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Abstract
Background M2 macrophage were revealed to play a crucial role in immune evasion and immunotherapies. This study aims 
to explore the potential significance of M2 macrophage-related genes in colon adenocarcinoma (COAD) by analysizing the 
transcriptome data in a comprehensive way.
Methods We collected RNA-sequencing (RNA-seq) data of COAD from The Cancer Genome Atlas (TCGA) and Gene 
Expression Ominibus (GEO) databases. We calculated the immune infiltration scores of every sample using CIBERSORT 
algorithm. Through weighted gene co-expression network analysis (WGCNA), we picked out M2 macrophage-related genes. 
With these genes we screened out prognosis related genes which were utilized to construct a signature to assess the prognosis 
of patients. To extend the potential application of the signature, we also calculated the correlations with immune infiltra-
tion. Finally, we applied techniques such as quantitative reverse transcription polymerase chain reaction (qRT–PCR) and 
immunoblotting (Western Blotting) to validate the RNF32 gene in cellular in vitro assays.
Results Seven M2 macrophage-related genes signature was constructed, which was an excellent prognostic predictor in two 
independent groups. The high-risk group showed lower immune infiltration and poorer response to immunotherapies than 
those of the low-risk group. The cell vitro experiments showed that the expression level of RNF32 was upregulated in colon 
cancer cell lines compared with normal cell lines. Moreover, we found that RNF32 may promote the proliferation, migration 
and invasion of cancer cells in vitro by inhibiting apoptosis.
Conclusion A novel M2 macrophage-related gene signature affects the prognosis and immune characteristics of colon cancer.
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Abbreviations
COAD  Colon adenocarcinoma
TCGA   The cancer genome atlas
GEO  Gene expression omnibus
WGCNA  Weighted gene co-expression network analysis
GEPIA  Gene expression profiling interactive analysis
LASSO  Least absolute shrinkage and selection 

operator

PI  Propidiumlodide
IPS  Immunophenscores
TME  Tumor microenvironment
TNM  Tumor node metastasis
T  Tumor
N  Node
M  Metastasis
OS  Overall survival
AUC   Area under curve
ROS  Receiver operating characteristic
Bax  Bcl-2-associated X
Bcl-2  B-cell lymphoma-2

Introduction

As one of the most common malignancies, colon can-
cer accounts for approximately 10% of all tumor mortal-
ity worldwide (Sung et al. 2021). Currently, combination 
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treatments of surgical resection and chemotherapies have 
contributed enormously to significantly enhanced survival of 
patients (Dehal et al. 2018). However, the deficiency of clini-
cal treatments and the increasing mortality call for in-depth 
understanding of the mechanistic underpinning and molecu-
lar features of colon cancer. Besides, clinical and histopatho-
logical characteristics of tumors could not always predict 
patients' outcomes accurately due to tumor heterogeneity.

Over the past decade, the notions and scopes of immuno-
therapies have been solidified and extended. Also, several 
immunotherapies have been approved for cancer treatment, 
including immune checkpoints inhibitors (ICIs) (Robert 
2020) and chimeric antigen receptor T (CAR-T) cell ther-
apy (Miliotou and Papadopoulou 2018), etc. Though vari-
ous immunotherapies have been successfully applied, it is 
critical to note that many patients are subjected to resistance 
to immunotherapies and only a small proportion of patients 
benefit from them (Ott et al. 2013). Successful immuno-
logic elimination of cancer cells relies on further investi-
gatation of the interplay between the immune system and 
tumor cells. Also, immune escape to ICIs might be a notable 
problem, whose molecular mechanisms have been far from 
elucidation.

