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Abstract
Background  The aim of this study is to build a prognostic model for cutaneous melanoma (CM) using fatty acid-related 
genes and evaluate its capacity for predicting prognosis, identifying the tumor immune microenvironment (TIME) composi-
tion, and assessing drug sensitivity.
Methods  Through the analysis of transcriptional data from TCGA-SKCM and GTEx datasets, we screened for differentially 
expressed fatty acids-related genes (DEFAGs). Additionally, we employed clinical data from TCGA-SKCM and GSE65904 
to identify genes associated with prognosis. Subsequently, utilizing all the identified prognosis-related fatty acid genes, we 
performed unsupervised clustering analysis using the ConsensusClusterPlus R package. We further validated the significant 
differences between subtypes through survival analysis and pathway analysis. To predict prognosis, we developed a LASSO-
Cox prognostic signature. This signature's predictive ability was rigorously examined through multivariant Cox regression, 
survival analysis, and ROC curve analysis. Following this, we constructed a nomogram based on the aforementioned signature 
and evaluated its accuracy and clinical utility using calibration curves, cumulative hazard rates, and decision curve analysis. 
Using this signature, we stratified all cases into high- and low-risk groups and compared the differences in immune character-
istics and drug treatment responsiveness between these two subgroups. Additionally, in this study, we provided preliminary 
confirmation of the pivotal role of CD1D in the TIME of CM. We analyzed its expression across various immune cell types 
and its correlation with intercellular communication using single-cell data from the GSE139249 dataset.
Results  In this study, a total of 84 DEFAGs were identified, among which 18 were associated with prognosis. Utilizing 
these 18 prognosis-related genes, all cases were categorized into three subtypes. Significant differences were observed 
between subtypes in terms of survival outcomes, the expression of the 18 DEFAGs, immune cell proportions, and enriched 
pathways. A LASSO-Cox regression analysis was performed on these 18 genes, leading to the development of a signature 
comprising 6 DEFAGs. Risk scores were calculated for all cases, dividing them into high-risk and low-risk groups. High-
risk patients exhibited significantly poorer prognosis than low-risk patients, both in the training group (p < 0.001) and the 
test group (p = 0.002). Multivariate Cox regression analysis indicated that this signature could independently predict out-
comes [HR = 2.03 (1.69–2.45), p < 0.001]. The area under the ROC curve for the training and test groups was 0.715 and 
0.661, respectively. Combining risk scores with clinical factors including metastatic status and patient age, a nomogram was 
constructed, which demonstrated significant predictive power for 3  and 5 years patient outcomes. Furthermore, the high 
and low-risk subgroups displayed differences in the composition of various immune cells, including M1 macrophages, M0 
macrophages, and CD8+ T cells. The low-risk subgroup exhibited higher StromalScore, ImmuneScore, and ESTIMATEScore 
(p < 0.001) and demonstrated better responsiveness to immune therapy for patients with PD1-positive and CTLA4-negative 
or positive expressions (p < 0.001). The signature gene CD1D was found to be mainly expressed in monocytes/macrophages 
and dendritic cells within the TIME. Through intercellular communication analysis, it was observed that cases with high 
CD1D expression exhibited significantly enhanced signal transductions from other immune cells to monocytes/macrophages, 
particularly the (HLA-A/B/C/E/F)-CD8A signaling from natural killer (NK) cells to monocytes/macrophages (p < 0.01).
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Conclusions  The prognostic signature constructed in this study, based on six fatty acid-related genes, exhibits strong capa-
bilities in predicting patient outcomes, identifying the TIME, and assessing drug sensitivity. This signature can aid in patient 
risk stratification and provide guidance for clinical treatment strategies. Additionally, our research highlights the crucial role 
of CD1D in the CM's TIME, laying a theoretical foundation for future related studies.

Keywords  Cutaneous melanoma · Fatty acid · Immune microenvironment · Prognostic signature · Nomogram · 
Immunotherapy

Introduction

Cutaneous melanoma (CM) is the third most commonly 
diagnosed fetal skin cancer, following basal cell carcinoma 
and squamous cell carcinoma. The incidence of CM contin-
ues to increase, while that of many other cancers is decreas-
ing (Miller and Mihm 2006; MacKie et al. 2009). Accord-
ing to GLOBOCAN 2020 data, there were over 300,000 
diagnoses and 60,000 deaths worldwide in 2020 (Sung 
et al. 2021). The mortality rate associated with CM, with 
highly metastatic nature, surpasses that of non-melanoma 
cancers by fourfold (Arheden et al. 2019). Even though 
CM patients initially present with localized disease, poten-
tially curable through primary tumor resection, a significant 
number proceed to develop distant metastases, leading to a 
dire prognosis (Rastrelli et al. 2014). Advanced tumor stage 
and unfavorable prognosis are intricately linked to delays 
in diagnosis. The absence of patient recognition regarding 
early-stage CM’s clinical characteristics, combined with a 
lack of awareness and knowledge concerning the disease, 
contribute to this outcome (Klebanov et al. 2019). Therefore, 
high cure rate in early stage and high mortality in advanced 
stage mean that early-stage diagnoses and predicting thera-
peutic responsiveness and prognosis for patients are of sig-
nificant clinical importance. Consequently, the marked con-
trast between high cure rates in the early stage and elevated 
mortality in the advanced stage underscores the pivotal clini-
cal significance of early-stage diagnoses and predictions for 
therapeutic responsiveness and patient prognosis.

