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Abstract
Introduction  The automatic segmentation of the liver is a crucial step in obtaining quantitative biomarkers for accurate clini-
cal diagnosis and computer-aided decision support systems. This task is challenging due to the frequent presence of noise 
and sampling artifacts in computerized tomography (CT) images, as well as the complex background, variable shapes, and 
blurry boundaries of the liver. Standard segmentation of medical images based on full-supervised convolutional networks 
demands accurate dense annotations. Such a learning framework is built on laborious manual annotation with strict require-
ments for expertise, leading to insufficient high-quality labels. 
Methods  To overcome such limitation and exploit massive weakly labeled data, we relaxed the rigid labeling require-
ment and developed a semi-supervised double-cooperative network (SD- Net). SD-Net is trained to segment the 
complete liver volume from preoperative abdominal CT images by using limited labeled datasets and large-scale 
unlabeled datasets. Specifically, to enrich the diversity of unsupervised information, we construct SD-Net consist-
ing of two collaborative network models. Within the supervised training module, we introduce an adaptive mask 
refinement approach. First, each of the two network models predicts the labeled dataset, after which adaptive mask 
refinement of the difference predictions is implemented to obtain more accurate liver segmentation results. In the 
unsupervised training module, a dynamic pseudo-label generation strategy is proposed. First each of the two models 
predicts unlabeled data and the better prediction is considered as pseudo-labeling before training. 
Results and discussion  Based on the experimental findings, the proposed method achieves a dice score exceeding 
94%, indicating its high level of accuracy and its suitability for everyday clinical use.
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Introduction

In recent years, liver cancer has emerged as one of the 
most common and lethal forms of cancer worldwide, 
causing a large number of deaths each year (Ferlay 
et  al. 2010) and seriously threatening people’s lives 
and health. Radiologists and oncologists study abnor-
malities in the form and texture of the liver by analyz-
ing computed tomography (CT) or magnetic resonance 
images (MRI), which are commonly employed imaging 
modalities to analyze and diagnose the staging of liver 
lesions. These abnormalities are important biomark-
ers for early identification of primary and secondary 

liver malignancies and their progression (Lu et al. 2005; 
Moghbel et al. 2018). Diagnosis and treatment of liver 
cancer rely heavily on segmenting the liver from CT 
images to obtain liver volume data. CT image-based 
liver segmentation is the first and most critical step in 
any computerized technique for automatic detection of 
liver diseases, liver volume measurement and 3D liver 
volume rendering. Liver segmentation has many appli-
cations in clinical practice, such as radiomic analysis 
(Gillies et al. 2016), treatment planning (Rietzel et al. 
2005), survival analysis (Zhang et al. 2020), and so on. 
Therefore, how to segment the liver region from abdomi-
nal CT images has become one of the hotspots in medi-
cal image segmentation (Fasihi and Mikhael 2016; He 
et al. 2008).
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Segmenting the liver automatically from CT-enhanced 
images presents a formidable challenge (Ifty and Shajid 
2023). This challenge arises due to several factors: 1 
Low contrast and blurred edges: CT images often suffer 
from low contrast and blurred edges caused by partial 
volume effects resulting from spatial averaging, patient 
movement, beam hardening, and reconstruction artifacts. 
2 Difficulty in extracting high gray levels: extracting 
regions with higher gray levels is particularly challeng-
ing because they are difficult to effectively separate from 
other gray levels. Additionally, distinguishing border 
regions in comparison to other gray levels is problem-
atic. 3 Presence of similar-intensity organs: organs with 
similar intensity, such as the spleen, stomach, abdominal 
wall, and kidneys, are in close proximity to the liver. The 
exact spatial relationship of these neighboring organs 
with respect to the liver is often indistinct. These com-
plexities underscore the need for the development of an 
analytical system that can perform fully automated liver 
segmentation in CT images.