Previous researches have indicated that evasion to check-
point inhibitors or other immunotherapies might be medi-
ated by infiltrated tumor-associated macrophages (De Henau 
et al. 2016; Kaneda et al. 2016). Traditionally, macrophage 
could differentiate into two phenotypes: M1 and M2 in dif-
ferent microenvironment (Wang et al. 2019), which are 
mainly involved in pro-inflammatory and anti-inflammatory 
responses respectively (Murray et al. 2014). Besides, it is 
generally believed that the recruitment and infiltration of 
M2 macrophage in tumors might contribute to the immune 
escape of tumor cells, and thereby advance tumor progres-
sion and metastasis (Ho and Liu 2016). Moreover, “re-edu-
cating” M2 macrophage to repolarize into M1 macrophage 
has shown potential in immunotherapies (Ho and Liu 2016). 
Therefore, the genes related to M2 macrophage are promis-
ing therapeutic biomarkers and drug targets in the clinical 
practice.

Moreover, as omics data rapidly accumulate, the transla-
tion of these data into clinical application might be a major 
challenge and also a favorable opportunity for personalized 
medicine. Herein, we screened out M2 macrophage-related 
genes and investigated their clinical application at a tran-
scriptome level. We also provided some references for in-
depth molecular characterization of macrophage polariza-
tion, which has seldom been reported to date.

Materials and methods

Data collection

From the official website of TCGA (https:// portal. gdc. can-
cer. gov/ repos itory), we downloaded the RNA-Seq data along 
with relevant clinical information of 398 COAD tumor and 
39 normal samples. The validation dataset was downloaded 
from the GEO database (http:// www. ncbi. nlm. nih. gov/ geo/, 
GSE17536) (Smith et al. 2010) which contains gene expres-
sion microarray and clinical information of 177 COAD 
patients. Finally, we normalized the RNA expression level 
of the two datasets using “limma” R package.

Immune cell infiltration and weighted gene 
co‑expression network analysis

We calculated immune infiltration scores with the CIBER-
SORT algorithm (Newman et al. 2015). Then we compared 
the differences between normal and tumor samples. We also 
performed weighted gene co-expression network analysis 
(WGCNA) to figure out M2 macrophage-related genes. First, 
we created a co-expression network with the expression data 
of TCGA dataset and “WGCNA” R package. We selected 
150 as the cutHeight to remove the outliers. Second, similar 
genes were classified into the same module with an optimal 
softPower (Zhang et al. 2018). Subsequently we calculated 
the correlations between modules and immune cells infiltra-
tion. Genes in these corresponding modules significantly 
correlated with M2 macrophages were extracted for subse-
quent analyses.

Construction and validation of M2 
macrophage‑related gene prognostic model

We divided patients from the TCGA dataset into training and 
test cohorts by seven to three randomly. Then, we conducted 
univariate cox regression to screen out prognostic genes in 
the training cohort. We conducted the least absolute shrink-
age and selection operator (LASSO) regression to construct 
a prognostic signature. We also plotted Kaplan–Meier 
(KM) survival curves of the genes in the signature with 
the “survival” R package. Based on the median riskscore 
of the training cohort, patients from the three cohorts were 
assigned to high-risk and low-risk groups separately. Risk 
score could be calculated by ∑ (expression * βi), β was 
the coefficient of every gene in the signature. We validated 
the signature with the KM curves. We also calculated and 
displayed the 1-, 3-, 5-year receiver operating characteristic 
(ROC) curves of the signature with “time-ROC” R package. 
We calculated the 1-year ROC curves of such clinical traits 
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as age, gender, stage and compared them with that of the 
signature.

In TCGA cohort, univariate and multivariate Cox pro-
portional hazards analysis were carried out to explore the 
efficacy of the riskscore when incorporated into clinical 
traits (age, gender, stage). We calculated the correlations of 
the riskscore with the survival statuses of patients in TCGA 
cohort. We also compared the expression levels of the genes 
in the signature between different risk groups. In addition, 

Fig. 1  Cluster classification. The Immune landscape of all colon adenocarcinoma (COAD) samples. Different colors indicated different immune 
cells proportion. B Differences of immune cell infiltration between normal and tumor samples
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we displayed clinical traits of different risk groups and cal-
culated the differences. Age, stage, riskscore met the criteria 
and were utilized to develop a nomogram to predict out-
comes with the “rms” R package. We evaluated the validity 
of the nomogram using the Hosmer–Lemeshow test.