Fatty acids (FAs) are a diverse group of molecules con-
sisting of hydrocarbon chains that vary in length and satura-
tion levels. They are essential components of lipids, which 
are energy-dense compounds. When metabolized, lipids 
produce a significant amount of ATP, necessary for various 
cellular activities. As a result, the survival of tumor cells 
is largely influenced by processes such as lipid synthesis, 
metabolism, and degradation (Shevchenko and Simons 
2010). On one hand, tumor cells can acquire FAs via de novo 
biosynthesis (Ookhtens et al. 1984). However, in scenarios 
where endogenous FAs are deficient, like when the entry of 
pyruvate into the tricarboxylic acid cycle is halted due to 
hypoxia, tumor cells can absorb exogenous FAs from the 

tumor microenvironment (TME) (Papandreou et al. 2006; 
Kamphorst et al. 2013). Multiple studies have emphasized 
the crucial role FAs play in the proliferation and sustenance 
of various cancer cells (Santos and Schulze 2012). Within 
cancer cells, the reactivation of FA synthesis may indicate a 
regression of the tissue to a poorly differentiated embryonic 
state or an adaptation to the TIME's characteristic low serum 
lipid content (Kusakabe et al. 2000). Besides, FAs are also 
associated with tumor progression and drug resistance. The 
selective uptake or release of specific FAs from membrane 
lipids in tumor tissues can facilitate the synthesis of signal-
ing molecules, thereby promoting migration and invasion 
(Nath et al. 2015). Epithelial-mesenchymal transition pro-
cesses also require lipid remodeling to modify membrane 
fluidity essential for cell migration (Zhao et al. 2016). Con-
sequently, lipid metabolism, with a particular focus on FA 
metabolism, is increasingly viewed as a promising therapeu-
tic target for cancers. For CM cells, glycolysis and oxidative 
metabolism are primary energy sources, with the latter being 
predominant. An elevated FA content, vital for oxidative 
metabolism, is associated with drug resistance and metas-
tasis in melanoma (Fischer et al. 2019). Recent researches 
suggest that CM cells undergo fatty acid oxidation (FAO) 
either using existing lipid reserves or by uptaking exogenous 
lipids through fatty acid transporters. Melanocytic cells store 
FAs within lipid droplets, and disrupting these droplets can 
impair the function of FAs, leading to cell cycle interruption 
and hindered CM progression (Lumaquin-Yin et al. 2023; 
Shin et al. 2023). Hence, targeting FA metabolism emerges 
as a promising therapeutic strategy for treating CM.

Historically, chemotherapy has been a mainstay in CM 
treatment. However, recent advancements in immunother-
apy, especially with the introduction of immune checkpoint 
inhibitors (ICIs) and BRAF-MEK inhibitors, have shown 
significant anti-tumor activity and therapeutic benefits (Ma 
et al. 2023). Immunotherapy has notably improved the out-
comes for CM patients. Data suggest that the 5 years sur-
vival rate for stage IV patients treated with a single-agent 
PD1 inhibitor ranges from 34 to 44%. Impressively, this rate 
escalates to 52% when supplemented with the combination 
CTLA4 inhibitor, ipilimumab (Pham et al. 2023). How-
ever, the therapeutic landscape isn’t without challenges. 
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Resistance to immunotherapy, often stemming from individ-
ual genetic and epigenetic factors, can limit the treatment's 
efficacy. Such resistance can be attributed to complex signal-
ing interactions between cancer cells and the TME, varying 
across individuals (Indini et al. 2023). Reports indicate that 
the metabolic interplay of FAs within the TIME can influ-
ence the content and functionality of a diverse set of immune 
cells (Koundouros et al. 2020). For instance, the accumula-
tion of FAs in Natural Killer (NK) cells inhibits the produc-
tion of IFN-γ and cytotoxic granules, thereby suppressing 
their anti-tumor capabilities (Michelet et al. 2018). Tumor-
associated conventional dendritic cells (cDCs), exhibiting 
heightened MSR1 expression, are prone to substantial FA 
uptake. Such abnormal FA accumulation can impair their 
antigen presentation capabilities (Herber et al. 2010). More-
over, tumor-associated macrophages (TAMs) adjust to the 
TIME, in part through FA metabolic reprogramming. A 
high expression of CD36 in TAMs augments FA oxidation 
and oxidative phosphorylation, polarizing TAMs towards 
M2-like phenotypes (Su et al. 2020).