Manual segmentation is an arduous and time-intensive 
task. This process can be expedited, streamlined, and 
made less susceptible to errors through the adoption of 
deep learning techniques. Image segmentation employ-
ing deep learning methods has garnered broad recog-
nition for its resilience, efficiency, and reproducibility. 
Recently, deep neural networks have obtained impressive 
progress for automatic liver tumor segmentation (Christ 
et al. 2016; Ben-Cohen et al. 2016; Li et al. 2018; Zhang 
et al. 2019). However, these leading approaches rely on 
accurate pixel-wise annotations. Obtaining such annota-
tions is very difficult because it is time-consuming and 
has strict demands for expertise. Therefore, it is desirable 
to develop deep learning methods which can work well 
when high-quality labeled data is not available.

To cope with these challenges, we proposed a semi-
supervised double-cooperative network (SD-Net) that is 
able to utilize a large number of unlabeled or weakly 
labeled datasets to compensate for sparse densely labeled 
datasets. This framework comprises two collaborative 
network models, VNet and 3D-ResVnet. In the super-
vised training module, an adaptive mask fine-tuning is 
proposed. Two network models are first used to predict 
the labeled dataset separately, and then adaptive mask 
refinement is applied to the difference predictions to 
obtain more accurate liver segmentation results. In the 
unsupervised training module, a dynamic pseudo-label 
generation is proposed. First, the two models each predict 
the unlabeled data, and the model with better prediction 
results is considered as pseudo-labeled for subsequent 
training. Liver segmentation experiments on the LiTS 

dataset verify that the proposed SD-Net has state-of-the-
art performance, approximating the performance of the 
fully supervised method.

The main contributions of this paper are summarized 
as follows.

•	 We propose a novel semi-supervised Double-cooper-
ative framework for liver segmentation that involves 
two collaborative network models. This approach 
relaxes the rigid labeling requirements commonly 
associated with supervised convolutional networks, 
allowing for the exploitation of massive weakly 
labeled data.

•	 To improve the segmentation accuracy, we propose an 
adaptive mask fine-tuning that rechecks the region of 
difference between the two model predictions, result-
ing in a more accurate liver segmentation.

•	 We propose a dynamic pseudo-label generation 
strategy that leverages the better predicted masks 
from both network models as pseudo-labels, thereby 
enhancing the quality of these labels for the unsuper-
vised training module.

•	 The experimental results of our research demonstrate 
a dice score exceeding 94%, affirming the high level 
of accuracy and the clinical suitability of our method.

The remainder of this paper is organized as follows: 
Section "Related work" brief ly reviews manual and 
deep learning, as well as pseudo-labeling-based and 
semi-supervised liver segmentation methods. Section 
"Methodlogy" describes the principle and framework 
implementation of SD-Net. Experiments and analysis 
are given in Section "Experiments and Results". Section 
"Conclusion" concludes the paper.

Related work

Hand‑crafted feature based methods

In order to solve the problem of liver CT image segmen-
tation, many methods have been proposed by experts and 
researchers. Traditional liver segmentation methods are 
categorized into: intensity threshold (Lim et al. 2006; 
Soler et al. 2001), region growing (Ruskó et al. 2007; 
Pohle and Tönnies 2001), and deformable model (Kain-
müller et al. 2007; Park et al. 2003).

Intensity thresholding based segmentation is used to 
segment liver and non-liver regions with fixed or adap-
tive thresholds of gray values or other features of the 
image. (Liu and Chen 2015) proposed an algorithm for 
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intrahepatic vessel segmentation based on two-stage 
region growth. However, this method not only requires 
manual selection of seed points to determine the liver 
area, but also relies on the threshold value in the preset 
growth rule. This method is simple but may not be accu-
rate enough for complex situations.

The region growing based method grows the seg-
mented region by merging the similarities of neighboring 
pixels starting from the seed point. (Lee et al. 2007) pro-
posed a fast liver segmentation method for CT images. 
First seed region growing is applied to horizontal set 
velocity images to detect the initial boundary of the liver, 
and then a rolling ball algorithm is used to refine the 
liver boundary more accurately. (Suzuki et al. 2010) pro-
posed a liver extraction method based on a combination 
of geodesic activity contour segmentation and level set 
contour evolution. The method first performs anisotropic 
diffusion filtering on CT images and enhances the liver 
boundary using scale-specific gradient magnitude filter-
ing. Then a fast-marching level-set algorithm is used to 
generate an initial contour of the liver. Finally the ini-
tial contour is refined by combining the geodesic active 
contour segmentation algorithm for level-set contour 
evolution to de-calculate the liver volume. This method 
is sensitive to noise, but works well in some situations.

