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Abstract
Background Accurate and non-invasive estimation of MGMT promoter methylation status in glioblastoma (GBM) patients is 
of paramount clinical importance, as it is a predictive biomarker associated with improved overall survival (OS). In response 
to the clinical need, recent studies have focused on the development of non-invasive artificial intelligence (AI)-based methods 
for MGMT estimation. In this systematic review, we not only delve into the technical aspects of these AI-driven MGMT 
estimation methods but also emphasize their profound clinical implications. Specifically, we explore the potential impact of 
accurate non-invasive MGMT estimation on GBM patient care and treatment decisions.
Methods Employing a PRISMA search strategy, we identified 33 relevant studies from reputable databases, including Pub-
Med, ScienceDirect, Google Scholar, and IEEE Explore. These studies were comprehensively assessed using 21 diverse 
attributes, encompassing factors such as types of imaging modalities, machine learning (ML) methods, and cohort sizes, 
with clear rationales for attribute scoring. Subsequently, we ranked these studies and established a cutoff value to categorize 
them into low-bias and high-bias groups.
Results By analyzing the 'cumulative plot of mean score' and the 'frequency plot curve' of the studies, we determined a cutoff 
value of 6.00. A higher mean score indicated a lower risk of bias, with studies scoring above the cutoff mark categorized as 
low-bias (73%), while 27% fell into the high-bias category.
Conclusion Our findings underscore the immense potential of AI-based machine learning (ML) and deep learning (DL) 
methods in non-invasively determining MGMT promoter methylation status. Importantly, the clinical significance of these 
AI-driven advancements lies in their capacity to transform GBM patient care by providing accurate and timely information 
for treatment decisions. However, the translation of these technical advancements into clinical practice presents challenges, 
including the need for large multi-institutional cohorts and the integration of diverse data types. Addressing these challenges 
will be critical in realizing the full potential of AI in improving the reliability and accessibility of MGMT estimation while 
lowering the risk of bias in clinical decision-making.
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Introduction

Glioblastoma multiforme (GBM), is a malignant and 
aggressive brain tumor that spreads aggressively (Jena 
et al. 2022) and typically originates in the adult cerebrum, 
the brain's largest region (Peri 2022). The median survival 
time in GBM patients is approximately nine months; 
however, those with standard-of-care surgery and adjuvant 
chemoradiation may extend to 15–16 months (Brain tumor 
segmentation and overall survival period prediction in 
glioblastoma multiforme using radiomic features-Das 
2022; Tamimi and Juweid 2017). The economic burden 
has been prominently evidenced among the affected 
individuals receiving systemic medication (Raizer et al. 
2015; Kumthekar et al. 2014). Neurological examinations 
and neuroimaging techniques are the primary diagnostic 
tools for GBM identification but could be employed only 
after the disease has significantly progressed. It is often 
treated with surgery to remove the tumour mass, followed by 
radiotherapy and chemotherapy. Regardless of the surgery's 
extent, GBM resection is frequently insufficient, resulting 
in relapse or even recurrence (Silantyev et  al. 2019). 
Various imaging modalities are employed, such as magnetic 
resonance imaging (MRI), computer tomography (CT), 
digital subtraction angiography (DSA), and to a certain 
extent, even X-Rays for non-invasive determination of GBM. 
Although there are multiple neuro-imaging paradigms, MRI 
is preferred to other modalities for various reasons, including 
its ability to image discrete anatomical regions in arbitrary 
planes with excellent tissue contrast and the lack of evident 
negative health impacts on patients (An empirical study 

of different machine learning techniques for brain tumor 
classification and subsequent segmentation using hybrid 
texture feature|SpringerLink 2022).

O6-methylguanine-DNA methyltransferase (MGMT), 
a DNA-repairing enzyme, is located on the 10q26.3 
chromosome (Methylguanine-DNA methyltransferase 
(MGMT)|Radiology Reference Article|Radiopaedia.org 
2022). High MGMT activity reduces the effectiveness of 
alkylating drugs and is a poor prognostic indicator. How-
ever, when the MGMT promoter is methylated, alkylating 
agents are more potent (Methylguanine-DNA methyltrans-
ferase (MGMT)|Radiology Reference Article|Radiopaedia.
org 2022). It has been examined as a potential biomarker 
of susceptibility to alkylating chemotherapy, particularly 
temozolomide (TMZ), because of its relatively high fre-
quency in GBM, which may vary depending on the method 
employed for its assessment (Stupp et al. May 2009). In a 
study by Hegi et al. (MGMT Gene Silencing and Benefit 
from Temozolomide in Glioblastoma|NEJM”. 2022), the 
authors stated that “Among patients whose tumor contained a 
methylated MGMT promoter, a survival benefit was observed 
in patients treated with temozolomide and radiotherapy; 
“their median survival was 21.7 months as compared with 
15.3 months among those who were assigned to only radio-
therapy. In the absence of methylation of the MGMT pro-
moter, there was a smaller and statistically insignificant dif-
ference in survival between the treatment groups”.