Exploration of the correlations between immune 
infiltration and the signature

As the signature was constructed based on M2 macrophage-
related genes, we explored the correlations between immune 
infiltration and the riskscore. We calculated the immune 
score, stromal score and ESTIMATE score of every sample 
in TCGA dataset with the “estimate” R package (Galon et al. 
2012). Then we displayed the differences between different 
risk groups. By collecting the checkpoint genes from previ-
ous studies, we compared the expression levels of check-
point genes between high-risk and low-risk groups, and 
calculated and presented the correlations of the riskscore 
with checkpoint genes.

Differences of immunotherapy responses 
between the groups

To further explore the potential of the signature in immu-
notherapies, we obtained the Immunophenoscores (IPS) 
of COAD patients from The Cancer Immunome Database 
(TCIA, https:// tcia. at/ home) (Charoentong et  al. 2017). 
Patients with higher IPS are more likely to respond to 
immune-checkpoint inhibitors. We compared the IPS 
between different risk groups.

Expression verification signature genes

Gene expression profiling interactive analysis (GEPIA), a 
widely used online database, which contains RNA-sequenc-
ing expression data of tumor and normal samples from 
TCGA and genotype tissue expression projects (GTEx). 
GEPIA provides online interaction and customization anal-
yses for tumor expression profiling as well as expression 
profiling of normal tissues (Tang et al. 2017). In this study, 

we used GEPIA to compare the mRNA expression levels of 
signature genes in COAD and normal tissues.

Cell culture

Human normal intestinal epithelial cells (NCHM460) were 
obtained from IMMOCELL in Xiamen, China, and human 
colon cancer cell lines (Caco2, HCT15, HCT116, HT29, 
Lovo, SW480, SW620) were obtained from icell in Shang-
hai, China. All these cells were cultured in media contain-
ing 10% fetal bovine serum (FBS) and 1% penicillin/strep-
tomycin (P/S) at 37 °C in a humidified atmosphere of 5% 
CO2. The culture media used were DMEM, MEM, 1640, 
McCOY’s 5A, McCOY’s 5A, F12K, L15 and L15, which 
were purchased from Gibco BRL in the USA.

Overexpressing RNA and siRNA knockdown

SW480 or Caco2 cells were seeded at a density of 3.0 ×  105 
cells per well in a six-well plate. Transfection was performed 
using Lipofectamine 2000 reagent (BL623A, Biosharp) with 
pre-engineered human overexpression of PCDH-RNF32, 
RNF32 siRNA, or negative control (Genecefe, Jiangsu, 
China) in respective cell lines. The sequences of PCDH-
RNF32 and RNF32 siRNA were listed in Supplementary 
Table S1. All transfection steps were carried out as per the 
instructions of the transfection reagent.

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR)

Total RNA was extracted from the cell lines using Total 
RNA Extraction Reagent (DP451, Tiangen) following 
standard protocols. The extracted RNA was used for cDNA 
synthesis through the cDNA Synthesis Kit (MR05401S, 
Monad). Gene expression was quantified using SYBR Green 
Master Mix (MQ10301S, Monad) on a Roche LightCycler 
480. The expression levels were calculated by the  2−ΔΔCT 
method. For normalization, β-Actin and GAPDH were used 
as an internal reference. The primers used for qRT-PCR 
amplification were synthesized by Wuhan Jinkairui Bioen-
gineering Co. Ltd. (Wuhan, China). Specifically, the ampli-
fication primers for the human RNF32 coding region were 
TGG GAG AAG GTG AAA CAG CG (forward) and TGA AAG 
CAG CAC CTG AGG AC (reverse).