Deformable model based segmentation is a com-
monly used method for medical image segmentation that 
allows automatic adaptation of the model shape based 
on image features. (Chen et al. 2012) proposed a liver 
3D segmentation method based on an improved active 
appearance model and combining live wire and graph 
cuts strategies. The method first constructs the model, 
then adopts a pseudo-3D initialization strategy on the 
realization of segmenting the organ slice by slice, and 
finally proposes the always-3D shape constraint method 
to segment the target. (Kainmüller et al. 2007) proposed 
a fully automated 3D segmentation method of liver based 
on CT data, which is mainly based on the combination 
of constrained free-form variational model and statisti-
cal deformation model, and designed the displacement 
force calculation and parameter estimation to solve the 
liver segmentation problem. However, these methods 
require some manual marking of points, rely on hand-
crafted features, and have limited feature representation 
capabilities.

Deep learning based methods

Compared to traditional methods, deep learning-based 
liver segmentation method is a data-driven approach 
(Furqan Qadri et al. 2019; Qadri et al. 2019, 2021) that 

allows end-to-end optimization without manual feature 
engineering (Litjens et  al. 2017). Many of the early 
deep learning-based liver segmentation methods com-
bined neural networks with specialized post-processing 
routines. (Christ et al. 2016) used 3D fully connected 
neural networks combined with dense 3D conditional 
random field. (Hu et al. 2016) proposed a framework for 
automatic liver segmentation based on 3D convolutional 
neural networks (CNNs) and globally optimized surface 
evolution. First, a 3D CNN is trained to give an initial 
surface as a shape prior for the segmentation step, and 
then the prior segmentation is fused into the segmenta-
tion model. (Lu et al. 2017) proposed a deep learning 
algorithm with graph cut refinement to automatically 
segment the liver. First, liver detection and probabilistic 
segmentation are performed simultaneously using a 3D 
convolutional neural network. Then, the initial segmenta-
tion is precisely refined using graph cuts and previously 
learned probabilistic graphs. U-Net derived architectures 
are heavily exploited in liver segmentation. (Ifty and 
Shajid 2023) proposed a liver segmentation model based 
on U-Net. (Ansari et al. 2022) proposed a method utiliz-
ing fixed-width residual UNet skeleton and pyramidal 
cavity convolution. To further improve the performance, 
(Kavur et  al. 2022) proposed to combine four neural 
networks, U-Net, Deepmedic, V-Net, and Dense V-Net-
works. (Xie et al. 2022) proposed a multi-scale context 
integration network, which utilizes residual modules to 
prevent network degradation, as well as cascading to cap-
ture broad and deeper features. (Ahmad et al. 2019a) pro-
posed a deep belief network by unsupervised pretraining 
and supervised fine-tuning. Furthermore, (Ahmad and 
Syed 2022) proposed a lightweight convolutional neural 
network for liver segmentation, which greatly reduced 
the training time.

Deep learning based liver segmentation methods 
(Ahmad et al. 2018, 2019b) can improve the automation 
of the image segmentation process, which can greatly 
save time and effort, eliminate human subjectivity, and 
improve segmentation accuracy.