In current clinical practice in the era of precision medi-
cine, invasive methods such as biopsy and surgery are the 
only reliable ways for MGMT methylation status determi-
nation. However, such invasive methods carry threats and 
difficulties, for example, neurologic injury, complications, 
cost, etc. Hence, researchers have been working on AI-based 
methods using medical imaging modalities for MGMT sta-
tus determination in the last couple of years. The idea of AI 
is to strive to use computers to imitate human intelligence. 
This field has much potential in radiological-based medical 
applications (Jena et al. 2021). Deep Learning (DL) is a par-
adigm of AI wherein the programmer tries to create a math-
ematical model mimicking the human mind called Neural 
Networks (NN). These DL models, coupled with the tradi-
tional Machine Learning (ML) models, possess the potential 
to detect the methylation status of the MGMT gene, among 
other biomarkers, without needing a biopsy directly from 
the neuro-image sequences. In a study by Xi et al. (2018) 
Support Vector Machines (SVMs) have been used to analyze 
radiomics features for utilizing the full potential of medical 
imaging as biomarkers of MGMT promoter methylation. 
The results revealed an accuracy of 86.59% using the T1, T2, 
and enhanced T1CE image features of the MRI scans of the 
98 GBM patients. This study stated that there is a space for 
the ML models to churn the neuro-imaging data into a viable 
option for biopsy. DL models, too, are showing promising 
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results. Chen et al. (2020) devised a DL pipeline to auto-
mate the prediction of MGMT status. They have considered 
106 GBM patients with contrast-enhanced T1W images and 
fluid-attenuated inversion recovery (FLAIR) images. Using 
a pipeline model consisting of both tumor segmentation 
and classification, they have concluded that their pipeline 
best works on FLAIR images with an 82.7 ± 5.6% accuracy. 
Their suggested pipeline reduced inter-observer variation in 
glioma segmentation, sped the tumour annotation process, 
and accurately predicted the MGMT methylation status. It 
would make finding molecular biomarkers from common 
medical imaging even easier. There is constant innovation 
in models designed to make the results indistinguishable 
from the biopsy ones.

In this study, we conducted a systematic review and 
analysis of 33 research articles on estimating MGMT 
promoter methylation using various AI methodologies and 
its ML and DL components. Thereafter, we have presented 
the recent developments in the contribution of AI as per the 
neurological perspective of MGMT methylation. Eventually, 
the bias analysis was performed on the selected studies, and 
principal findings and challenges were discussed.

Search strategy and statistics

Preferred reporting items for systematic reviews 
and meta‑analyses (PRISMA) model

We conducted an extensive literature search on PubMed, 
ScienceDirect, Google Scholar, and IEEE Explore using 
the PRISMA strategy (Fig. 1). The keywords included 
were: (Glioblastoma AND MGMT AND Machine Learn-
ing AND Artificial Intelligence), (Gliomas AND MGMT 
AND Machine Learning AND Deep Learning), and 
(MGMT AND (Machine Learning OR Deep Learning OR 
Artificial Intelligence OR Radiomics OR Radiogenomics) 
AND (gliomas OR glioblastomas)).

Using Clarivate Analytics' EndNote software's "Find 
Duplicates" option, a maximum of 258 papers were 
found and replicas were eliminated, leaving 184 entries. 
Studies unrelated to AI, irrelevant papers, and articles 
with inadequate data were the three exclusion criteria. 
The final 33 references for this study were chosen after 
applying the exclusion criteria to 105, 21, and 25 studies 

Fig. 1  The PRISMA model. I: Inclusion criteria, E: Exclusion criteria
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(designated as E1, E2, and E3 in Fig. 1), which were then 
located and discarded.

Statistical distribution and analysis based 
on various parameters

Dataset size (DS)

We observed that the data set size ranged from 34 to 418 
patients across the 33 publications. DS is the total number 
of patients used to capture images in MRI, CT, PET, or a 
combination of these three modalities. The distribution 
of the dataset in various studies is displayed in Fig. 2.

Studies with AI application

Figure 3a shows the prevalence of machine learning (ML) 
and deep learning (DL) methodologies. Most of the studies 
employed the ML methods rather than DL. This may be 
attributed to DL models requiring a good-quality dataset 
which is easily accessible.

AI methodologies

Though various modalities have been used to accurately 
detect MGMT status, the most prominent ones include 
Random Forests and Vector Machines. It has also been 
revealed that compared to individuals, the combination of 
modalities may be effective (Stupp et al. 2009). Moreover, 
DL models have higher accuracies than simple ML models. 

