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Abstract
Introduction In recent decades, many theories have been proposed about the cause of hereditary diseases such as cancer. 
However, most studies state genetic and environmental factors as the most important parameters. It has been shown that 
gene expression data are valuable information about hereditary diseases and their analysis can identify the relationships 
between these diseases.
Objective Identification of damaged genes from various diseases can be done through the discovery of cell-to-cell biologi-
cal communications. Also, extraction of intercellular communications can identify relationships between different diseases. 
For example, gene disorders that cause damage to the same cells in both breast and blood cancers. Hence, the purpose is to 
discover cell-to-cell biological communications in gene expression data.
Methodology The identification of cell-to-cell biological communications for various cancer diseases has been widely 
performed by clustering algorithms. However, this field remains open due to the abundance of unprocessed gene expres-
sion data. Accordingly, this paper focuses on the development of a semi-supervised ensemble clustering algorithm that 
can discover relationships between different diseases through the extraction of cell-to-cell biological communications. The 
proposed clustering framework includes a stratified feature sampling mechanism and a novel similarity metric to deal with 
high-dimensional data and improve the diversity of primary partitions.
Results The performance of the proposed clustering algorithm is verified with several datasets from the UCI machine 
learning repository and then applied to the FANTOM5 dataset to extract cell-to-cell biological communications. The used 
version of this dataset contains 108 cells and 86,427 promoters from 702 samples. The strength of communication between 
two similar cells from different diseases indicates the relationship of those diseases. Here, the strength of communication is 
determined by promoter, so we found the highest cell-to-cell biological communication between “basophils” and “ciliary.
epithelial.cells” with 62,809 promoters.
Conclusion The maximum cell-to-cell biological similarity in each cluster can be used to detect the relationship between 
different diseases such as cancer.
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Introduction

The human body consists of hundreds of types of cells 
(Kayal et  al. 2019; Peng et  al. 2022). These cells are 
directly or indirectly dependent on each other and have 
the ability to communicate and influence each other. 
Therefore, an effective mechanism is needed to find the 
relationship between this astronomical number of cells. 
Finding these communications will help identify relation-
ships between different diseases. The nucleus of each cell 
has the coded instructions necessary to direct the cell's 
activities and make the necessary proteins. A whole group 
of these instructions is called a genome (Sivadas et al. 
2022). Human genome is the genetic set and genes inside 
the nucleus of human cells (de Souza et al. 2016). There 
are millions of genes on each of the chromosomes, each of 
which has a specific role in the cell. Let the gene expres-
sion associated with a cell be represented by promoters 
(Shahraki et al. 2023).

To date, many diagnostic models have been presented 
for different diseases such as cancer. Each model uses dif-
ferent tools based on a specific dataset for prediction work 
(Zhang et al. 2022a). In recent years, datasets have been 
created that include a wide range of diseases. Datasets 
based on gene expression such as FANTOM5 include 1836 
different samples from 201,803 regions of different genes 
that simultaneously cover several diseases (Rezaeipanah 
and Ahmadi 2022). Each sample contains the information 
of one patient from one cell or tissue. Here, sampling has 
been done in the form of gene expression, which shows 
how many times a gene has produced itself (de Souza et al. 
2016).

In general, damaged cells from the body due to a disease 
can also be observed for other diseases (Li et al. 2023). If 
the promoters of a cell from two or more diseases are high 
enough, then it can be said that these diseases have a simi-
lar effect on this cell. Since there is information related to 
cells/tissues for each person, this dataset can be used to 
detect the communications between cells and tissues in the 
expression of different genes (Forouzandeh et al. 2023). 
In general, the analysis of gene expression information 
in order to identify intercellular communications requires 
mapping the problem to a clustering problem. Clustering 
algorithms can find relationships between different dis-
eases by finding the most similar damaged cells.

Clustering algorithms are one of the most important 
techniques in data mining, machine learning and pattern 
recognition and are known as an effective method in data 
visualization and analysis (Rezaeipanah et al. 2021). These 
algorithms have wide applications in image processing, 
image segmentation, document analysis, market research, 
etc. Data clustering is data analysis without any prior 

information to assign each sample of the dataset to a group 
as a cluster (Zhang et al. 2022b; Zhao et al. 2023a). Each 
clustering algorithm seeks to create groups of data with 
maximum similarity between samples in the same clusters 
and minimum similarity between samples in different clus-
ters. These algorithms are known as unsupervised learning 
methods, because the class labels are not available in the 
data analysis process (Cao et al. 2022; Tang et al. 2023).

In general, the types of clustering algorithms include hier-
archical and partitional (Zhang et al. 2018). Hierarchical 
algorithms use a similarity metric for the clustering task. In 
each step of these algorithms, the data are divided into two 
categories to finally create a tree structure as a dendrogram 
(Wang et al. 2022). Dendrogram is a tree-structured graph 
that visualizes the result of a clustering algorithm at differ-
ent levels of partitions (Forouzandeh et al. 2023). Mean-
while, partitional algorithms directly put data into multiple 
clusters based on distance or similarity. Hard and soft are 
common types of partitional clustering algorithms (Cheng 
et al. 2023). In hard clustering, a sample belongs to only one 
cluster; while in soft clustering, the degree of belonging of 
a sample to each cluster is determined by a number between 
0 and 1.

