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Abstract
Purpose Bone metastasis is a significant contributor to morbidity and mortality in advanced prostate cancer, and early 
diagnosis is challenging due to its insidious onset. The use of machine learning to obtain prognostic information from 
pathological images has been highlighted. However, there is a limited understanding of the potential of early prediction of 
bone metastasis through the feature combination method from various sources. This study presents a method of integrating 
multimodal data to enhance the feasibility of early diagnosis of bone metastasis in prostate cancer.
Methods and materials Overall, 211 patients diagnosed with prostate cancer (PCa) at Gansu Provincial Hospital between 
January 2017 and February 2023 were included in this study. The patients were randomized (8:2) into a training group 
(n = 169) and a validation group (n = 42). The region of interest (ROI) were segmented from the three magnetic resonance 
imaging (MRI) sequences (T2WI, DWI, and ADC), and pathological features were extracted from tissue sections (hematoxy-
lin and eosin [H&E] staining, 10 × 20). A deep learning (DL) model using ResNet 50 was employed to extract deep transfer 
learning (DTL) features. The least absolute shrinkage and selection operator (LASSO) regression method was utilized for 
feature selection, feature construction, and reducing feature dimensions. Different machine learning classifiers were used to 
build predictive models. The performance of the models was evaluated using receiver operating characteristic curves. The 
net clinical benefit was assessed using decision curve analysis (DCA). The goodness of fit was evaluated using calibration 
curves. A joint model nomogram was eventually developed by combining clinically independent risk factors.
Results The best prediction models based on DTL and pathomics features showed area under the curve (AUC) values of 
0.89 (95% confidence interval [CI], 0.799–0.989) and 0.85 (95% CI, 0.714–0.989), respectively. The AUC for the best pre-
diction model based on radiomics features and combining radiomics features, DTL features, and pathomics features were 
0.86 (95% CI, 0.735–0.979) and 0.93 (95% CI, 0.854–1.000), respectively. Based on DCA and calibration curves, the model 
demonstrated good net clinical benefit and fit.
Conclusion Multimodal radiomics and pathomics serve as valuable predictors of the risk of bone metastases in patients 
with primary PCa.
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Lasso  Least absolute shrinkage and selection 
operator
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LR  Logistic regression
MRI  Magnetic resonance imaging
NaiveBayes  Naive Bayes classifier
ROC  Receiver operating characteristic
PCa  Prostate cancer
PSA  Prostate specific antigen
ROI  Region of interest
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Introduction

According to 2022 American Cancer Society statistics, 
Prostate cancer (PCa) is the top-ranking cancer and second 
leading cause of death among men (Siegel et al. 2022). Bone 
metastasis is a frequently observed consequence of the pro-
gressive development of prostate cancer. Patients with bone 
metastasis in PCa tend to experience a significantly worse 
prognosis (Chen et al. 2016). Studies have indicated that 
patients with PCa who develop bone metastases have signifi-
cantly higher mortality rates than those without bone metas-
tases. The median survival rates and tumor-specific survival 
rates with bone metastases reduced to 24 and 32 months, 
respectively, and the chance of mortality was shown to be 
1.5 times higher in patients with bone metastases compared 
to those with lymph node metastases (Gandaglia et al. 2015). 
Moreover, early bone metastases in most patients with PCa 
lack typical clinical manifestations; Consequently, the 
absence of efficient early diagnostic methods frequently 
results in a delay in the initiation of treatment.

A whole-body bone scan is currently the primary imag-
ing method for detecting bone metastases early in PCa. 
However, the standard criteria for using a whole-body bone 
scan to screen for bone metastases are lacking. In clini-
cal practice, the presence of bone metastases foci is pre-
dicted based on symptoms and clinical indicators, such as 
PSA levels, GS, body mass index, and AAPR (ALB/ALP). 
However, the sensitivity and specificity of the indicators are 
poor (Gillessen et al. 2018; Janssen et al. 2020; Karademir 
et al. 2013; Chang et al. 2014). Therefore, it is necessary to 
explore and identify simpler and more effective indicators 
to predict the risk of bone metastases in PCa. This will help 
guide treatment in clinical practice.