Fig. 2  The distribution of cohort size in several trials for AI-based MGMT detection

Fig. 3  a. Distribution of AI applications (ML and DL) across various 
studies. ML machine learning, DL deep learning. b Application of 
different AI methodologies for detecting MGMT status. ANN artifi-
cial neural network, CNN Convolutional neural network, kNN k-near-

est neighbors, SVM Support vector machines, FCN Fully Convolu-
tional Network. c Various imaging modalities are used in datasets. 
MRI magnetic resonance imaging, CT computed tomography, PET 
Positron emission tomography
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To detect MGMT status, various AI methodologies have 
been represented in Fig. 3b.

MRI—an efficient imaging modality to analyze GBM

MRI is a frequently employed technique that creates three-
dimensional, intricate anatomical images that help diagnose 
disease and monitor therapy. It detects changes in the 
rotational axis of protons in the water present in the living 
tissues (Magnetic Resonance Imaging (MRI)  2022). MRI 
plays a significant role in AI-based analysis. It can scan 
discrete anatomical locations in vivo with excellent tissue 
contrast with images that can be taken in any plane. Though 
CT and PET modalities are also very informative but are 
used to a lesser extent, the distribution of which has been 
represented in Fig. 3c.

GBM and MGMT

Glioma’s pathology: the WHO grading system

Glioma is a type of primary tumor that originates in the brain 
and spinal cord and initiates in the gluey supportive cells 
(glial cells) surrounding nerve cells (Stupp et al. 2009). Due 
to its complex nature, gliomas are often referred to as intra-
axial brain tumors. The prognosis and course of therapy are 
influenced by the type of glioma, and the treatment options 
include surgical, radiation therapy, chemotherapy, and 
targeted therapy.

Astrocytomas, ependymomas, and oligodendrogliomas 
are the three primary forms of gliomas, which are catego-
rized based on phenotypic cell features (Magnetic Reso-
nance Imaging (MRI) 2022). These cell gliomas are further 
divided into low-grade, atypical, and high-grade tumors 
based on cell morphology, mitotic activities, and molecular 
marker. The World Health Organization (WHO) grading sys-
tem recommends molecular markers with proven prognostic 
and therapeutic implications. For example, GBM is a type 
of glioma that has progressed to the fourth-grade (Lopes 
Oct. 2017; Mesfin and Al-Dhahir 2022). Figure 4 shows an 
MR scan of the GBM-affected brain, and Table 1 shows the 
histologic type and grade of glioma.

MGMT in GBM

MGMT is a DNA "suicide" repair enzyme. Transfer of methyl 
group from guanine's O6 site to its cysteine residues restores 
damaged guanine nucleotides without causing gene muta-
tion, cell death, or tumorigenesis from alkylating agents (Ger-
stner et al. 2009). MGMT gene is located on chromosome 
10q26.3 (Fig. 5), with a total length of 300,437 bp (Yu et al. 
2020). Methylation of the MGMT gene promoter significantly 

predicts prognosis for newly diagnosed GBM. MGMT has 
recently been linked to the therapeutic success of alkylat-
ing agent chemotherapy, specifically temozolomide (TMZ) 
treatment (Sharma et al. 2009). It is commonly believed that 
MGMT promoter methylation in patient tumors results in 
reduced MGMT protein production, and elimination of the 
DNA repair activity required for TMZ resistance as MGMT 
transcription may be repressed by promoter methylation 
in tumor cells (Brandes et al. 2017), according to Liu et al. 
(2006) and Pistollato et al. (2010), GBM stem cells, which 
the stem cell marker CD133 can recognize, express a high 
amount of MGMT and have significant tumor resistance to 
TMZ. According to CD133(-) glioblastoma-derived cancer 
stem cells show differential growth characteristics and molecu-
lar profiles-PubMed (2022), Beier et al. (2008), several stem 

Fig. 4  Structural MR (T1, T2, FLAIR and T1CE(or T1GD) scans of 
GBM Patients

Table 1  Glioma histologic Grading (Rasmussen et  al. 2017; New 
Strategies Take on the Worst Cancer-Glioblastoma-Scientific Ameri-
can 2022)

WHO grade Histologic type

GRADE I Subependymal giant-cell astrocytoma, Pilocytic 
astrocytoma

GRADE II Oligoastrocytoma, Diffuse astrocytoma, Gemistocytic 
astrocytoma, Pleomorftxanthoastrocytoma, 
Oligodendroglioma

GRADE III Gliomatosis cerebri, Anaplastic oligoastrocytoma, 
Anaplastic astrocytoma, Anaplastic 
oligodendroglioma

GRADE IV Glioblastoma, Glioblastoma with sarcomatosis
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cell types exhibit different MGMT protein expressions despite 
having equivalent MGMT promoter methylation status. It was 
further discovered that TMZ selectively destroys glioblastoma 
cancer stem cells in MGMT-negative cell lines, indicating this 
protein's potential in cancer treatment. The MGMT levels have 
been successfully manipulated to not only improve alkylat-
ing agent therapy but also to safeguard hematopoietic cells 
from the myelosuppressive effects of high-dose chemotherapy 
(Sharma et al. 2009).