In many real-world applications, the number of features in 
a dataset is too large for clustering. In most cases, there are a 
large number of unrelated features for clustering (Hou et al. 
2020). Also, some features may be less important than oth-
ers. Therefore, applying clustering with a subset of features 
can lead to an increase in the quality of the final partition. 
Meanwhile, not all clustering algorithms perform best for 
all data (Mojarad et al. 2021). Ensemble clustering is very 
popular to improve the performance of individual cluster-
ing algorithms. In an ensemble clustering algorithm, several 
individual clustering algorithms are combined to cover each 
other's weaknesses (Zhang et al. 2018). According to this, it 
is expected that the use of ensemble clustering algorithms 
will perform better than individual clustering algorithms.

Combining individual clustering algorithms with fixed 
weight is a common approach in ensemble technique. How-
ever, using fixed weights in the whole clustering process 
leads to a decrease in efficiency. In recent years, approaches 
based on adaptive weights during the clustering process have 
been developed to solve this shortcoming (Hou et al. 2020). 
In general, the use of traditional clustering algorithms does 
not perform well in dealing with high-dimensional data due 
to the correlation of features, noise, and dispersion.

On the other hand, applying the information of paired 
constraints can increase the effectiveness of individual clus-
tering algorithms (Wang et al. 2020; Zhang et al. 2022c). 
This information includes must-link and cannot-link con-
straints. The must-link constraint indicates that a pair of 
samples belong to the same cluster, and the cannot-link 
constraint indicates that a pair of samples belongs to two 
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different clusters. Since effective clustering is challenging 
due to the lack of prior knowledge, using the constraints 
information as limited prior knowledge can improve the 
clustering performance. The use of constraint information in 
the clustering process has led to the emergence of clustering 
with semi-supervised learning (Mojarad et al. 2021; Bridges 
and Miller-Jensen 2022).

This paper proposes a semi-supervised ensemble cluster-
ing framework to discover relationships between diseases 
based on the extraction of cell-to-cell biological commu-
nications. The proposed semi-supervised framework uses 
prior knowledge in both parts of the ensemble, including the 
creation of primary partitions and the consensus function. 
Also, we present a stratified feature sampling mechanism 
to deal with high-dimensional data, which can reduce the 
risk of not selecting features to create primary partitions. 
In addition, the proposed clustering framework uses a new 
similarity metric developed based on the information of all 
primary partitions. Our method has medical applications for 
the treatment and prevention of cancer. In fact, we are look-
ing to identify cells that may be destroyed in the same way 
in two different cancers.

The main contribution of this study is as follows:

• A clustering framework is proposed by joining “semi-
supervised learning” and “ensemble technique”, which 
is configured based on stratified feature sampling mecha-
nism and a novel similarity metric

• Identification of cells with the highest promoters in order 
to discover relationships between different diseases on 
the FANTOM5 dataset

• Validation of the effectiveness of the proposed clustering 
framework on a wide range of UCI datasets

The remainder of this paper is organized as follows: 
The related work is summarized in “Related works”. The 
fundamental concepts related to the problem are given in 
“Background”. “Proposed clustering framework” explains 
the proposed clustering framework. The effectiveness of the 
proposed framework is discussed through numerical simula-
tions in “Experiments”. Finally, the paper ends with conclu-
sions in “Conclusions”.

Related works

Identification of intercellular communication from gene 
expression data with clustering algorithms is very common 
(Mojarad et al. 2021). Clustering is one of the data analysis 
techniques and so far, various solutions have been provided 
for it (Tan et al. 2022; Chang et al. 2022). For example, 
k-means, density-based spatial clustering of applications 
with noise (DBSCAN), multi-view spectral clustering, 

non-negative matrix factorization-based clustering, unsu-
pervised deep embedding clustering, mean shift clustering, 
hierarchical clustering, etc. (Zhang et al. 2020; Lei et al. 
2022). Compared to partitional clustering algorithms, many 
efforts have been reported for the improvements of hierarchi-
cal clustering algorithms in the last few decades.

Compared to classification, prior knowledge such as class 
labels is not available for clustering. Some studies use lim-
ited prior knowledge as constraint information in clustering 
(Hou et al. 2020). Zhang et al. (2018) used the pairwise con-
straints information to improve clustering performance and 
obtained some successes. Other semi-supervised clustering 
algorithms include constraints k-means, Constraint-based 
DBSCAN (C-DBSCAN), Pairwise Constrained k-means 
(PCKmeans), semi-supervised deep fuzzy c-mean clus-
tering, semi-supervised denpeak clustering with pairwise 
constraints, semi-supervised deep embedded clustering, 
exhaustive and efficient constraint propagation, and semi-
supervised maximum margin clustering (Mojarad et  al. 
2021).