Artificial intelligence (AI) technologies are being widely 
adopted in medical research and have shown significant ben-
efits in various aspects of cancer management, including 
preoperative diagnosis, prognostic evaluations, and predic-
tion of survival. In recent years, several studies have demon-
strated success in predicting bone metastases in PCa through 

clinical indicators and imaging techniques (Liao et al. 2018; 
Hannan et al. 2019). Zhang et al. (2020) demonstrated the 
effectiveness of radiomics in predicting bone metastases 
in patients with PCa, with significantly improved predic-
tion accuracy when combined with clinical indicators. This 
offers valuable insights to clinicians in cancer treatment and 
management.

Radiomics is centered around the proficient extraction 
of quantitative image features to precisely depict the areas 
affected by lesions effectively. These radiomics features rep-
resent tissue and lesion characteristics and can be integrated 
with laboratory results, histopathology, genomics, and other 
histological data via machine learning algorithms. They play 
a crucial role in solving a range of clinical issues, including 
precise disease diagnosis, treatment evaluation, and progno-
sis prediction (Lambin et al. 2017; Aerts et al. 2014; Gillies 
et al. 2016). With advancements in AI, deep learning (DL) 
is making its way into medical research. DL is an advanced 
machine learning algorithm that is a subfield of AI. It mim-
ics the neural connections in the human brain, enabling the 
learning and extraction of complex high-level features from 
input data through multilayer neural networks. This ability 
renders automated classification, recognition, and prediction 
of data feasible (Tran et al. 2021).

Pathomics is an innovative approach that combines 
pathology, imaging, and computer science to understand dis-
ease processes. The use of pathomics has revolutionized the 
diagnosis and treatment of diseases by digitizing and auto-
mating the analysis of histological images using computer 
vision and machine learning algorithms. Through digital 
images, computers can identify and extract entities, such as 
cells and blood vessels, and classify and characterize them. 
This information improves disease classification, grading, 
prognostic evaluations, and treatment planning. Pathomics 
also has the potential to reveal the structure and arrange-
ment of tumor cells and the tissue microenvironment (Chen 
et al. 2022). It has been shown to be effective in predicting 
the diagnosis and prognosis of various cancers, including 
bladder, gastric, and liver (Chen et al. 2021, 2023; Hindson 
2023; Qu et al. 2023).

To help with the prediction of bone metastasis in primary 
PCa, we developed a model based on radiomics and pathom-
ics data and explored its clinical application in PCa.

Materials and methods

This retrospective study received approval from the Eth-
ics Committee of Gansu Provincial Hospital (Approval ID: 
2021-260) and was exempted from obtaining informed con-
sent. Moreover, the research project strictly adhered to the 
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AI model training specifications provided by the Lanzhou 
University unit.

Participants

Our retrospective cohort study screened 454 patients diag-
nosed with PCa between January 2017 and February 2023 
at Gansu Provincial Hospital. The inclusion criteria were (a) 
patients with a first accepted pathological diagnosis of PCa, 
(b) magnetic resonance imaging (MRI) scans conducted 
within 30 days of PCa diagnosis to avoid confounding effects 
of medications on measurements, (c) absence of primary 
pelvic bone diseases, such as primary osteosarcoma, bone 
cysts, hematological disease, and fractures, (d) availability 
of complete prognostic information, (e) no missing informa-
tion on whole-body bone visualization, and (f) availability 
of pathology tissue sections. The exclusion criteria were (a) 
poor-quality MRI images that hindered the identification 
of the exact tumor location, (b) patients who had received 
chemotherapy or radiotherapy prior to pelvic MRI, (c) poor-
quality pathology sections with non-uniform staining, (d) 

lesions with unclear boundaries, and (e) incomplete clini-
cal information. Figure 1 illustrates the patient recruitment 
process.