FAs are instrumental in the onset, progression, treatment, 
and immune microenvironment of CM. Despite their signifi-
cance, no prognostic signature based on fatty acid-related 
genes currently exists. In this study, our objective is to estab-
lish a LASSO-Cox prognostic signature by utilizing gene 
expression profiles and clinical data from public databases, 
and to assess its predictive capacity in terms of prognosis, 
immune characteristics, and immunotherapeutic responsive-
ness among CM patients.

Materials and methods

Raw data acquisition

RNA sequencing (RNA-seq) profiles and clinical data of 
SKCM (Skin Cutaneous Melanoma) were obtained from the 
TCGA-SKCM dataset in The Cancer Genome Atlas (TCGA) 
(https://​tcga-​data.​nci.​nih.​gov/​tcga/) and the GSE65904 
dataset in the Gene Expression Omnibus (GEO) database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/). Since the TCGA-
SKCM dataset had only one normal skin sample available, 
additional transcript data were sourced from the Geno-
type-Tissue Expression (GTEx) database (https://​commo​
nfund.​nih.​gov/​GTEx) to facilitate the identification of dif-
ferentially expressed genes. Fatty acid-related genes were 
obtained from various datasets, including Hallmark, Reac-
tome, KEGG, and WP datasets in GSEA Human MSigDB 
v2023.1.Hs (https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​
index.​jsp). Additionally, the single-cell RNA sequenc-
ing (scRNA-seq) dataset GSE139249 for melanoma was 
acquired from the GEO database.

Screening differentially expressed fatty acid‑related 
genes (DEFAGs)

RNA-seq profiles from TCGA-SKCM and GTEx were 
removed the batch effects with sva R packages. Differen-
tially expressed genes (DEGs) between normal skin samples 
and melanoma samples were screened out with limma R 
package. Statistically significant DEGs were defined using 
|LogFC|> 1 and fdr < 0.05 as cut-offs. Genes in the intersec-
tion between DEGs and fatty acid gene list were regarded as 
DEFAGs used for further analysis.

Unsupervised cluster analysis

Using the overall survival data from the TCGA-SKCM 
and GSE65904 datasets, survival analysis was performed 
for each DEFAG using the survival and survminer R pack-
ages. Based on the identified 18 prognosis-related genes, 
all SKCM samples were categorized into different sub-
types using the ConsensusClusterPlus R package. The most 
appropriate number of subtypes was determined through the 
consensus clustering algorithm. To evaluate the results of 
this clustering, we employed Principal Component Analysis 
(PCA) and t-Distributed Stochastic Neighbor Embedding 
(tSNE) methods.

Pathway enrichment analysis

The infiltration of immune cells in each subtype was 
assessed using the single-sample gene set enrichment anal-
ysis (ssGSEA) algorithm, facilitated by the clusterProfiler 
and org.Hs.eg.db R packages. Additionally, Gene Set Vari-
ation Analysis (GSVA) and Gene Set Enrichment Analysis 
(GSEA) were employed to identify disparities in enrichment 
pathways across different subtypes. These analyses were 
conducted using the GSVA and GSEABase R packages.

Construction and evaluation of prognostic signature

Prognosis-related DEFAGs underwent processing using 
the LASSO method to mitigate overfitting and to exclude 
closely related genes. The optimal penalty parameter (λ) 
was determined via fivefold cross-validation. Subsequently, 
a LASSO-Cox signature for SKCM was formulated. Using 
this signature, all melanoma samples were categorized into 
either high-risk or low-risk subgroups. The assignment was 
based on risk scores calculated using the given formula, 
with the median serving as the cut-off point. The prognostic 
performance of the signature was evaluated using Receiver 
Operating Characteristic (ROC) analysis, facilitated by the 
timeROC R package. Furthermore, multivariate Cox regres-
sion was employed to determine if the signature functions as 
an independent prognostic factor.

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
https://commonfund.nih.gov/GTEx
https://commonfund.nih.gov/GTEx
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Construction of nomogram

To further quantitatively assess the signature, we developed 
a comprehensive nomogram utilizing independent factors 
for SKCM with the rma R package. Calibration curves for 
1, 3, and 5 years timeframes, as well as cumulative hazard 
curves, were utilized to evaluate the accuracy of the nomo-
gram. Additionally, the clinical utility of the nomogram was 
evaluated using decision curve analysis (DCA).

Comprehensive analysis of immune characteristics 
in different subgroups

The expression matrix of all SKCM samples sourced from 
TCGA-SCKM and GSE65904 was submitted to the CIBER-
SORT database for the analysis of immune cell proportions 
across each melanoma sample. A comprehensive landscape 
map was generated, detailing the outcomes in a bar plot. 
Moreover, differing infiltration levels of immune cells within 
the high- and low-risk subgroups were visualized using a 
violin plot. Furthermore, the correlation between the infiltra-
tion levels of these immune cells and each candidate gene 
within this signature—as well as risk scores—was ascer-
tained and visualized in a heatmap. The tumor purity across 
different subgroups was estimated and compared using 
the Estimation of Stromal and Immune cells in Malignant 
Tumor tissues using Expression data (ESTIMATE) method.