Pseudo‑labeling methods

Pseudo-labeling is a technique employed in deep neural 
networks during semi-supervised training. In the context 
of semi-supervised training, the objective is to produce 
pseudo-labels for unlabeled data, and the key consid-
eration revolves around the generation of trustworthy 
pseudo-labels. (Lee 2013) represents one of the initial 
investigations into semi-supervised learning utilizing 
pseudo-labels. In this research, unlabeled samples with 
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high confidence for pseudo-labeling are directly chosen 
using a static threshold. A more streamlined approach, 
known as FixMath (Sohn et al. 2020), begins by pre-
dicting pseudo-labels for moderately improved unla-
beled images, retaining only those with high-confidence 
pseudo-labels. Subsequently, it predicts pseudo-labels 
for strongly enhanced iterations of the same images. 
Nonetheless, this approach relies on a fixed, pre-defined 
threshold applicable to all categories when selecting 
unlabeled data for training, without accounting for vary-
ing learning conditions and challenges across different 
categories. In addressing this limitation, (Zhang et al. 
2021) introduced Flexmatch, a method that leverages 
unlabeled data based on the model’s learning dynam-
ics, dynamically adjusting category-specific thresholds 
at each time step. The disparity in distribution between 
the labeled and unlabeled datasets introduces substantial 
biases in semi-supervised learning pseudo-labels, leading 
to a notable decline in performance. In order to mitigate 
this issue, (Zhao et al. 2022) introduce Distributive Con-
sistent Semi-Supervised Learning, which involves the 
direct estimation of a reference class distribution and 
subsequently enhances the pseudo-labels by promoting a 
gradual convergence of the predicted class distribution of 
unlabeled data towards the reference class distribution.

Semi‑supervised medical image segmentation 
methods

The acquisition of top-notch labeled medical image data 
poses difficulties due to the necessity of annotations by 
experienced radiologists. This hurdle serves as a cata-
lyst for the advancement and investigation of semi-super-
vised methods in medical image segmentation. Wu et al. 
(2021); Yao et al. (2022) is dedicated to the generation of 
dependable pseudo-labels, whereas (Li et al. 2020; Chen 
et al. 2022; Luo et al. 2021; Xie et al. 2021) delves into 
the utilization of consistency regularization.

Methodology

Segmenting the liver in a medical image involves the task 
of pinpointing a cluster of voxels that best represent the 
anatomical region occupied by the liver. However medi-
cal images are challenging to acquire high quality labeled 
data as they need to be annotated by experienced radiolo-
gists. To this end, we propose the SD-Net for liver seg-
mentation that learn to transfer from the source domain 
of a labeled CT image to the unlabeled target domain.

The training procedure of the proposed method 
is shown in Fig.  1. We chose two sub-networks 
with comparable performance, VNet and 3D-Res-
VNet,  being def ined as fVNet(⋅) and f3D−ResVNet(⋅) , 
respectively. In semi-supervised scenario, a set of 
m label data is given with corresponding datasets 
DLabel = {D1,D2,D3, ...,Dm} where contains NL image/
label pairs denoted as DL = {(xL

i
, gL

i
)}M

i=1
 , and n unlabeled 

datasets DUnlabel = {Dm+1,Dm+2,Dm+3, ...,Dm+n} contains 
NU images denoted as DU = {(xU

i
)}M+N

i=1
 (usually N ≤ M ). 

xi ∈ RH×W×D is liver volume and gi ∈ {0, 1}H×W×D is the 
ground-truth label. A batch of input data X includes 
equal proportions of labeled (XL,GL) and unlabeled data 
XU , and liver volumes are sent to VNet and 3D-ResVNet:

The outputs include labeled and unlabeled liver volumes 
predictions: Ĝ = ĜL ∪ ĜU . For labeled data to predict ĜL , 
we use the supervised loss function Ls . For unlabeled data 
to predict ĜU , we adopt the unsupervised loss function Luns , 
which generates dynamic pseudo-labels. The proposed SD-
Net employ both networks, taking full advantage of their 
strengths.

Adaptive mask fine‑tuning

In label training module, we designed a refined network 
framework. In the segmentation task, when using dif-
ferent backbones, the predicted segmentation results 
are usually inconsistent, and one of the models must 
be wrongly predicted. For this reason, we designed two 
backbones to predict the liver segmentation, considering 
the region where both predictions are the same as the 
correct segmentation region, and the region where they 
are not the same as the uncertain segmentation region. 
For the uncertain region, we use an MSE loss function 
to constrain it again. The uncertain region is defined as:

where Difference(⋅) denotes an operation to obtain the dif-
ference between the masked regions predicted by the two 
backbone.
Algorithm 1   Dynamic pseudo-label generation

(1)ĜL
VNet

, ĜU
VNet

= fVNet(X)

(2)ĜL

3D - ResVNet
, ĜU

3D - ResVNet
= f3D −ResVNet(X)

(3)GL
dif

= Difference(ĜL
VNet

, ĜL
3D−ResVNet

)
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Input: Labele datasets DLabel = {D1, D2, D3, ...,Dm} where contains NL

image/label pairs denoted as DL = {(xL
i , g

L
i )}Mi=1, and n unlabeld datasets

DUnlabel = {Dm+1, Dm+2, Dm+3, ..., Dm+n} contains NU images denoted as
DU = {(xU

i )}M+N
i=1 .