Western blotting

To perform Western blotting, cells were first lysed with cold 
RIPA buffer containing PMSF. The isolated total protein 
was separated by SDS-PAGE and transferred onto PVDF 
membranes, which were blocked in 5% milk for 2 h and 
then incubated with primary antibodies against GAPDH 

Fig. 2  Screening out M2 macrophage-related genes through weighted 
gene co-expression network analysis (WGCNA). A All samples were 
clustered to detect outliners and 150 was selected as the cutHeight. 
B The optimum soft threshold power was calculated and 6 was 
selected as the value to build a clustering tree. C The module dissec-
tion threshold was set as 0.25 to merge similar modules. D 21 mod-
ules were generated. E The correlations between gene modules and 
immune cells In every module, the above was the correlation coef-
ficient, the below was the p value

◂

https://tcia.at/home)
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(60,004–1-Ig, Proteintech),RNF32 (GTX46903, GeneTex), 
Bcl-2 (ab182858,Abcam) and Bax (ab32503,Abcam), both 
diluted to 1:1000, for 1.5 h at 37 °C. Secondary antibodies 
were then applied and incubated for 1 h at room tempera-
ture. Blot development was carried out using ECL Western 
Blotting Substrate.

Cell proliferation assays

Cell proliferation was assessed using the Cell Counting 
Kit-8 (G4103, Servicebio) as per the manufacturer’s guide-
lines. A total of 0.5 ×  104 cells per well were seeded into 
a 96-well plate for the CCK-8 assay. After 96 h, 10 µl of 
the Cell Counting Kit solution was added to each well and 
further incubated at 37 °C for 4 h. The absorbance values at 
450 nm were measured with a microplate reader (ELx808, 
BioTek). The experiment was repeated at least three times 
to validate the results.

Migration and invasion assays

For the migration assay, SW480 or Caco2 cells treated 
with specific agents were added at a concentration of 
2.0 ×  105 cells/ml to the upper chambers of Transwell inserts 
(14,341, LABSELECT), while the lower chamber was sup-
plemented with 10% FBS. After 48 h of incubation, the 
non-migrated cells were discarded, while the migrated cells 
were stained with 0.1% crystal violet solution. Sections were 
visualized under an inverted fluorescent microscope (mag-
nification × 200) for downstream analysis.

Apoptotic cell death assay

Following transfection for 24 h, cells were collected by 
treating them with EDTA-free trypsin at 300 g and cen-
trifuging them for 5 min at 4 °C. The cells were then 
washed twice with pre-chilled PBS, each time at 300 g 
and centrifuged for 5 min at 4 °C. Subsequently, 1–5 ×  105 
cells were collected and resuspended using 100 μL of 
L1 × Binding Buffer. Annexin V-647 (5 μL) and PI (5 μL) 
were added per tube, which was then incubated for 15 min 
on ice before analyzing immediately using BD Fortessa 
flow cytometry. The data collected was analyzed using 
BD FACSDiva™ software (BD Biosciences) and Flowjo 
v10 software (Flowjo).

Statistical methods

Wilcoxon test was performed to compare the differences 
between two groups. Spearman correlation was utilized 
to calculate correlation coefficients between the risk 
score and checkpoint genes. Statistical analyses were 

Fig. 3  Construction of a prognostic signature. A–B Through the least absolute shrinkage and selection operator (LASSO) regression, a 7-gene 
signature was constructed based on the optimum λ

Table 1  Genes involved in the 
signature and their coefficients

No Gene Coefficient

1 FUT11 0.832
2 APOBEC3C 0.263
3 RNF32 0.739
4 NPL 0.625
5 ELOVL3 0.496
6 TNIP3 − 0.691
7 CD1B − 1.676
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Fig. 4  Validation of the risk signature. A–D Overall survival (OS) of 
the low-risk group was significantly better than that of the high-risk 
group in the training TCGA cohort (A), the test cohort (B), the whole 
TCGA cohort (C) and the GEO cohort (D). E The univariate regres-

sion analysis of the risk score in combination with age, stage, gen-
der in the TCGA cohort. F Age, stage, risk score met the criterion of 
p < 0.05 and were incorporated into the multivariate Cox regression 
analysis
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Fig. 5  Assess the performance of the risk signature. A The area under 
the ROC curves (AUCs) were separately 0.743 for 1-year, 0.814 for 
3-year, and 0.762 for 5-year in the TCGA cohort. B The AUCs were 
separately 0.689 for 1-year, 0.617 for 3-year, and 0.640 for 5-year in 
the GEO cohort. C In the TCGA cohort, the AUC of the signature 

demonstrates a higher value in comparison to age, gender and stage. 
D As the risk score arose, the number of dead patients increased 
obviously. E The heatmap indicated that the expression levels of five 
genes in the signature were higher in the high-risk group while those 
of the other two genes were lower generally