Prediction of immunotherapy response 
and chemosensitivity

The immunophenoscore (IPS) can reflect the efficacy of 
immune checkpoint inhibitors (Charoentong et al. 2017). We 
retrieved IPS for samples in TCGA from the Cancer Immu-
nome Atlas (TCIA, https://​tcia.​at/​home) and compared the 
immunotherapy response between different subgroups. The 
chemosensitivity of each sample in TCGA and GSE65904 
was estimated with oncoPredict R package and compared 
between subgroups with Wilcox t test.

Single cell RNA sequencing analysis

Initially, the correlation between each gene within this sig-
nature and immune cell infiltration levels was examined 
using TIMER 2.0 (http://​timer.​cistr​ome.​org/) to identify the 
gene with the most pronounced influence on the tumor’s 
immune environment. Subsequently, the scRNA-seq dataset 
(GSE139249) for melanoma was retrieved from the GEO 
database. Quality control and normalization were carried 
out using DropletUtils and the Seurat R package, respec-
tively. Cell population clustering was performed using the 
findNeighbors and findClusters functions in Seurat, with the 
UMAP (Uniform Manifold Approximation and Projection) 

method employed to visualize cell clusters. The analysis of 
intercellular communication was conducted using the Cell-
Chat R package (Jin et al. 2021).

Results

Fatty acid‑related hub genes

The transcript data of a total of 812 normal skin samples 
were collected from GTEx, 1 normal and 471 melanoma 
samples were collected from TCGA, and 44 melanoma sam-
ples were collected from GSE19234. Clinicopathological 
and prognostic data were retrieved for 44 cases in GSE19234 
and 412 cases in TCGA (Table 1). A list of 339 fatty acid-
related genes is provided in Table S1. After removing batch 
effect and conducting analysis of variance, 84 DEFAGs were 
identified. Among these, 13 genes exhibited up-regulation 
while 71 genes displayed down-regulation in tumor sam-
ples (Table S2, Fig. 1A). Subsequently, survival analysis 
was performed based on their expression profiles and sur-
vival data, leading to the identification of 18 DEFAGs that 
significantly affect prognosis for melanoma patients. Among 
the 18 genes, IL4I1A, ACOXL, and CYP2U1 are upregu-
lated in CM, while ACSM3, ALDH3A1, CA4, CD1D, CEL, 
CIDEA, RDH16, CYP4F22, CYP4F12, CYP4F3, ALOX12, 
ACOX2, GPX2, ALOXE3, and ALOX12B are downregu-
lated. These genes were then used for subsequent clustering 
analysis and signature construction (Fig. 1B).

Cluster construction and characteristics comparison

Consensus clustering is an unsupervised clustering method 
that categorizes specific cancers into subtypes based on 
DEFAGs expression patterns. It is used for the identifica-
tion of new subtypes and for conducting comparative analy-
sis between different subtypes. The Delta area plot exhibits 
an inflection point at x = 3, and when k = 3, the consen-
sus matrix heatmap displays the cleanest cluster partition 
(Fig. 1C–D). Based on the delta area plot and the distinct 
boundaries of subtypes in consensus matrix heatmap, the 
melanoma patients were separated into three subtypes. 
Two dimensionality reduction methods (PCA and tSNE) 

Table 1   Sources of raw data for normal and CM RNA-seq data and 
CM’S clinical data

Data type GTEx TCGA-SKCM GSE19234 Total

RNA-seq of normal 
samples, N

812 1 0 813

RNA-seq of Tumor, N 0 471 44 515
Clinical data, N 0 412 44 456

https://tcia.at/home
http://timer.cistrome.org/
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highlighted significant heterogeneity among three subtypes, 
thus confirming the reliability and success of our cluster-
ing (Fig. 1E). Results from survival analysis demonstrated 
substantial survival differences among the three subtypes 
(p < 0.001) (Fig. 2A). This to some extent implies that the 
differing expression patterns of DEFAGs can impact the 
prognosis of CM patients. Expression differences of the 18 
DEFAGs across the subtypes were visualized in Fig. 2B. 
The ssGSEA results indicated varying levels of immune cell 
infiltration among the subtypes (Fig. 2C), suggesting that 
fatty acid-related genes likely influence the distribution of 

cells within the TIME, thereby leading to different sensitivi-
ties to immunotherapy and ultimately resulting in variations 
in individual prognosis. GSVA results (Fig. 2D) highlighted 
distinct activity levels in numerous immune, drug metabo-
lism, and cancer-related pathways, including B/T/NK cell 
receptor signaling, toll-like receptor signaling, antigen pro-
cessing and presentation, drug metabolism via cytochrome 
P450, and melanogenesis. GSEA outcomes also revealed 
pathway suppression or activation within the three subtypes 
(Fig. 2E). Notably, the antigen processing and presentation 
pathway in subtype A—the group with the most favorable 

Fig. 1   A Heatmap shows 13 DEFAGs upregulated and 71 DEFAGs 
downregulated in tumor samples. B Forest plot shows 18 DEFAGs 
are related to patients’ prognosis. C–D Delta area plot indicates the 
optimal K value as 3, and when K = 3, the consensus matrix heatmap 

exhibits the cleanest cluster partition. Based on this, all melanoma 
patients are separated into three subtypes. E Both PCA and tSNE 
methods shows significant heterogeneity among three subtypes
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outcomes—was significantly activated. Subtype B mela-
noma exhibited suppression of certain immune-related dis-
ease pathways. Conversely, subtype C exhibited an over-acti-
vation of the drug metabolism cytochrome P450 pathway, 
coinciding with the poorest outcomes.