Two network models: fV Net(·) and f3D−ResV Net(·).
Output: c;
1: X ← {XL, XU}
2: T ← 0.1
3: ĜL

V Net, Ĝ
U
V Net ← softmax(fV Net(X)); � Eq. 1

4: ĜL
3D−ResV Net, Ĝ

U
3D−ResV Net ← softmax(f3D−ResV Net(X)); � Eq. 2

5: for each gLi ∈ GL and ĝLV Net,i ∈ GL
V Net and ĝL3D−ResV Net,i ∈ GL

3D−ResV Net do
6: DiceV Net ← DiceV Net + 1

2LDice(ĝLV Net,i, g
L
i )

7: Dice3D−ResV Net ← Dice3D−ResV Net + 1
2LDice(ĝL3D−ResV Net,i, g

L
i )

8: end for
9: if DiceV Net < Dice3D−ResV Net then

10: P ← GU
V Net

11: GU
p ← P 1/T

P 1/T+(1−P )1/T

12: else
13: P ← GU

3D−ResV Net

14: GU
p ← P 1/T

P 1/T+(1−P )1/T

15: end if
16: return GU

p .

Dynamic pseudo‑label generation

In unlabel training module, we propose a dynamic pseudo-
label generation method, and the detailed algorithm flow is 
shown in Algorithm 1. We directly employ the Dice loss to 
assess the real-time segmentation performance of two mod-
els. By comparing the loss values computed on the labeled 
dataset, we select the model with the smaller loss value to 
serve as the pseudo-label generator for the model with the 
larger loss value. Following entropy minimization, the net-
work predictions are transformed into soft pseudo-labels 
using the sharpening function (Xie et al. 2020). Since we 
use the Dice loss as a criterion for predicting segmentation 
performance, which can directly reflect the dice coefficients, 
no additional computation is introduced.

Loss function

Loss function is used to measure the performance of the 
model and help the model to improve during the training 
process. Cross entropy loss and Dice loss (Drozdzal et al. 
2016) are the two most commonly used loss functions for 
image segmentation tasks. The cross-entropy loss is defined 
as:

where GL
m
 is the ground truth binary indicator of class label 

L of m. ĜL
m

 is the corresponding predicted segmentation 
probability.

Dice loss is to subtract the dice score from 1 to get an 
amount that needs to be minimized. Thus, class imbalance 
can be implicitly incorporated into the learning process 
without explicitly introducing class-specific weights or other 
class rebalancing techniques.

In Label Train Module, the default loss function is the 
unweighted sum LCE + LDice . We employ MSE loss to guide 
the model to review these potentially mispredicted areas, 
which is as follows:

(4)LCE(Ĝ
L,GL) = −

1

M

L∑

l=1

M∑

m=1

GL
m
log ĜL

m

(5)LDice(Ĝ
L,GL) = 1 −

2
L∑
l=1

M∑
m=1

GL
m
log ĜL

m

L∑
l=1

M∑
m=1

GL
m
+

L∑
l=1

M∑
m=1

ĜL
m

(6)L
L
MSE

(ĜL
dif
,GL

dif
) = −

1

n

N∑

n=1

(GL
dif

− ĜL
dif
)
2
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To this end, supervisory loss contains LCE , LDice and LL
MSE

 , 
which is defined as:

In Unlabel Train Module, the unsupervised MSE loss is 
adopted, which is defined as:

where GPL is pseudo label.