Role of AI in current clinical practice

Recent development in predicting MGMT status.

Till now, numerous studies have demonstrated that 
MGMT promoter methylation is a significant predictive 
biomarker for TMZ resistance and poor progression-free 
survival in GBM patients (Yin et al. 2014; Gerstner et al. 
2009; Butler et  al. 2020; OncologyPRO 2019; Saxena 
et al. 2023a; Saxena et al. 2023b; Sareen et al. 2022). 
Methylation-specific polymerase chain reactions using 
surgical specimens are considered the gold standard for 
evaluating the MGMT methylation status; however, they 
require a large volume of tissue samples and strict sample 
cryopreservation procedures (Stupp et al. 2009). Other 
techniques, such as activity assays, immunohistochemistry, 
and methylation chip analysis, have technical limitations 
(Drabycz et al. 2010). These invasive procedures are also 
less helpful in hospitals due to the potential of insufficient 
biopsy samples, expensive detection costs, and the great 
complexity of the intralesional heterogeneity (18F-FDG-
PET-based Radiomics signature predicts MGMT promoter 
methylation status in primary diffuse glioma|Cancer 
Imaging|Full Text 2022).

As discussed in recent decades, experts have switched 
to finding correlations between clinical symptoms 
and genetic traits utilizing  non-invasive methods like 
radiomics (A Deep Learning-Based Radiomics Model 
for Prediction of Survival in Glioblastoma Multiforme-
PubMed 2022) to quantitatively extract and evaluate 
various noninvasive image data, including intensity 
distributions, spatial relationships, and patterns of textural 
heterogeneity (McGarry et al. 2016). And it is noticed 
the developments of radiomics models in radiology for 
predicting survival rates, distant metastasis, and molecular 
characterization (Kickingereder et al. 2016). In addition, 
numerous computer models were created to preoperatively 
predict the MGMT methylation status based on magnetic 
resonance imaging since it is thought that the MGMT 
methylation status is a significant predictive indicator 
for guiding GBM treatment decisions (MRI) (Xi et al. 
2018; Li et al. 2018; Wei et al. 2019). Le et al. (2020), 
recently proposed a radiomics-based eXtreme Gradient 
Boosting (XGBoost) model that demonstrated reasonably 
good performance for predicting the MGMT promoter 
methylation status, with an accuracy of 88.7% and an area 
under the receiver operating characteristics curve (AUC) 
of 0.896. Do et al. (Improving MGMT methylation status 
prediction of glioblastoma through optimizing radiomics 
features using genetic algorithm-based machine learning 
approach|Scientific Reports 2022), suggested a hybrid 
ML-based radiomics feature selection model to find 
the best radiomics feature sets and predict the MGMT 

Fig. 5  Representative diagram showing the MGMT gene located on 
chromosome 10q26.3 (Yu et al. 2020)



Journal of Cancer Research and Clinical Oncology (2024) 150:57 Page 7 of 22 57

promoter methylation status in response to the earlier 
work of Le et al. (2020). Most of the radiomics feature 
sets for categorizing MGMT methylation statuses provided 
by other studies were based only on one feature selection 
technique.  This study is the first to use the genetic 
algorithm-based hybrid feature selection approach for 
classifying MGMT methylation statuses in GBM.

To identify a radiomics feature subset that could accu-
rately predict the MGMT methylation statuses, their study 
set out to explore the viability of adopting a two-stage fea-
ture selection approach composed of feature selection carried 
out using the XGBoost algorithm followed by a GA wrapper 
model (GA wrapper is a feature selection mechanism where 
each feature is considered as a gene and a selected set of 
features as a chromosome). They noticed that the implemen-
tation of the GA resulted in a radiomics feature set, which 
displayed greater accuracy levels for MGMT methylation sta-
tus prediction than most of those reported in prior research. 
Additionally, their findings demonstrated that a smaller 
degree of prediction accuracy might be caused by either 
the inclusion of too few features (F-score feature set) or too 
many features. As a result, the GA provides a viable method 
for producing highly effective predictors without knowing 
the ideal number of features to be included in advance. This 
model with the highest performance (GA-RF) was tested on 
an independent dataset, which demonstrated that the model 
might be generalized to similar diseases. This cutting-edge 
model's ability to predict MGMT methylation status might 
benefit clinical decision-making by allowing for treatment 
strategies for patients with GBM even before surgery.

Challenges and opportunities

Despite the enormous promise of AI in tumor diagnosis, 
prognosis, and prediction, translations into clinical set-
tings are delayed because of several related difficulties (Ak 
et al. 2022). These substantial obstacles must be addressed 
to incorporate AI methods into healthcare settings. A key 
problem in predicting MGMT status using AI is the interpre-
tation of the algorithms, which are exceedingly complicated. 
Interpreting their inner workings is not straightforward; it is 
called a 'black box' nature (Cuocolo et al. 2020). This makes 
it harder for such technologies to be used in healthcare. An 
algorithm that is simple to understand enables evaluation of 
its results and offers suggestions for improvement. Although 
important, these algorithms rely heavily on available data 
interpretation standards, which can also introduce bias 
(Elmore et al. 2016). The findings of these algorithms have 
consistently outperformed human readings regarding repro-
ducibility and consistency; however, this leads to additional 
patient exams and overdiagnosis (Cuocolo et al. 2020).