Construction fatty acid‑related prognosis signature

To examine the fatty-acid genes for the prognostic predic-
tion of CM, 14 DEFAGs, which exhibited associations 
with overall survival in melanoma patients, underwent 
LASSO-Cox regression analysis. This analysis led to the 
establishment of a signature comprising six genes, as fol-
lows: ACSM3 expression * − 0.67595 + CD1D expression 
*  − 0.3307 + CEL expression * 0.52676 + CIDEA expres-
sion * 0.22805 + ACOXL expression * − 0.74305 + ACOX2 
expression * − 0.24089. The median score, calculated from 
all samples, was used as the cut-off value to classify all cases 
into high- and low-risk groups. This classification was per-
formed to facilitate subsequent inter-group analysis aimed at 
further evaluating the signature. Expression levels of these 

six candidate genes in high- and low-risk groups were visual-
ized in a heatmap (Fig. 3A). Kaplan–Meier survival analysis 
demonstrated that melanoma patients with higher risk scores 
experienced worse prognosis in both the train and test sets 
(Fig. 3B). To evaluate the area under the ROC curve (AUC), 
a 5 years ROC curve was generated (Fig. 3C), yielding AUC 
values of 0.715 and 0.661 for the train and test sets, respec-
tively, indicating that the signature exhibits good predictive 
capability. Subsequent multivariate Cox analysis established 
the risk score calculated by this signature as an independent 
prognostic risk factor for melanoma [Hazard ratio = 2.03, 
95% CI (1.69, 2.45), p = 6.39e–14] (Fig. 3D). Furthermore, 
risk scores were computed for all samples in subtypes A, B, 
and C. Wilcox t test results indicated that subtype A exhib-
ited the lowest risk scores, followed by subtype B, while 
subtype C showed the highest risk scores; these differences 
between groups were statistically significant (Fig. 3E). This 
reaffirms the influence of varied DEFAGs expression pat-
terns on prognosis and supports the use of signature-derived 
risk scores as clinical prognostic factors.

Fig. 2   A Survival analysis demonstrates a significant difference in 
prognosis among the three subtypes (p < 0.001). B The expression 
levels of 18 DEFAGs show significant differences among the three 
subtypes. C ssGSEA results shows the proportions of 23 immune 

cells are different among the three subtypes. D GSVA results indicate 
significant differences in enriched pathways among the three sub-
types. E GSEA results reveal the top five enriched pathways for each 
of the three subtypes. *p < 0.05, **p < 0.01, ***p < 0.001
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Establishment of a prognostic nomogram

To enhance the prognostic capacity of the signature and 
facilitate its clinical feasibility, we further integrated inde-
pendent clinical risk factors, including age and metastasis, 
into the prognostic signature to create a comprehensive nom-
ogram for predicting the prognosis of melanoma patients 
within the TCGA-SCKM and GSE65904 cohorts at 1, 3, 
and 5 years. As shown in the nomogram, when patients were 
scored at 143, their 1 years, 3 years, and 5 years survival 
rates were 0.97, 0.752, and 0.58, respectively (Fig. 4A). A 
calibration curve was generated to assess the diagnostic per-
formance of the nomogram model. The curves in the figure 
closely follow the diagonal line at 1, 3, and 5 years, indi-
cating that the nomogram-based predictions of patient sur-
vival closely match the actual observed values, revealing a 
favorable alignment with real-world observations (Fig. 4B). 
The cumulative hazard analysis indicated that patients with 
higher risk scores exhibited correspondingly elevated cumu-
lative hazard rates, providing a bidirectional validation of 
the nomogram and prognostic signature (Fig. 4C). In the 
DCA, the nomogram model outperformed age and metasta-
sis alone, demonstrating improved prognostic accuracy at 3 
and 5 years (Fig. 4D–F). Clearly, all risk factors, including 
the nomogram model, displayed limited predictive capa-
bility at 1 year, which is likely attributed to the relatively 
high 1-year survival rate among CM patients. Overall, the 
nomogram model demonstrates strong predictive capabilities 

for multi-year survival rates and outperforms the individual 
application of risk scores and other clinical risk factors.