Prostate tumor segmentation

The regions of interest (ROIs) were segmented from T2WI, 
DWI, and ADC modalities by an experienced radiologist 
(R.W) and a seasoned urologist (FH.Z) who specialized 
in interpreting pelvic and prostate MRI, respectively. The 
physicians were blinded to the presence of bone metastases 
before labeling. The ITK-SNAP software was used for the 
labeling process. In cases of disagreement regarding specific 
tumor lesions, a consensus was attained after a discussion 
between the two experts. The original image files and ROI 
files were saved for the extraction of radiologic features. 
In addition, three-dimensional (3D) ROIs were cropped for 
the extraction of deep transfer learning (DTL) features. To 
ensure data quality, N4 bias correction was performed on all 
images before segmentation. The Digital Imaging and Com-
munications in Medicine (DICOM) standard file format, 

Fig. 1  The flow chart for the exclusion of patients. *BM, bone metastases
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which is commonly used for managing medical imaging 
information and related data, was normalized to a resampled 
format with a resolution of 1 mm × 1 mm × 1 mm.

One pathologist (Z.X) retrospectively collected hematox-
ylin and eosin (H&E)-stained pathology sections of patients 
with primary PCa. From this collection, typical PCa pathol-
ogy sections measuring 20 × 10 times were selected. The 
sections were then divided into multiple pieces using a crop-
ping tool to remove the white background. To ensure data 

consistency, these patches in jpg format underwent pixel 
normalization and were resampled to a standardized resolu-
tion of 448 × 448. This standardization was done to facilitate 
the extraction of pathomics features.

Fig. 2  The schematic outline of the study

Table 1  Comparison of clinical 
data of prostate cancer patients 
in training set and validation set

PSAD PSA density; TP Total Protein; UA Uric Acid; ALP Alkaline phosphatase; ALB Albumin; 
AAPR AAPR = ALB/ALP; UA Uric Acid; Fbg Fibrinogen; NEUT Neutrophil; Lym lymphocyte; NLR 
NLR = NEUT/Lym; PLT Platelet; HB Hemoglobin; M Monocyte; SII Systemic immune inflammatory 
index, SII = PLT* NLR;
a statistical analysis performed using t test
b statistical analysis performed using Mann–Whitney U test

Characteristic Train (n = 169) Test (n = 42) t/Z p value

Age (year) 73.00 (66.00.78.00) 74.00 (67.00.78.25) − 0.438b 0.661
Gleason score 8.00 (8.00.9.00) 8.00 (8.00.9.00) − 0.522b 0.602
tPSA 58.36 (27.07, 100.00) 75.65 (36.35, 100.00) − 1.293b 0.196
fPSA 9.06 (3.23.28.51) 12.74 (3.27, 30.00) − 0.829b 0.407
PSAD 1.09 (0.49.1.92) 1.49 (0.76, 2.28) − 1.315b 0.189
BMI 23.53 (21.12.25.35) 23.14 (20.50, 25.23) − 1.045b 0.296
TP 68.30 (63.35, 72.50) 67.00 (63.43, 72.75) − 0.048b 0.962
AAPR 0.47 (0.31.0.61) 0.44 (0.31.0.58) − 0.661b 0.509
UA 320.00 (265.00, 374.50) 334.50 (288.75, 383.25) − 0.623b 0.533
Ca 2.25 (2.16.2.32) 2.23 (2.14.2.35) − 0.205b 0.838
P 1.07 (0.93.1.19) 1.08 (0.98.1.19) − 0.298b 0.766
Fbg 3.46 (2.84, 4.35) 3.30 (2.83, 4.38) − 0.315b 0.753
NLR 2.62 (1.80.4.19) 2.79 (1.65, 4.07) − 0.088b 0.930
M 0.44 (0.36, 0.56) 0.44 (0.35, 0.57) − 0.023b 0.982
Hb 137.49 + 25.22 142.86 ± 16.33 − 1.687a 0.095
PLT 173.00 (139.00.210.00) 175.00 (143.00, 233.75) − 0.851b 0.395
SII 508.65 (271.97, 773.12) 463.56 (346.01.927.75) − 0.572b 0.567
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Feature extraction

After marking the ROIs, radiomics features were extracted 
using PyRadiomics (http:// www. radio mics. io/ pyrad iomics. 
html), and non-task layer avgpool features were extracted 
using the ResNet 50 model. A total of 2553 radiomics fea-
tures and 6144 DTL features were extracted. To obtain a 
final set of 3379 features, the features with field 0 were 
removed from the DTL set. In addition, 2048 pathomics 
features were extracted from each patch, and these features 
were averaged across all patches to derive the pathomics 
features for each patient.