Fig. 6  Correlations between riskscore and clinical traits. A The dif-
ferences of stage, T, N and M between high- and low-risk groups 
were significant. B Stage IV accounted for a higher proportion 

in high-risk group while stage I and II did that in low-risk group. 
(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)
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conducted with R software (4.1.1) and p < 0.05 was sta-
tistically significant.

Results

Immune landscape

The overall research design is illustrated in Fig. S1. Through 
CIBERSORT algorithm, immune infiltration scores of 
every COAD sample were displayed in Table S2. We plot-
ted an immune landscape of all samples and displayed it in 
Fig. 1A, with different colors indicating different immune 
cells proportion. Besides, the differences of immune infil-
tration between normal and tumor samples were displayed 
in Fig. 1B.

Screening out M2 macrophage‑related genes 
through WGCNA

All samples were clustered to detect outliners and 150 was 
selected as the cutHeight (Fig. 2A). The optimum soft power 
was calculated (Fig. 2B) and 6 was selected to merge simi-
lar samples and construct a clustering tree (Fig. 2C). The 
module cutHeight was set as 0.25 to merge similar modules, 
and thus 21 modules were created (Fig. 2D). The correla-
tions between modules and immune cells were displayed in 
a heatmap (Fig. 2E). Green and magenta modules containing 
1991 genes met the criterion of p < 0.001 and were collected 
for further study.

Identification of a 7‑gene signature

We developed a prognostic signature from 1991 genes iden-
tified in the green and magenta modules. Using univariate 
Cox regression analysis, we have detected 15 genes that 
are linked to patient overall survival (OS). The results are 
depicted in Table S3. Subsequently, we constructed prognos-
tic signature for seven genes (FUT11, APOBEC3C, RNF32, 
NPL, ELOVL3, TNIP3, CD1B) using LASSO (Fig. 3A, B) 
and multifactorial stepwise Cox regression analyses. The 
riskscore could be calculated via the gene expression level 
and coefficients in Table 1.

Validation of the risk signature

Patients of the training, test, GEO cohorts were separately 
stratified into low-risk and high-risk groups based on the 
median riskscore of the training cohort. The KM curves 
displayed better OS of the low-risk group in the training 
(Fig. 4A), the test (Fig. 4B), the whole TCGA (Fig. 4C) 
and the GEO cohorts (Fig. 4D). In the TCGA cohort, both 
univariate (Fig. 4E) and multivariate (Fig. 4F) Cox propor-
tional hazard analyses revealed age, stage, and risk score 
as independent prognostic factors. The area under the ROC 
curves (AUCs) were 0.743, 0.814, 0.762 respectively for 
1-, 3-, 5-year in the TCGA cohort (Fig. 5A). The AUCs 
were separately 0.689, 0.617, 0.640 for 1-, 3-, 5-year in the 
GEO cohort (Fig. 5B). In the TCGA cohort, the signature 
exhibits a higher AUC compared to age, gender and stage, 
as depicted in Fig. 5C.

Fig. 7  Nomogram construction. A A nomogram was constructed to 
facilitate prognosis prediction. The points of age, stage and risk score 
were calculated in the nomogram and the total points could indicate 

the survival probabilities of patients. B Calibration curves show that 
the survival rates predicted by the nomogram differ somewhat from 
those actually observed. C Decision curve analysis of nomogram