Immune microenvironment and immune response 
analysis

To investigate whether the signature has the ability to assist 
in identifying the immune cell composition within the 
TIME, we individually quantified the content of 22 different 
immune cell types in all samples and performed Wilcoxon 
tests. The results indicated that low-risk groups exhibited 
decreased infiltration levels of naïve B cells, memory B 
cells, and Macrophages M2 (p < 0.05); and elevated infiltra-
tion levels of plasma cells, activated memory CD4+ T cel ls, 
γδ cells, and M1 macrophages (Fig. 5A). Of course, some of 
these differences are attributed to the differential expression 
of DEFAGs. The impact of individual genes on the TIME is 
depicted in the heatmap (Fig. 5B). Notably, the expression of 
CD1D within the melanoma TIME influenced the infiltration 
of various immune cell types, particularly memory B cells, 
M0 macrophages, CD8+ T cells, and others. Furthermore, 
ACOXL also played a substantial role, affecting CD8+ T 
cells, plasma cells, activated/resting memory CD4+ T cells, 
and more. This suggests that CD1D and ACOXL have rela-
tively prominent impacts on the TIME of CM patients, but it 
does not necessarily imply that these genes directly influence 
the distribution of specific immune cells. The underlying 
mechanisms may be quite complex. Detailed correlations 

Fig. 3   A heatmap displays the differences in the expression levels of 
the six genes between the high-risk and low-risk groups. B Survival 
analysis indicates that in both the train group and test group, patients 
with high-risk scores have significantly worse prognoses compared to 
those with low-risk scores. C The AUC values for the train group and 

test group are 0.715 and 0.661, respectively. D The risk scores were 
calculated for the three subtypes, and there were significant differ-
ences between each pair of subtypes. E Age, metastasis occurrence, 
and risk score can serve as independent risk factors for predicting 
patient prognosis
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between risk scores and the infiltration of 12 immune cell 
types are presented in Figure S1. Moreover, high-risk group 
were associated with lower stromal scores, immune scores, 
and ESTIMATE scores, indicating that the tumor purity 
is relatively low in the high-risk group (Fig. 5C), which is 
often closely linked to clinical issues such as poor immuno-
therapeutic responsiveness and unfavorable prognosis.

Drug sensitivity analysis

Using the oncoPredict R package, distinct responses to 
certain drugs were predicted between the low- and high-
risk groups. Notably, trametinib, temozolomide, cisplatin, 
afuresertib, gefitinib, gemcitabine, lapatinib, and selumetinib 
displayed divergent responses (Fig. 6A–H). Additionally, 
the Immune Prognostic Score (IPS) was computed utilizing 
TCIA (The Cancer Immunome Atlas) data to predict immu-
notherapy sensitivity. Specifically, among patients with 
PD1-positive and CTLA4-negative or positive expressions, 
those in the low-risk group exhibited superior immune ther-
apy responses compared to their counterparts in the high-
risk group (p < 0.001). However, no statistically significant 

difference was observed among patients with PD1-negative 
expression between the two subgroups (p > 0.05) (Fig. 6I–L).

CD1D was mainly expressed in monocytes 
and macrophages in TIME

Among the six genes, CD1D was the most correlated 
gene with immune cell infiltration in the TIME. Accord-
ing to the Timer 2.0 database, CD1D expression was 
positively correlated with the infiltration levels of Mac-
rophage/Monocyte, Dendritic cell, M1 macrophage, CD8+ 
T cell, and NK cell, but it showed no correlation with 
M2 macrophage infiltration (Fig. 7A). To further delve 
into the localization of CD1D within the TIME of cutane-
ous melanoma (CM) and its impact on the interactions 
between immune cells, we conducted an analysis of the 
single-cell expression profile in the GSE139249 dataset. 
Tumor samples were clustered and annotated into eight 
distinct clusters, identified as B cells, conventional CD4+ 
T cells, CD8+ T cells, exhausted CD8+ T cells, dendritic 
cells (DCs), monocytes or macrophages, myofibroblasts, 
and NK cells (Fig. 7B). CD1D was primarily expressed in 

Fig. 4   A Construction of a nomogram based on age, metastasis 
occurrence, and risk scores. B The calibration curve shows favorable 
alignment and actual observations for nomogram at 1, 3, and 5 years. 

C Patients with higher risk scores exhibited elevated cumulative haz-
ard rates. D–F In the DCA, the nomogram model has improved prog-
nostic accuracy at 3 and 5 years, but performs less favorably at 1 year
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dendritic cells (DCs), particularly in monocytes or mac-
rophages (Fig. 7C–D). Furthermore, we conducted inter-
cellular communication analysis to investigate the impact 
of CD1D expression levels on ligand–receptor signaling 
between monocytes/macrophages and other immune cells. 
The results indicated that there are no significant differ-
ences in signal transduction from monocytes/macrophages 
to other cells. However, certain signal transductions from 
other immune cells to monocytes/macrophages are sig-
nificantly enhanced, particularly the (HLA-A/B/C/E/F)-
CD8A signaling from NK cells to monocytes/macrophages 
(Fig. 7E–F).