The most challenging task in the next step is storing, 
managing, extracting, analyzing, integrating, visualizing, 

and communicating the information produced from the vast 
amount of accessible data (Pinta et al. 2021). Integrating 
such diverse and multivariate data in an economical, stand-
ardized, and safe way is crucial. Critical ongoing problems 
also include the nature and variability of the data. Despite 
the ease with which large amounts of imaging data are 
accessible, institutional heterogeneity (either intra- or inter) 
exists due to variations in scan protocols, technology, and 
post-processing procedures, which restricts the generaliz-
ability of findings (Pinta et al. 2021). In addition, there are 
variations in contrast enhancement procedures, arguments, 
and image acquisition settings. According to research, radi-
omic feature estimations still varied even when the identical 
scanning methodology was used for image acquisition. As 
a result, findings are less easily repeatable, hindering useful 
AI models' creation (Ger et al. 2018).

Another key problem connected with AI research is the 
restricted number of laboratories performing such research 
due to the costs and difficulties involved (Trivizakis et al. 
2020). Furthermore, one critical issue of implementing 
AI is the need for appropriate nested cross-validation to 
minimize overfitting, which is typical in AI (Saxena et al. 
2022). Finally, data on MGMT promoter status were only 
available for a selected patient subgroup of an overall trial 
population which can induce selection bias in the analysis 
(Yin et al. 2014).

AI in MGMT status prediction: a neuroimaging 
perspective

This section presents neuro-imaging perspectives on the 
recent advancements in the methods of MGMT methylation 
estimation under the artificial intelligence paradigm. 
Radiological scans have proved an effective non-invasive 
technique for early-stage MGMT prediction in patients 
suffering from GBM with screening and diagnosis, support 
for treatment regimens, prognosis evaluation, and follow-up 
for advanced-stage of glioblastoma (Jena et  al. 2022; 
Saxena et al. 2022). Recent years have seen the evolution of 
radiological features from semantic to radiomic hand-crafted 
and deep features. Semantic features are the qualitative 
characteristics that a skilled radiologist will typically derive 
from the clinical imaging directly to describe the lesion (An 
empirical study of different machine learning techniques 
for brain tumor classification and subsequent segmentation 
using hybrid texture feature|SpringerLink 2022; Rizzo et al. 
2018). To examine potential connections with biology and 
clinical outcomes, radiomic features, on the other hand, 
comprise extracting and evaluating quantitative information 
from medical images using mathematical algorithms, 
machine learning, and deep learning techniques. The 
anatomical and functional knowledge of MGMT genomics 
can be separately reflected by radiomic characteristics 
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retrieved from structural and functional imaging (Srivastava 
et al. 2019).

Radiomics can be coupled with artificial intelligence 
(AI) due to its superior capacity to handle vast amounts of 
data when compared to conventional statistical methods. 
Together, these fields' main goal is to unearth and meaning-
fully evaluate as much buried quantitative data as possible 
for use in decision support. Due to their impressive accom-
plishment in a variety of radiological tasks, both radiom-
ics and AI have recently attracted the attention (Radiomics 
with artificial intelligence: a practical guide for beginners-
PMC 2022). The traditional radiomics workflow uses an AI 
framework. It includes a number of processes, such as image 
acquisition, pre-processing, region of interest segmentation, 
feature extraction, feature selection, model selection, evalua-
tion, and validation with clinical implementation. Deep radi-
omics research is a part of deep learning (DL) technology, a 
branch of computer learning (ML). Image pre-processing is 
essential when dealing with clinical images with essential 
genomics information, such as MGMT, both for traditional 
and deep radiomics. Following pre-processing, the region 
of interest (ROI) has been identified, and radiomics features 
that contain genomics information have been retrieved from 
it. The radiomics feature may be hand-crafted or deep. The 
final step of the radiomics process is the model selection and 
data analysis from the radiomics feature for better clinical 
decision and treatment planning, as shown in Fig. 6.