 Journal of Cancer Research and Clinical Oncology (2024) 150:3131 Page 10 of 17

Fig. 8  Immune infiltration differences between groups. A The immu-
nescore of high-risk group was significantly lower than that of low-
risk group. B In general, the expression levels of immune-checkpoint 
genes were higher in low-risk group. C The signature was positively 

correlated with expression levels of four immune-checkpoint genes 
while negatively correlated with expression levels of 17 immune-
checkpoint genes. Six genes in the signature were positively corre-
lated with checkpoint genes except RNF32
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As the risk score arose, the number of dead patients 
increased dramatically (Fig. 5D). The heat maps in Fig. 5E 
illustrate that the expression levels of the genes FUT11, 
APOBEC3C, RNF32, NPL, and ELOVL3 were notably 
higher in the high-risk group, whereas the expression lev-
els of the genes TNIP3 and CD1B were predominantly 
lower. Combined with Fig. 6A, we can find that there are 
significant differences in tumor stage, T, N, M, between 
the high-risk group and the low-risk group. In order to 
more intuitively represent the distribution of tumor stage 
in the high-risk and low-risk groups, we performed sta-
tistics on tumor stage, and found that the difference in 
stage between the high-risk group and the low-risk group 
was mainly concentrated in stage I, II, and IV, with a high 

proportion of stage IV in the high-risk group, and a high 
proportion of stage I and II in the low-risk group (Fig. 6B).

Nomogram construction and validation

With significant clinical characteristics (age and stage), we 
constructed a nomogram to prognosis prediction (Fig. 7A). 
The point of age, stage and risk score was calculated with 
reference to the nomogram and the total points could indi-
cate the survival probabilities of patients. The calibration 
curves showed that the survival rates predicted by the nom-
ograms differed somewhat from those actually observed 
(Fig. 7B), which may be related to other confounding fac-
tors or insufficient sample size. The results of decision curve 
analysis (DCA) demonstrated that the nomogram exhibited 
superior net benefit and a broader threshold probability 
range for predicting the survival rates of patients (Fig. 7C).

Fig. 9  Differences of immunotherapy responses between groups. A–D The immunophenscores (IPS) of four groups (pos: positive; neg: nega-
tive) in low-risk group were significantly higher than those of high-risk group
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Immune infiltration differences between groups

The results of immunescore, stromalscore and ESTIMATEs-
core were listed in Table S4. The immunescore of high-risk 
group was significantly lower while stromalscore and ESTI-
MATEscore displayed no significant differences (Fig. 8A). 
In general, the expression levels of immune-checkpoint 
genes were lower in high-risk group (Fig. 8B). The riskscore 
was positively correlated with expression levels of four 
immune-checkpoint genes while negatively correlated with 
17 immune-checkpoint genes. Six genes in the signature 
displayed positive correlation with checkpoint genes except 
RNF32 (Fig. 8C).

Differences of immunotherapy responses 
between groups

The IPS of four groups (Table S5) in high-risk group were 
significantly lower (Fig. 9A-D), indicating lower immuno-
genicity from immune-checkpoint inhibitors in the high-risk 
group.

Validation of risk signature based on GEPIA 
database

Based on the Gene Expression Profiling Interactive Analy-
sis (GEPIA) databases, we found that there were no sig-
nificant differences of APOBEC3C, CD1B, TNIP3, NPL, 
FUT11, ELOVL3 in COAD samples compared to normal 
samples. However, the expression of RNF32 was signifi-
cantly higher in COAD samples (Fig. 10A-G).

Validation of RNF32 expression and biological 
function in colon cancer cells

Based on above findings, RNF32 had a significantly higher 
expression level in COAD samples, implying a probable 
involvement in the development or progression of COAD 
that necessitates further validation. Therefore, we further 
examined the expression and function of RNF32 in vitro 
research. As shown in Fig. 11A, the expression profile 
of RNF32 was significantly elevated in different colon 