Experiments and results

Experimental setup

Datasets

The LiTS dataset (Bilic 2023) contains 201 contrast-
enhanced 3D abdominal CT images, where 194 CT scans 

(7)Ls = LCE + LDice + L
L
MSE

(8)Luns = L
UL
MSE

(ĜU ,GPL) = −
1

n

N∑

n=1

(GPL
n

− ĜU
n
)
2

contain lesions. The dataset was acquired from seven dif-
ferent scanners and scanning protocols from clinical sites 
around the world, with in-plane image resolution ranging 
from 0.56 mm to 1.0 mm and slice thickness ranging 
from 0.45 mm to 6.0 mm. Additionally, the minimum 
number of axial slices in the CT scans was 74, while the 
maximum number of slices was 987. We split the dataset 
into 104 volumes for training, 26 volumes for validation 
and 70 volumes for testing, using liver volumes that were 
not significantly different. Tumor masks are provided 
for the training dataset, while the ground truth data for 
the testing dataset is withheld for online validation. For 
image preprocessing, the CT image intensity values were 
truncated to a range of [0, 400] Hounsfield units (HU) to 
remove irrelevant details.

Evaluation metrics

To assess the performance of the model, we use a Dice per 
case score and Dice global score to assess the whole liver 
and tumor segmentation performance, as well as specificity, 

Fig. 1   Illustration of the SD-Net including adaptive mask fine-tuning and dynamic pseudo-label generation
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sensitivity, accuracy, Jaccard. The Dice per case score rep-
resents an average Dice score calculated for each individual 
volume or case, and the Dice global score refers to the Dice 
score calculated on a unified dataset where all scans are 
amalgamated or merged together.

Dice score (Dice 1945) is used as a performance metric 
for evaluating the model predictions that serves to gauge the 
resemblance between two images. It computes the F1 score, 
a value derived from the harmonic mean of recall and preci-
sion. In this particular context, it finds application in binary 
pixel classification. When confronted with binary segmenta-
tion tasks, Dice score assesses the extent of overlap between 
the ground truth mask G and the predicted segmentation 
mask P which is calculated as follows:

Dice scores in the interval [0, 1] with no defective segmenta-
tion results scored as 1.

In liver segmentation, high sensitivity means that the 
model is more able to capture liver regions correctly and 
avoid missing truly positive regions. This is important to 
ensure that liver tissue is detected as accurately as possible.

where TP is the number of true positives and FN is the num-
ber of false negatives.

The level of specificity relates to the model’s ability to 
label other structures as liver without error. High specificity 
reduces the risk of incorrectly labeling non-liver regions as 
liver.

where TN is the number of true negatives and FP is the 
number of false positives.

Accuracy can provide an overall assessment, considering 
both true positives and true negatives.

In liver segmentation, the Jaccard index (Jaccard 1912) can 
provide information about the overlap between model pre-
dictions and actual labeling. High Jaccard indices indicate 
that the model predictions are more similar to the actual 
segmentation.

(9)Dice(G,P) =
2|G ∩ P|
|G| + |P|

(10)Sensitivity =
TP

TP + FN

(11)Specificity =
TN

TP + FP

(12)Accuracy =
TP + TN

TP + TN + FP + FN

(13)Jaccard =
TP

TP + FP + FN

Implementation details

We deploy the SD-Net model on NVIDIA V100 GPUs and 
use PyTorch as the implementation platform. In order to 
better display the liver region, the original CT image was 
window width is set to 400 and window position is set to 
0. To expand the dataset, the input data is randomly flipped 
and rotated during the training process machine flipping and 
rotating. In particular, we optimize using stochastic gradi-
ent descent (SGD), where the weight decay is 0.0001 and 
momentum is 0.9. The initial learning rate is set to 0.01 and 
divided by 10 after every 200 iterations, for a total of 1200 
iterations. The training batch was 4, of which 2 were labeled 
data volumes and the other 2 were unlabeled volumes. The 
variation of training dice loss (blue line) and validation dice 
loss (green line) is shown in Fig. 2. It can be observed that 
the loss stabilizes after the model is trained to 200 iterations.