Risk‑of‑bias (RoB) analysis

As mentioned before, by PRISMA strategy, we considered 
33 studies for MGMT methylation using AI and its compo-
nents, such as ML and DL. Moreover, we performed RoB 
analysis to check the bias in these studies to show that AI 
is viable for MGMT methylation status determination and 
analysis in GBMs. Each study has been analyzed on 21 
AI-based attributes such as image modalities, the objective 
of the study, the dataset size (in the number of patients), 
patients demography, feature extraction and selection, data 
preprocessing and augmentation, performance evaluation 
parameters like accuracy, sensitivity, specificity, precision, 
AUC of the ROC, the F-score, performance analysis met-
rics like the confusion matrix and ROC, statistical analy-
sis, regularization, hardware and software resources used. 
These attributes using AI features are initially qualitative 
and then quantified by assigning a number between 0 and 
1 based on the consensus of the AI scientist’s experience. 
The value of AI-based attributes has been set based on 
the attribute's strength, which ranges from 0 to 1. Then 
each study’s aggregate score is the sum of all attribute 
values for that selected study. The mean of each study was 
then calculated by dividing by the number of AI attributes 
considered (i.e., 21 in our case). Using this principle, all 
33 studies are ranked based on their mean scores, ranging 
from 0.820 to 0.410. We multiplied all the mean values 

Fig. 6  Complete Pipeline showing the MGMT promoter methylation 
status prediction with neuroimaging prospect under artificial intelli-
gence paradigms. This pipeline includes image acquisition with dif-

ferent preprocessing steps, image segmentation, numerous features 
extraction and the development of various ML and DL models
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with 10 to normalize the scores between 1 and 10, then 
plotted them in decreasing order (Fig. 7). The raw cut-off 
of 6.00 was determined based on the intersection of the 
“cumulative plot of the mean score” and “the frequency 
plot curve of the studies”. This raw cut-off mark estimates 
the whole number of studies into low-bias and high-bias 
categories. The higher the mean value, the lower the risk 
of bias; hence, studies above the cut-off mark belong to 
the low-bias category, while 27% belong to the high-bias 
category. The highly biased studies have not considered all 
AI attributes while evaluating the radiogenomics system 
or may have low proportioned values for the attributes 
considered.

Discussion

Principal findings

As per the best of our rigorous search and findings, this is 
the first study of its kind to demonstrate AI approaches in 
predicting the MGMT status in GBM and the most recent 
developments in its prediction. The PRISMA methodology, 
a well-established benchmark in the healthcare business, was 
used to identify 33 studies. The investigation revealed several 
statistical distributions based on many criteria, including 
(a) Dataset Size; (b) image modalities; (c) AI employed, 
and (d) AI modality. In the RoB analysis, we considered 

criteria such as; (a) image modalities, (b) the objective of 
the study, (c) the dataset size (in the number of patients), (d) 
the demography of the patients, (e) feature extraction and 
(f) selection, (g) data preprocessing, (h) data augmentation, 
(i) the number of performance evaluation parameters, (j) 
accuracy, (k) sensitivity, (l)specificity, (m) precision, (n) 
AUC of the ROC, (o) the F score, (p) performance analysis 
metrics like the confusion matrix and ROC, (q) statistical 
analysis, (r) regularization, (s) number of regularization 
methods, (t) hardware and (u) software resources.

The novelty of our study includes determining modality 
with higher efficacy of several AI models in predicting the 
MGMT status of GBM patients. Most research employed 
ML algorithms to predict the MGMT status of GBM 
patients. A DL model needs a huge number of training 
instances, which makes large, high-quality medical imaging 
pictures challenging or impossible to produce. It is many 
advantages over conventional approaches with hand-
crafted features, including being resistant to distortions like 
changes in form and having a lower computational cost. In 
addition, DL models have the advantage of automatically 
extracting features from the images. We have observed that 
the majority of the images used for diagnosis purposes are 
MRI images because the advanced MRI techniques such as 
diffusion tensor imaging, perfusion MR techniques such as 
arterial spin labeling, dynamic susceptibility contrast, MR 
spectroscopy technique, and dynamic contrast-enhanced 
imaging can aid with the morphology and function of tumors. 

Fig. 7  The ranking score technique shows the frequency distribution of radiogenomics studies for MGMT methylation in descending order, suc-
ceeded by the cumulative plot, showing the raw cut-off mark for bias analysis
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Though CT and PET modalities are also very informative 
but are used up to a lesser extent. Various modalities are 
used to predict the MGMT status, but we have observed that 
modalities like CNN, Boosting, Random Forests, and Vector 
Machines are mostly used. The observation has been made 
that a combination of modalities works better than a single 
modality. The models using DL techniques have resulted in 
higher accuracies than the models using ML methods. We 
have found that only 73% of the studies we considered have 
a low bias (mean > 6.0). Despite many exemplary studies 
with great performance evaluation metrics, we have found 
that they have not focused on large datasets.

Benchmarking table

The following benchmarking Table 2 compares some of 
the contributing research for MGMT promoter methylation 
estimation considered for the evaluation (Zhu et al. 2022; 
Zlochower et  al. 2020; Alhasan 2021; Wu et  al. 2021; 
Kempen et al. 2021), where 8 attributes were considered.