Fig. 10  A–G Using the GEPIA database, expression level of signature genes in COAD compared with normal samples. Red represents tumor 
samples and gray represents normal samples. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)
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cancer cell lines when compared to that of normal intesti-
nal epithelial NCHM460 cells. Moreover, we investigated 
the effects of knockdown and overexpression of RNF32 
expression in colon cancer cell lines (Caco2 and SW480). 
The knockdown efficiency of three si-RNA32 sequences 
was assessed in Caco2 cells using qRT-PCR (Fig. 11B). 
Our data revealed that si-RNA32-2 and si-RNA32-3 
exhibited the most substantial inhibitory effect on RNF32 
expression. After transfecting SW480 cells with the 
PCDH-RNA32 overexpression plasmid, we observed a sig-
nificant increase in the mRNA levels of RNA32, as dem-
onstrated in Fig. 11C. The Western blot analysis revealed 
that the knockdown of RNF32 prominently reduced the 
expression level of RNF32 protein in colon cancer cells, 
whereas the overexpression of RNF32 resulted in a signifi-
cant increase in RNF32 protein expression in those cells 
(Fig. 11D–E).

To expand our comprehension of RNF32's biologi-
cal role in COAD, we conducted experiments exploring 
the impacts of RNF32 knockdown and overexpression 
on Caco2 and SW480 cells' biological behavior. The cell 
viability of Caco2 cells was substantially reduced upon 
transfection with si-RNF32-2,3 relative to si-NC-trans-
fected cells (Fig. 11F). Similarly, migration, prolifera-
tion, and invasion capacity drastically declined in these 
cells (Fig. 11G). On the contrary, SW480 cells transfected 
with PCDH-RNF32 exhibited pronounced cell viability 
improvement compared to PCDH-NC-transfected cells 
(Fig. 11H), and there was significant enhancement of cell 
migration, proliferation, and invasion capacity as well 
(Fig. 11I). In addition, our study also found that overex-
pression of RNF32 inhibited apoptosis and the level of 
Bax/Bcl-2 apoptotic protein expression was significantly 
decreased in cancer cells (Fig. 12A, C), whereas knock-
down of RNF32 enhanced apoptosis and the level of 
Bax/Bcl-2 apoptotic protein expression was significantly 
increased in cancer cells (Fig. 12B, D). Thus, RNF32 may 
promote the proliferation, migration and invasion of colon 
cancer cells by inhibiting apoptosis.

Discussion

As the cardinal roles in tumor immunosuppression, M2 
macrophage were revealed structurally and function-
ally activated in various cancers. Extensive evidence has 
underlined the importance of M2 macrophage in tumor 
progression in various cancers. For instance, M2 mac-
rophage-secreted CHI3L1 activated IL-13Rα2 expression 
of gastric cancer cells and advanced the metastasis (Chen 

et al. 2017). In Colon Cancer, M2 macrophage induced 
colorectal tumor cells migration through macrophage–gen-
erated exosomes which downregulate BRG1 expression 
(Lan et al. 2019). In vivo, the tumor secreted secretory 
protein cathepsin K which could stimulate the M2 polari-
zation and thereby facilitate the progression of CRC (Li 
et  al. 2019). Also, M2 macrophage was also found to 
related to the therapeutic responses to ICIs which have 
achieved great success in cancer immunotherapies. For 
instance, repolarization M2 tumor-associated macrophages 
to M1 macrophages was also found to potentiate the anti-
cancer efficacy of ICIs (Choo et al. 2018).

So far, the roles of M2 macrophage in carcinogenesis 
and immunotherapies have not been elucidated completely 
because of the complexity and the heterogeneity in differ-
ent contexts. Thus, integrative analysis of M2 macrophage 
at a transcriptome level could advance the research. In this 
study, we aimed to screen out M2 macrophage-related genes 
and investigate the clinical implication of these genes in 
COAD through transcriptome sequencing data. Notably, the 
riskscore based on M2 macrophage-related genes were nega-
tively related to immune infiltration and immune-checkpoint 
genes. In particular, expression levels of immune-checkpoint 
genes were generally higher in low-risk group, which indi-
cates the protective role of the immune infiltration and was 
consistent with previous studies (Disis 2010; Waldner et al. 
2006). Also, the signature could stratify patients who were 
more inclined to response to ICIs. And thereby the signature 
might be an indicator of immune infiltration and responses 
in COAD.