Discussion

CM is one of the most aggressive and metastatic cutaneous 
malignant tumors, with increasing morbidity and mortality 
worldwide, and is the 19th most common cancer (Holmes 
2014). Early-stage CM is often overlooked by patients, while 
for those who develop metastasis, surgical and chemothera-
peutic interventions yield unsatisfactory outcomes, result-
ing in a median survival time of less than 9 months. Tar-
geted therapy and immunotherapy have made significant 
advancements, although inter-individual variances persist 
(Siegel et al. 2016). Hence, constructing a signature for 
predicting patient prognosis, clinical and immunological 

Fig. 5   A Violin plot visualizes the differences in the proportions of 
22 types of immune cells between the high- and low-risk groups. B 
Heatmap displays the impact of individual genes on the TIME. C 

Patients with high-risk scores exhibit lower StromalScore, ImmuneS-
core, and ESTIMATEScore (p < 0.001)
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characteristics, as well as immunotherapeutic responsive-
ness, holds paramount significance. To facilitate rapid pro-
liferation, cancer cells undergo metabolic network repro-
gramming to generate sufficient bioenergy, ensuring the 
sustenance of their essential biological functions (Kosti et al. 
2020). Mitochondrial oxidative phosphorylation (mOxPhos) 
is recognized as a key contributor to tumor growth within 
cancer cells (Caro et al. 2012). Particularly under chal-
lenging circumstances like nutrient deficiency, lipid fatty 
acid oxidation (FAO) assumes a central role in supplying 
energy to cancer cells, thereby playing a significant part in 
the progression and potential metastasis of tumors (Kant 
et al. 2020; Rozeveld et al. 2020). For the treatment of CM, 
inhibiting its mitochondrial respiratory chain offers a poten-
tial strategy to overcome the inherent multidrug resistance, 
thus potentially forestalling or delaying therapeutic resist-
ance. This approach is promising due to CM's heightened 
reliance on oxidative phosphorylation, setting it apart from 
many other types of cancers.

For the treatment of CM, inhibiting its mitochondrial 
respiratory chain can help overcome the inherent multid-
rug resistance of melanoma, thereby avoiding or delaying 
the development of treatment resistance. This is due to 
CM's heightened dependence on OXPHOS compared to the 
majority of other cancer types (Roesch et al. 2013). As a 

result, targeting the metabolic pathway of FA synthesis holds 
promise for CM treatment by disrupting the essential energy 
supply required for cancer cell proliferation (Vivas-Garcia 
et al. 2020). Up until now, almost all research endeavors have 
been confined to individual genes related to fatty acids, with 
comprehensive investigations into the relationship between 
fatty acids and malignant melanoma being notably scarce. 
Our research has established a robust predictive model for 
malignant melanoma, which holds the potential to facilitate 
patient prognosis prediction, offer insights into clinical and 
immunological characteristics, and predict immunotherapeu-
tic responsiveness. Furthermore, our study may also pave the 
way for future in-depth inquiries, which could yield valuable 
insights.

The prognostic signature has six genes, each of which 
are associated with the prognosis of CM patients. ACSM3 
(Acyl-CoA medium-chain synthetase-3) belongs to the fam-
ily of fatty acid coenzyme A synthetases. It interacts with 
medium and long-chain FAs on the outer mitochondrial 
membrane to produce acyl-CoA, and participates in the 
processes of FAs synthesis, storage, and degradation (Cos-
tagli and Galli 1998). Research has reported that, based on 
the analysis of public datasets and validated through in vitro 
experiments, low expression of ACSM3 is correlated with 
a poorer prognosis in CM. ACSM3 expression levels show 

Fig. 6   A–H Patients in low- and high-risk groups show different responsiveness to eight common drugs. I–L Among patients with PD1-positive 
expression, those in the low-risk group demonstrated superior immune therapy responses compared to their counterparts in the high-risk group
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no distinct differences across different tumor stages, but 
its expression significantly increases in metastatic cases. 
Besides, its expression level is positively correlated with 
the infiltration of CD8+ T cells, macrophages, and den-
dritic cells within the TIME. Xenograft CM murine with 
ACSM3 overexpression show synergistic effects for BRAF 
inhibitors, without inducing additional toxicity (Zhu et al. 
2020). In high-grade serous ovarian carcinoma, ACSM3 
exerts its anti-tumor effects by suppressing the activation 
of AMPK, leading to a reduction in mitochondrial respira-
tion and glycolysis (Yang et al. 2022). It similarly exhibits 
tumor-suppressive effects in other types of cancers, includ-
ing hepatocellular carcinoma and acute myeloid leukemia 
(Ruan et al. 2017; Zheng et al. 2023). ACOX2 (Acyl-CoA 
Oxidase 2) belongs to peroxisomal acyl-CoA oxidases, it 
can convert very long-chain FAs to metabolites that can 
be targeted to the mitochondria through α- or β- oxidation 
(Svensson and Shaw 2016). While research on the involve-
ment of ACOX2 in the onset of CM remains limited, rel-
evant studies have been conducted in other types of can-
cer. ACOX2 expression is significantly reduced in the vast 
majority of non-small cell lung cancer (NSCLC) patients. 
Additionally, ACOX2 exhibits opposing effects on CD8+ T 