Comparison experiments

Our model is compared with other state-of-the-art methods, 
including MS-Net (Shah et al. 2018), MSDN (Wang et al. 
2019), SCN (Ibrahim et al. 2020), DS-ResUnet (Zhang and 
Zhang 2020) and (Sun et al. 2020), to verify the superior-
ity in segmentation accuracy. Out of these 5 comparison 
methods, the full supervision method is the only one, called 
DS-ResUnet. Deep learning-based medical image segmen-
tation models often necessitate large datasets containing 
high-quality dense segmentations for training. Preparing 
such datasets can be extremely time-consuming and expen-
sive. Addressing this challenge, the mixed-supervised dual-
network (MSDN) (Wang et al. 2019) is proposed where 
only a portion of the data is densely labeled with segmen-
tation labels while the rest is weakly labeled with bound-
ing boxes. MS-Net (Shah et al. 2018) is a new FCN that 
combines strong and weak supervision, thus significantly 
reducing the supervision cost. SCN (Ibrahim et al. 2020) 
is a semi-supervised framework that uses only a small set 
of fully supervised images and a set of images labeled only 
with object bounding boxes. The framework trains a master 
segmentation model with the help of an auxiliary model that 
generates initial segmentation labels for the weak set and a 
self-correcting module that improves the generated labels 
during training using the master model with increasing accu-
racy. SAM (Kirillov et al. 2023) combines these two sources 
of information from the image encoder and prompt encoder 
into a lightweight mask decoder that de-segments the mask. 
Zhang and Zhang (2020) proposed a deeply supervised 
residual Unet (DS-ResUnet) for fully automated segmenta-
tion of the liver region in abdominal enhanced CT images. 
The following is a quantitative and qualitative analysis of 
the comparison methods.
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Quantitative evaluation

Table 1 demonstrates the segmentation performance using 
dice global, dice per case, sensitivity, specificity, accuracy, 
and Jaccard as evaluation metrics. It can be seen that the 
proposed method outperforms the unsupervised methods 
of MSDN, MS-Net, SCN, SAM and Sun et al. (2020), 
and achieves the highest segmentation accuracy among 
similar models, approximating the fully supervised method 
DS-ResUnet. Although the performance of the proposed 
SD-Net is relatively poorer compared to that of the fully 
supervised DS-ResUnet, it utilizes fewer labeled data.

Qualitative evaluation

Enhanced CT liver region segmentation results of the com-
parison methods are shown in Fig. 3. Notably, the segmen-
tation results of DS-ResUnet are not shown because its 
code is not provided. From Fig. 3, it can be seen that the 
MSDN’s segmented out structural boundaries are fractured 
with obvious jagged boundaries. In addition, there are more 
Disconnected Regions (DRs), which cannot well maintain 
the integrity of the liver morphology. The segmentation 
results of SCN were not smooth enough at the edges,and 
the problem of under-segmentation occurred, resulting in 
insufficient details of the edge structure. In contrast, the 
liver segmentation results of MS-Net and Sun et al. (2020) 
have smoother and more coherent boundaries. However, the 

Fig. 2   Training and validation dice loss against iterations

Table 1   Comparison of the non-fully supervised models MSDN, MS-Net, SCN, SAM and Sun et al. (2020) with our proposed SD-Net and the 
fully supervised model DS-ResUnet in terms of objective metrics

The dice coefficient is expressed in percentiles

Methods Metrics (%)

Dice global Dice per case Specificity Sensitivity Accuracy Jaccard

MSDN Wang et al. (2019) 86.7 87.1 94.44 84.07 90.70 76.53
MS-Net Shah et al. (2018) 90.8 90.5 96.65 88.63 93.95 83.16
SCN Ibrahim et al. (2020) 92.6 92.6 97.79 89.47 94.72 86.22
Sun et al. (2020) 92.8 93.1 97.62 90.14 94.88 86.58
SAM Kirillov et al. (2023) 93.54 93.32 97.00 88.91 94.26 83.98
DS-ResUnet Zhang and Zhang (2020) 96.06 95.08 96.06 – 96.11 92.54
Ours 94.53 94.12 97.03 95.08 96.40 89.63
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segmentation boundaries of MS-Net are substantially offset 
from the true value boundaries and cannot accurately outline 
the target structure, which may be caused by its segmen-
tation algorithm’s over-tolerance of weak boundaries. The 
segmentation result of Sun et al. (2020) has a noise region 
that is obviously segmented out by mistake, which causes 
the problem of over-segmentation and fails to maintain the 
liver morphology effectively. In contrast to the shape and 