Feature selection and signature construction

Z scores were utilized to standardize the dataset 
(

column−mean

std

)

 , while Spearman’s correlation coefficient was 
used to assess inter-observer agreement for feature extrac-
tion. Features with a correlation coefficient above 0.9 were 
deemed reliable and were used to create a feature set for 
subsequent analysis. The least absolute shrinkage and selec-
tion operator (LASSO) algorithm was then applied in a step-
wise search to identify the best combination of accuracy-
based features. Multiple iterations were performed to 
evaluate the importance of each feature. For determining 
hyperparameters, such as the number of features, a fivefold 
cross-validation method was applied to the training dataset. 
Various classifiers, including LR, SVM, NaiveBayes, 
XGBoost, MLP, KNN, ExtraTrees, LightGBM, and Gradi-
entBoosting, were utilized to construct predictive models for 
radiomics and pathomics.

Model evaluation

To evaluate the predictive performance of the model, we 
plotted receiver operating characteristic (ROC) curves and 
calculated their corresponding area under the curve (AUC) 
values. Furthermore, we employed decision curve analy-
sis (DCA) curves and calibration curves to assess the net 
clinical benefit and goodness of fit of the model. Finally, 
we generated a nomogram incorporating clinical indicators, 
radiomics features, DTL features, and pathomics features.

Statistical analysis

Statistical analyses were conducted using the Statistical 
Package for Social Sciences (SPSS) 23.0 and R statistical 
software. The Kolmogorov–Smirnov test was used to assess 
the normality of the measures. Measures that followed a nor-
mal distribution were reported as Mean ± standard deviation, 
(x ± s), whereas those that did not conform to a normal dis-
tribution were reported as the median (upper and lower quar-
tiles). For comparing the measures, an independent samples 
t test was used when the data were normally distributed and 
had equal variance. The Mann–Whitney U test was utilized 
in cases of skewed distribution or unequal variance of data. 
To construct the prediction model and create the nomogram, 
a multi-factor logistic regression analysis was conducted to 
identify independent predictors. The discriminative power 
of the model was evaluated using the AUC of the ROC. In 
addition, the clinical value of the model was assessed by 
plotting DCA. A p value of < 0.05 was considered statisti-
cally significant to detect meaningful differences.

Fig. 3  a The LASSO coefficient profiles of the features. Different color line shows corresponding coefficient of each feature; b the tuning param-
eter (λ) selection in LASSO model

http://www.radiomics.io/pyradiomics.html
http://www.radiomics.io/pyradiomics.html
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Results

Clinical characteristics

The study flow is depicted in Fig. 2. A total of 243 par-
ticipants met the exclusion criteria, and 211 patients were 
included in the study. Among the included patients, 106 were 
classified into the bone metastasis group based on the results 
of a whole-body bone scan, while the remaining 105 patients 
were categorized into the non-bone metastasis group.

The basic clinical characteristics of the patients in the 
training and validation groups are presented in Table 1. 

Statistical analysis revealed no significant difference in the 
incidence of bone metastases between the two groups.

Feature selection and signature construction

A total of 2553 radiomics features and 3379 DL features 
were extracted from the T2WI, DWI, and ADC images of 
each patient, and 2048 pathomics features were extracted 
from each H&E-stained sections. To determine the hyperpa-
rameters, including the number of features in the model, we 
performed fivefold cross-validation on the training dataset 
(Fig. 3a). Utilizing the LASSO regression model (Fig. 3b), 
we identified 44 radiomics features, 23 DTL features, and 13 

Fig. 4  The accuracy based on various classifiers: a radiomics features; b DTL features; c pathomics features; d combined model
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pathomics features with non-zero coefficients, which were 
found to be closely associated with bone metastases. Based 
on the selected features, we constructed prediction models 
by employing various classifiers (Fig. 4a–d).

