et al. (2022)
3 c.4358-2A > G p. Ala1453Glyfs Chinese 37 OC Moth LC (50); Fath UC (71); Sis 

OC (41)
Current study

4 c.4358-2A > G p. Ala1454Glyfs Chinese 46 OC&BC Fath EC (55) Current study
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Conclusion

In accordance with the ACMG guidelines, we reclassify 
the BRCA1 c.4358-2A > G and BRCA2 c.475 + 5G > C 
as pathogenic variants based on minigene assays. The 
BRCA1 c.4358-2A > G might be one of the prevalent 
variants in the Chinese population. More research is 
needed to investigate the association between variants and 
PARPi resistance.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00432- 023- 05597-y.
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