Fig. 3   The segmentation results of the comparison methods

Table 2   Performance comparison using different losses

Loss function Metrics

Dice global (%) Dice per case (%)

Weighted cross-
entropy loss

94.32 93.76

MSE Loss 94.53 94.12
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color of regular objects in natural images, the overall tex-
ture of tissues in medical images is much sparser and more 
homogeneous, resulting in the inability of SAM (Kirillov 
et al. 2023) to accurately outline the liver structure. The 
segmentation results of the proposed method have a higher 
degree of overlap with the ground truth, basically preserving 
the morphology of the structure and the smooth coherence 
of the boundary. Therefore, the qualitative results verify 
that the proposed method has the most accurate segmenta-
tion results, in which it outperforms the other methods in 
terms of boundary smoothness, boundary offset, the degree 
of overlap of segmented real organs, and contour integrity.

Ablation

Ablation for loss

The difference between areas obtained from the predic-
tions of both VNet and 3D-ResVNet networks are very 
small and scattered. For this reason, we try to use the 
common MSE Loss and Weighted Cross-Entropy Loss 
for ablation experiments. Table 2 shows the segmentation 
performance of the model using both losses where it can 
be seen that the segmentation is better using MSE Loss. 
To this end, we use MSE Loss LL

MSE
 in the labeled train-

ing module.

Fig. 4   The segmentation results obtained for different number of training iterations

Fig. 5   Performance variation of 
the proposed SD-Net with the 
ratio of strong datasets to weak 
datasets
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Ablation for number of iterations

When segmenting the liver training, the model usually 
stabilizes after 200 iterations. The segmentation results 
obtained for different number of training iterations are 
shown in Fig. 4. It can be seen that the liver segmenta-
tion at 600 and 1200 iterations has more Disconnected 

Regions, the segmentation effect is too fragmented, and 
the wholeness of the liver morphology is poorly main-
tained. The segmentation results at 400 and 800 iterations 
cannot accurately outline the target structure. At 1000 
iterations, the proposed SD-Net obtains the best segmen-
tation results. Therefore, we chose the training model with 
1000 iterations.

Fig. 6   The segmentation results under different raito of strong and weak datasets
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Analysis of the ratio of strong and weak datasets

We will validate the proposed model based on different per-
centages of strong and weak datasets. Theoretically, a higher 
percentage of strong dataset indicates that there are more 
labeled data in the training and it is closer to intensive super-
vised training. Among the 131 split-labeled public scans in 
the LiTS training dataset, in which 31 scans are reserved for 
testing and 100 scans are used for training. We design the 
training dataset to be split into strong and weak datasets in 
the ratio of 20:80, 30:70, 50:50, 70:30, and 80:20. We use 
Dice global and Dice per case as evaluation metrics. Note 
that we also design a fully supervised ratio of 100:0, which 
means that all training data is labeled. In Fig. 5, it is dem-
onstrated that the performance of the model varies with the 
proportion of strong and weak datasets. It can be seen that 
the proposed SD-Net achieves a segmentation performance 
of more than 94% for the 20:80 ratio and increases as the 
proportion of strong datasets increases. Figure 6 shows the 
segmentation results of different ratios of strong and weak 
datasets, and it can be seen that the proposed SD-Net still 
retains the contour of the liver region under the 20:80 ratio, 
which is close to the ground truth.  

Conclusion

In this paper, we present a SD-Net learning framework for 
liver segmentation that relaxes the requirement of dense 
labeling. The framework introduces VNet and 3D-ResVNet 
network models, and updates the parameters independently 
to play the potential of the two networks. Adaptive mask 
fine-tuning is to re-examine the difference regions predicted 
by the two network models, which can improve the segmen-
tation accuracy of the liver. Dynamic pseudo-label genera-
tion is to use the better predicted masks from both network 
models as pseudo-labels to improve the quality of pseudo-
labels. The experimental results of liver segmentation on 
segmented dataset show that the proposed semi-supervised 
double-cooperative framework has state-of-the-art perfor-
mance, and our model achieves comparable performance 
compared to the fully supervised strategy. It also demon-
strates the potential of the proposed method to be applied in 
real clinical practice.
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