Validation of radiomics and pathomics signature

The best predictive model for extracting radiomics features 
using PyRadiomics for bone metastasis in PCa was found to 
be the Support Vector Machine (SVM) model, with an AUC 
value of 0.86 (95% confidence interval [CI], 0.735–0.979; 
Fig. 5a). Furthermore, the Logistic Regression (LR) model 
utilizing DTL features demonstrated the best predictive per-
formance, with an AUC value of 0.89 (95% CI, 0.799–0.989; 

Fig. 5b). The Naive Bayes model showed the highest predic-
tive capability for pathomics features, with an AUC value 
of 0.85 (95% CI, 0.714–0.989, Fig. 5c). Finally, the most 
effective predictive model, combining radiomics features, 
DTL features, and pathomics features using the SVM model, 
provided an AUC value of 0.93 (95% CI, 0.854–1.000; 
Fig. 5d). The confusion matrices for the different models are 
presented in Fig. 6a–d, and the calibration curves are shown 
in Fig. 7a–d. This enabled the assessment of the calibration 
performance of the models.

Fig. 5  The ROC curve of the prediction model in the validation set. a Radiomics features; b DTL features; c pathomics features; d combined 
model. *ROC, receiver operating characteristic curve; AUC, area under the curve
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Nomogram construction and validation

The nomogram demonstrated the enhanced diagnostic per-
formance of radiomics and pathomics models compared to 
the clinical models (Fig. 8). Therefore, the integration of 
multi-omics models provides an improved predictive ability 
for determining the status of bone metastases in PCa.

Clinical use

The DCA curves indicate a favorable net clinical benefit of 
both the radiomics and pathomics prediction models using 
the DTL features (Fig. 9a–d). Also, the DCA curves for the 
nomograms showed a superior net clinical benefit for the 
combined models (Fig. 10), providing valuable guidance for 
clinicians in formulating treatment strategies.

Discussion

In this study, a radiomics feature was developed and vali-
dated to assess the bone metastasis status of PCa through 
quantitative analysis of MRI images. In addition, DL fea-
tures were extracted from both MRI and histopathological 
images and analyzed to demonstrate their relationship with 

bone metastasis in PCa, independent of traditional clinical 
and pathological risk factors. Importantly, data from differ-
ent sources were integrated, and a combined model was con-
structed that significantly improved the prediction of bone 
metastasis in PCa patients.

DL has been extensively employed in PCa research. 
Bulten et al. (2020) developed an automated DL system 
that showed efficacy with comparable performance to assist 
pathologists in GS grading. Likewise, Hiremath et al. (2021) 
demonstrated that DL algorithms can effectively identify 
clinically significant PCa through MRI. Wang et al. also con-
structed prediction models for bone metastases in primary 
PCa based on radiomics features and clinical risk factors; 
the AUC values were 0.87 and 0.84, respectively (Zhang 
et al. 2020; Wang et al. 2019). These results align well with 
our study, which showed an AUC of 0.86. Furthermore, we 
constructed prediction models using DTL features and path-
omics features, and their best models yielded AUC values of 
0.89 and 0.85, respectively. Lastly, we integrated radiomics 
features, DTL features, and pathomics features to build a 
composite model, which yielded the best prediction model 
with an AUC value of 0.93. The model also demonstrated a 
good net clinical benefit as indicated by the DCA curve. The 
calibration curve further confirmed a better fit.