Recommendations and challenges

High-quality ground truth data, generalizable and 
interpretable methodologies, and the integration of user-
centric workflows are major obstacles to the promises of 
AI in radiology. Concerns over the "black box" character 
of these algorithms have waned in light of the ongoing 
advancement of methods, such as saliency mapping or 
principal component analysis, that may "unbox" the networks 
by examining internal algorithm feature vectors. So, it is 
recommended that a better mechanistic understanding of 
feature patterns and underlying biology will be helpful both 
for clinical acceptance and for improving the biological 
and treatment relevance of the patterns revealed by these 
methods.

The need for robust and thoroughly annotated data 
sets is AI research's biggest challenge. However, studies 
with relatively small sample numbers are likelier to have 
measurement errors. TCIA and BraTS have significantly 
produced consolidated, well-labelled data for glioma 
image processing. In contrast, non-glioma-based research 
has been constrained by the absence of a publicly avail-
able data set. However, most data are still isolated within 
various organizations and hospital systems. To increase 
the generalizability of an algorithm's performance across 
multiple imaging sites, acquisition parameters, and patient 
groups, more extensive and more diverse data sets are rec-
ommended (AlBadawy et al. 2018). Other approaches to 
enhancing data sets include statistical techniques to har-
monize the data sets and to introduce more consistent data 
collecting via the adoption of standardized neuro-oncol-
ogy imaging protocols across institutions (Ellingson et al. 
2017).

Although processing, expenses, and various institutions' 
ethical approval processes make managing multi-
institutional data, it is advised to manage it meticulously 
so that the radiogenomics study will turn out to be the best 
and most clinically trustworthy. For instance, if institutions 
cannot disclose their data owing to ethical concerns, they 
may release the AI models they have generated and test them 
on their cohort so that researchers can efficiently integrate 
the models and conduct additional analyses. Consequently, 
researchers could conduct their research with more reliable 
and applicable results (Saxena et al. 2022). Finally, when 
dealing with high-dimensional, small-sized datasets, 
the issue of ML model overfitting may be avoided using 
cross-validation to ensure that the test component does 
not interfere with the training process (Improving MGMT 
methylation status prediction of glioblastoma through 
optimizing radiomics features using genetic algorithm-based 
machine learning approach|Scientific Reports 2022).

Table2  Benchmarking table

SN Attributes Zhu et al. 2022 Zlochower et al. 
2020

Rizzo et al. (2018) Wu et al. 2021 Kempen et al. 2021 Samartha 
et al. 
(proposed)

1 Date Aug 2022 April 2020 November 2021 November 2021 May 2021
2 PRISMA × × ✔ × ✔ ✔
3 Number of studies – – 20 – 17 33
4 References 161 46 43 87 91 84
5 Bias Analysis × × × × × ✔
6 Statistical Analysis × × × ✔ ✔ ✔
7 AI Focus ML DL ML and DL ML ML ML and DL
8 Radio genomics ✔ × × ✔ ✔ ✔
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Conclusion

Here, multiple AI-based studies for MGMT promoter 
methylation estimation with numerous ML & DL 
architectures, datasets, accuracy, and other significant 
attributes have been presented. It is concluded that 
ML-based methods could be employed as filters, 
predictors, and classification methods to increase most 
cases' overall performance of the robust model. And 
DL-based methods demonstrated well performed for 
in-depth analysis of MGMT methylation estimation. 
An RoB analysis, considering 21 AI attributes, showed 
that 27% of studies belong to the high-bias category, 
and the remaining belong to the low-bias category. The 
highly biased studies have not considered all AI attributes 
while evaluating the radiogenomics system or may have 
lower proportioned values for the attributes considered. 
Though, there are specific challenges while implementing 
such AI-based methods for MGMT promoter methylation 
estimation. However, some promising results demonstrate 
that if the obstacles are carefully handled, these methods 
could play a vital role in the field of neuro-oncology in 
current clinical practice in the era of precision medicine.

Appendix A

Based on the consensus of the experienced AI engineering 
team and deep literature review, we developed the scheme 
for the weight matrix, in which 21 AI-based attributes 
were for all 33 studies, thus a total of 693 attributes 
involved. These AI attributes are initially qualitative and 
then quantified by assigning a number between 0 and 1, as 
shown in Table 3, which is known as the weight matrix. 
The attributes are assigned to values ranging from A1 to 
A21 Table 3).

Assigning weights to the attributes
A1 (Image modality): MRI = 0.5, PET = 0.6, CT = 0.4, 