Given that M2 macrophage was correlated with the poor 
outcome of patients in multiple solid tumors such as colo-
rectal cancer (Edin et al. 2012), non-small-cell lung can-
cer (Cao et al. 2019), pancreatic cancer (Hu et al. 2016). 
To assess the potential of M2 macrophage-related genes as 
panels of biomarkers for OS prediction of COAD patients, 
we also constructed a signature comprising of seven genes. 
To evaluate the precision of the signature, we conducted 
both internal and external validation. The efficacy of the 
signature was excellent in two cohorts, and besides the risk 
stratification showed much consistency with clinical stage. 
Together, all this provided a novel tool for prognosis predic-
tion and added new evidence of the mysterious roles of M2 
macrophage in the context of COAD microenvironment at 
a transcriptome level.

In the signature, most genes positively contributed to 
the riskscore, which indicated their roles as oncogenes. 
Fucosyltransferase 11 (FUT11), activated by transcription 
factor HIF1α, advanced the proliferation and mobility of 
hepatocellular carcinoma cells (Ruan et al. 2021). In a 
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meta-analysis, expression of FUT11 in renal cell carci-
noma was positively related to disease progression (Zodro 
et al. 2014). The aberrant upregulation of members in ring 
finger protein family, as cancer/testis genes, was associ-
ated with colon cancer progression and migration (Wang 
et al. 2016; Wei et al. 2020). Our results also suggested 
the same role of ring finger protein 32 (RNF32) in COAD. 
CD1B was cell surface glycoprotein associated with anti-
gen presentation function and involves in both innate and 
adaptive immune responses. Previous study in localized 
prostate cancer also indicated that low CD1B expression 
could indicate poorer recurrence-free survival (Lee et al. 
2019). Currently, there are few researches available about 
the roles of these genes in COAD and our research might 
provide some evidences.

Our subsequent experimental investigations revealed 
that RNF32 is significantly overexpressed in colon cancer 

cells, RNF32 may promote the proliferation, migration, 
and invasion of colon cancer cells by inhibiting apopto-
sis. This observation aligns with previous studies linking 
the RNF32 to the pathogenesis of esophageal cancer from 
Barrett’s esophagus (Wang et al. 2014). However, given 
the scarcity of research regarding RNF32’s involvement 
in colon cancer, our findings offer valuable insight into 
the potential of RNF32 as a novel therapeutic target for 
COAD patients.

Overall, our study contributed to the identification 
of M2 macrophage-related genes and proposed a novel 
transcriptome-based approach to predicting COAD prog-
nosis. Moreover, we assessed the biomarker’s potential 
in immunotherapy. Nonetheless, our research has limita-
tions and shortcomings, including a lack of comprehen-
sive understanding of RNF32’s functional phenotype, 
and future experiments involving animal models are 
necessary to address these issues.

Conclusion

In this study, the division into different risk groups based on 
M2 macrophage-related genes could stratify patients accu-
rately. Also, the risk score was negatively correlated with 
immune infiltration. Moreover, the signature could provide 
some references for precise immunotherapy.

Fig. 11  A qRT-PCR analysis of RNF32 expression differences in 
colon cancer cell lines. B–C qRT-PCR analysis of RNF32 expres-
sion in colon cancer cells after knockdown and overexpression of the 
gene. D–E Western Blot analysis of RNF32 expression in colon can-
cer cells after knockdown and overexpression of the gene. F, H Effect 
of knockdown and overexpression of RNF32 on proliferative capacity 
of colon cancer cells. G, I Effect of knockdown and overexpression 
of RNF32 on the migration and invasion ability of colon cancer cells. 
(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)

◂

Fig. 12  A Impact of overexpression of RNF32 on the level of apop-
tosis in colon cancer cells. B Effect of knockdown of RNF32 on the 
level of apoptosis in colon cancer cells. C Effect of overexpression of 

RNF32 on Bax/Bcl-2 apoptotic protein in colon cancer cells. D Effect 
of knockdown of RNF32 on Bax/Bcl-2 apoptotic protein in colon 
cancer cells. (*p < 0.05, **p < 0.01, ***: p < 0.001, ****p < 0.0001)
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