Fig. 6  The confusion matri-
ces for the different models. 
a Radiomics features; b DTL 
features; c pathomics features; d 
combined model
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In this study, we utilized ResNet50 as the model for 
extracting deep learning features. ResNet50 excels at effi-
ciently training deep neural networks, avoiding the issues of 
gradient vanishing and exploding. As a result, it performs 
exceptionally well in image classification tasks and can han-
dle larger and more complex datasets. Due to its wide-rang-
ing applications and outstanding performance, ResNet50 
has become a benchmark model for many computer vision 
tasks, finding extensive use in areas such as object detection, 
image segmentation, and image generation. It has shown 
remarkable results in the evaluation of breast cancer, gastric 

cancer, spinal metastasis, and other tumors (Mo et al. 2023; 
Iwaya et al. 2023; Liu et al. 2023). Furthermore, the features 
we extract are not task specific and are not dependent on a 
single task. These features typically have lower dimensions 
and encode crucial information from the input data, making 
them suitable for subsequent tasks such as feature visualiza-
tion and data clustering. They provide valuable insights for 
data analysis.

Remarkable advancements through the application of 
multi-omics approaches have been noted in the field of 
oncology. Wang et  al. and Wan et  al. demonstrated the 

Fig. 7  The calibration curve analysis indicates that all models are well-calibrated, with the joint model exhibiting the highest level of calibration. 
a Radiomics features; b DTL features; c pathomics features; and d combined model
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Fig. 8  The nomograms based 
on different model features

Fig. 9  The decision curves (DCA) show that the models all have a good net clinical benefit. a Radiomics features; b DTL features; c pathomics 
features; and d combined model
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effectiveness of models that combined radiomics and path-
omics features for predicting the prognosis of colorectal 
cancer after surgery and the pathological response to neo-
adjuvant radiation therapy in locally advanced rectal cancer 
(Chang et al. 2014; Wang et al. 2022). These data highlight 
the significance of integrating multi-omics techniques in the 
comprehensive assessment of patients with cancer, aiming to 
maximize the utilization of multifaceted patient information 
and its evaluation. Multi-omics encompasses diverse tech-
nical tools, including genomics, transcriptomics, proteom-
ics, metabolomics, and pathomics, to gain a comprehensive 
understanding of the interactions between different mol-
ecules within an organism at the cellular and tissue levels 
(Pan et al. 2022; Lu et al. 2021). By harnessing multi-omics 
data, the disease onset and progression mechanisms can be 
comprehended more thoroughly, leading to improvements 
in diagnosis, disease prediction, and the development of 
personalized treatment plans. For example, Vanguri et al. 
(2022). have assessed the ability of immunotherapy to pre-
dict the response in non-small cell lung cancer by integrating 
radiology, histopathology, and genomics features. Machine 
learning methods were utilized to incorporate multimodal 
features into a predictive model for assessing the risk. The 
study revealed that the multimodal model achieved an AUC 
value of 0.80, surpassing the predictive power of any indi-
vidual variable. Furthermore, Kang et al. (2023). argue that 
multi-omics offers substantial advantages for conducting 
a comprehensive evaluation of tumor patients. Integration 
of imaging phenotypes with multi-omics biological data 
enables a comprehensive assessment, characterization, and 
decoding of the tumor microenvironment, facilitating the 

prediction of patient prognosis. It also enhances the under-
standing of radiological features, as well as the pathological, 
physiological, and biological basis of the tumor. Consid-
ering the advancements in AI, the clinical applications of 
multi-omics are expected to broaden further.

There are some limitations in this study. First, the gen-
eralizability of the model is limited due to the small sam-
ple size and the majority of samples being from a single 
province. We plan to mitigate this limitation by collecting 
a larger sample size from multiple centers to provide robust 
evidence for the clinical application of the model. Second, 
this study was retrospective and relied on the quality of the 
collected H&E section images. Due to the unavailability of 
annotations for pathology slices, we were only able to select 
the typical tumor area for feature extraction. For a more 
comprehensive analysis, we intend to collect relevant tumor 
specimens to obtain Whole Slide Image (WSI).

Nevertheless, our model demonstrates an excellent pre-
dictive ability. We are committed to continuously refining 
and updating our model as the DL algorithm iterates. Our 
ultimate goal is to provide clinicians with more accurate 
guidance, ultimately benefiting patients to a great extent.

Conclusion

In summary, the radiomics and pathomics models developed 
in this study based on feature extraction using DL algo-
rithms can predict the risk of bone metastases in patients 
with primary PCa. Having this information may change the 
clinical management strategy for patients with PCa.
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