MRI + PET = 1, MRI + CT = 0.7, CT + PET = 0.8; 
A2(Study objective): classification or segmentation = 0.5, 
both classification and segmentation = 1; A3 (Data-
set Size (# of patients)): < 100 = 0.6, 101–200 = 0.7, 
201–300 = 0.8, > 300 = 1; A4(Demographic info): 
no = 0.5, yes = 1; A5(Feature Extraction):hand-
crafted = 0.7 none = 0.5 automatic = 1; A6(Feature 
Selection): no = 0.2 and yes = 1; A7(Pre-Process-
ing): No pre-processing used = 0.5 and pre-processing 
used = 1; A8(Data Augmentation): No data augmenta-
tion = 0.5, with data augmentation (yes) = 1; A9(number 
of PE Parameters): 5 or more parameters = 1, 4 param-
eters = 0.9, 3 parameters = 0.8, 2 parameters = 0.7, 1 

parameters = 0.6; A10(Accuracy):converted to per-
centage and scored between 0 and 1 (eg, 50% = 0.5 
and 100% = 1); A11(Sensitivity): converted to percent-
age and scored between 0 and 1 (eg, 50% = 0.5 and 
100% = 1); A12(Specificity): converted to percentage and 
scored between 0 and 1 (eg, 50% = 0.5 and 100% = 1); 
A13(Precision):converted to percentage and scored 
between 0 and 1 (eg, 50% = 0.5 and 100% = 1); A14(F1 
score): converted to percentage and scored between 0 and 
1 (eg, 50% = 0.5 and 100% = 1; A15(AUC): Keep it as it is, 
if 0.99, the 0.99; A16(Performance Analysis Metrics):no 
ROC and Confusion Matrix and Boxplot = 0.2, Only con-
fusion matrix = 0.6,Only Boxplot = 0.7, Only ROC = 0.8, 
Both ROC and Boxplot = 0.9, Both ROC and Confu-
sion Matrix = 1; A17(Statistical Analysis):No statistical 
analysis = 0.2, Yes = 1; A18(Regularisation): Absence in 
study = 0.2, Presence = 1; A19(# of Regularisation Meth-
ods): no method = 0.2, 1-method = 0.8, 2-methods = 0.9, 
and 3-methods = 1; A20(Hardware Resources): Informa-
tion available = 1, No information = 0.5; A21(Software 
Resources):Informationavailable = 1,Noinformation = 0.5.

 1. Image Modalities: Understanding the pivotal role 
played by various image modalities in offering distinct 
insights into tumors and the inherent challenges they 
pose in constructing effective ML/DL models based on 
these insights, we recognize the paramount importance 
of image modality in our analyses.

 2. Study Objectives: In our evaluation, we have duly 
considered the primary objectives of the studies. We 
have accorded higher scores to studies that encompass 
both classification and segmentation objectives, 
reflecting the prevalence of these objectives among 
the considered works.

 3. Dataset Size (Number of Patients): Recognizing the 
pivotal role of dataset size in determining the efficacy 
of statistical models, we have given preference to 
studies boasting larger datasets and substantial results.

 4. Patient Demographics:  Comprehending the 
significance of patient demographics in model training, 
we have included demography as a metric to encourage 
a holistic approach, encompassing factors such as 
patient age and gender.

 5. Feature Extraction: To facilitate replicability, we have 
considered studies that explicitly detail their feature 
extraction procedures as they contribute to easier 
replication efforts.

 6. Feature Selection: Similarly, we have prioritized stud-
ies that elucidate their feature selection methods, pro-
moting replicability and improved results.

 7. Data Preprocessing: Acknowledging the critical role 
of data preprocessing in the machine learning pipeline, 
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we have rewarded studies that transparently describe 
their data preprocessing methods.

 8. Data Augmentation: Recognizing the benefits of data 
augmentation in bridging data gaps, we have evaluated 
studies based on their utilization of data augmentation 
techniques.

 9. Performance Evaluation Parameters: Given the 
multifaceted nature of model performance, we have 
favored studies employing a comprehensive set of 
evaluation metrics.

 10. Accuracy: We have acknowledged the importance of 
accuracy as a key evaluation metric.

 11. Sensitivity: Sensitivity, being a vital evaluation metric, 
has been given due consideration.

 12. Specificity: Specificity, as an essential evaluation 
metric, has been duly recognized.

 13. Precision: Precision, a crucial evaluation metric, has 
been accounted for.

 14. AUC of the ROC: The area under the ROC curve, a 
pivotal evaluation metric for classification models, has 
been considered.

 15. F1 Score: We have recognized the significance of the 
F1 score as a key evaluation metric.

 16. Performance Analysis Metrics :  To gain a 
comprehensive visual understanding of model results, 

we have awarded higher scores to studies employing 
multiple analytic metrics such as confusion matrices, 
ROC curves, and box plots.

 17. Statistical Analysis: Studies that incorporate statistical 
analysis bolster the credibility of their models, and 
hence, we have acknowledged their contributions.

 18. Regularization: We have emphasized the importance 
of regularization techniques in preventing overfitting, 
making it a relevant criterion in our assessment.

 19. Number of Regularization Methods: Studies 
implementing multiple regularization methods have 
received higher scores for their versatility.

 20. Hardware Resources: To enhance replicability, we 
have considered the disclosure of hardware resources 
used in the study as a criterion.

 21. Software Resources: Similarly, the provision of 
information about software resources used in the study 
aids in replicability and has been included as a relevant 
metric.

Appendix  B

See Table 3.
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