cell infiltration between LUAD and LUSC (Sui et al. 2022). 
A comprehensive study, integrating TCGA datasets, clinical 
samples, and both in vivo and in vitro experiments, sug-
gests that ACOX2 impedes the progression of liver cancer 
through the PPARα pathway (Zhang et al. 2021). Besides, 
ACOX2 deficiency also presents in primary malignant car-
diac tumors and estrogen receptor positive breast cancer 
(Zhou and Wang 2017; Bjorklund et al. 2015). For CEL 
(Carboxyl ester lipase), it was reported that it is highly 
expressed in breast cancer tissues and is associated with poor 
overall survival and clinical pathological characteristics (Cui 
et al. 2019). Lipids not only serve as a source of energy and 
constituents of cell membranes but also play a crucial role 
in regulating macrophage signal transduction and polariza-
tion, thereby exerting a central role in macrophage activation 
and function (Yan and Horng 2020). CD1D is a recognized 
lipid antigen-presenting molecule, and numerous studies 
have suggested its role in presenting glycolipid antigens to 
iNKT cells (Invariant natural killer T cells). Upon activation, 
iNKT cells secrete granzyme B and perforin, leading to the 
killing of target cells (Voskoboinik et al. 2015). In addi-
tion to the classical pathway, recent research indicates that 
CD1D serves as a critical regulator of lipid metabolism in 

Fig. 7   A The scatter plot visualizes the relationship between CD1D 
gene expression levels and the abundance of six types of immune 
cells. B UMAP plot displays the composition of eight main cell clus-
ters derived from CM samples. C UMAP plot displays the expression 
level of CD1D in the whole cell clusters. D The violin plot visualizes 

the expression levels of CD1D in eight cell clusters. E The relation-
ship between CD1D expression levels and signal transduction from 
monocytes/macrophages to other immune cells. F The relationship 
between CD1D expression levels and signal transduction from other 
immune cells to monocytes/macrophages
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macrophages, playing a key role in their immune function. 
CD1D regulates lipid uptake by controlling the internaliza-
tion of the lipid transport protein CD36, thereby promoting 
macrophage activation, cytokine secretion, and polariza-
tion. Its deficiency results in macrophage metabolic repro-
gramming, altering macrophage phenotype and activation 
(Brailey et al. 2022). In our study, we found that CD1D is 
expressed in antigen-presenting cells and monocyte-derived 
macrophage clusters within the CM’s TIME, with minimal 
expression in other immune cells. We first provided the 
description of intercellular communication among immune 
cells in the CM's TIME under varying CD1D expression 
levels. CD1D expression levels primarily affect cell com-
munication from other cell lineages to monocyte-derived 
macrophages, influencing the interaction between HLA-A/
B/C/E/F and CD8A, while there is no significant difference 
in cell communication from monocyte-derived macrophages 
to other immune cells. CD8A encodes the CD8a chain of 
the CD8 protein, which plays a crucial role in cell-mediated 
immune responses and T cell development (Du et al. 2023). 
CD8A expression positively correlates with CD8+ T cell 
and M1 macrophage infiltration, and high-density CD8+ T 
cells in bladder cancer patients are associated with better 
immune therapy response and improved prognosis (Zheng 
et al. 2022; Jansen et al. 2019). HLA loci are categorized 
into two classes: HLA class I and HLA class II. HLA-A/B/C, 
part of class I, present antigenic peptides to CD8+ T cells by 
binding to T-cell receptors (TCRs). Meanwhile, HLA class 
II molecules present antigen peptides, crucial for identifying 
nonself, infected, or malignant cells. In cancer, tumor cells 
employ numerous mechanisms to evade immune surveil-
lance, and the loss of HLA is one of these mechanisms (von 
Boehmer 1991).

Fatty acids’ role in cutaneous melanoma (CM) has gained 
recent attention. We've constructed a novel fatty acid-related 
CM prognostic model, predicting patient outcomes and drug 
sensitivity, while also identifying TIME characteristics. Our 
nomogram offers excellent 3–5 year outcome predictions. 
Among seven model genes, CD1D's function in the TIME is 
notable, supported by single-cell analysis using public data. 
However, this study does have limitations. This study relies 
solely on public data, possibly introducing selection bias. 
Future experiments and validation with larger clinical sam-
ples are of significant importance. Furthermore, CD1D's role 
in CM's TIME requires further research, integrating clinical 
data for improved accuracy.

Conclusion

This study integrates transcriptomic data from public data-
bases related to CM. It identifies six differentially expressed 
fatty acid-related genes with prognostic significance and 

uses them to construct a novel prognostic risk model with 
strong predictive capabilities. The risk score calculated by 
this model reflects to some extent the immune cell infiltra-
tion in the individual’s TIME and their sensitivity to drugs. 
The nomogram built based on this model exhibits robust 
prognostic predictive ability. The role of CD1D in the TIME 
of CM has been preliminarily analyzed at the single-cell 
level. The findings of this study will aid in risk stratification, 
prognostic assessment, and treatment response prediction for 
CM patients. Furthermore, this study provides insights and a 
theoretical foundation for future research on the role of fatty 
acid-related genes in CM.
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