Prades et al. (2020) proposed an agglomerative clustering 
approach to detect the number of endmembers in hyperspec-
tral images. The authors follow this hypothesis in cluster-
ing that there is a cluster for each material different from 
image. Here, an approach based on principal component 
analysis applied to the centered image is used to reduce the 
dimensions. With reducing the dimensions of the image, 
the authors use a k-means algorithm to create primary clus-
ters. Here, symmetric Kullback–Leibler (SKL) divergence 
is used as the distance calculation metric. SKL, also known 
as relative entropy, is a statistical metric from information 
theory to quantify the difference. This study uses principal 
component analysis to calculate the density of clusters. After 
that, a model-based agglomerative clustering approach is 
applied to provide a hierarchy of partitions. Eventually, the 
final partition of the hierarchy is determined by a valida-
tion algorithm. The number of clusters in the results of this 
model is considered as the number of materials.

Rezaeipanah and Ahmadi (2022) introduced multi-
stage weights adjustment in the multi-layer perceptron 
(MWAMLP) for breast cancer detection. MWAMLP is an 
ensemble approach that uses three homogeneous multi-layer 
perceptron (MLP) neural networks for the classification task. 
The consensus function used in MWAMLP is developed 
based on the meta-classifier technique. The accuracy of this 
method on the WBCD dataset is 98.76% on average.

Mojarad et  al. (2021) used an ensemble clustering 
algorithm to model inherited disease behavior (ECIDB). 
Here, cell-to-cell and tissue-to-tissue communications are 
extracted from the FANTOM5 dataset to identify cells 
with the highest disruption in each disease pair. The pro-
posed algorithm uses the graph topological structure to 
represent the FANTOM5 dataset and uses an innovative 
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similarity metric to calculate the cell-to-cell similarity 
matrix. An ensemble clustering is then applied to iden-
tify primary intercellular or intertissue communications. 
Finally, a friend recommender-based system considering 
clustering information and topological similarities is used 
to identify related cells.

Sangeetha and Prakash (2021) proposed using deep 
learning to improve breast cancer disease prediction. 
A stacked sparse auto encoder network (SSAE) is con-
structed to learn features effectively. The network consists 
of a softmax classifier and several sparse autoencoders. 
In addition to adjusting the parameters of the algorithm, 
deep learning models are required. The parameters of the 
stacked sparse autoencoder can, therefore, be adjusted 
using particle swarm optimization (PSO). Regarding fea-
ture learning and classification, the PSO improves the per-
formance of the SSAE.

Kayal et al. (2019) conducted a study to provide a new 
advanced classification method using a deep neural network 
(DNN) to predict the survival of patients with hepatic can-
cer. In the proposed method, the authors selected 15 risk fac-
tors out of 49 risk factors which are significantly responsible 
for hepatocellular carcinoma and then applied their method. 
According to the results, the proposed method is more accu-
rate than other methods.

Sivadas et al. (2022) attempted to investigate the impact 
of racial information and natural factors on the incidence 
and progression of cancer by employing a multi-omics data 
fusion breast cancer survival cycle marker detection pre-
diction model. The primary objective of this research is 
to enhance the prediction of breast cancer survival cycles 
through the development of a multi-omics fusion prediction 
model based on ensemble learning. This model incorporates 
clinical data, transcriptomics data, and methylomics data 
derived from The Cancer Genome Atlas (TCGA) datasets. 
The experimental results demonstrate that the three-omics 
fusion approach (with an accuracy rate of 97.43%) outper-
forms single-omics experiments and other race-based multi-
omics and single-omics experiments in the context of the 
three-omics experiments, considering racial disparities. 
This research offers technical support for the classification 
of breast cancer patient survival cycle predictions and intro-
duces novel concepts for the study of breast cancer survival 
prognostics.

Talatian Azad et al. (2021) proposed an intelligent ensem-
ble classification method based on multi-layer perceptron 
(IEC-MLP) for breast cancer detection. IEC-MLP uses 
genetic algorithm for feature selection and parameter set-
tings of MLP neural network. Here, MLP is developed based 
on an ensemble classification approach with three classifiers. 
This method detects breast cancer with high accuracy on the 
WBCD dataset, where the average accuracy is reported to 
be 98.74%.

Background

In this section, some basic concepts about the research 
method are explained. These concepts include system model, 
hierarchical clustering, semi-supervised clustering, ensem-
ble clustering, and feature sampling.

System model

An individual clustering algorithm is denoted by � . Ensem-
ble clustering consists of several individual clustering algo-
rithms. We assume that Π =

{
�1,�2,… ,�k,… ,�Z

}
 is the 

set of Z individual clustering algorithms, where �k represents 
the k-th clustering algorithm. Each �k ∈ Π can be applied 
to a dataset. We assume that X =

{
x1, x2,… , xi,… , xN

}
 is a 

dataset with N samples, where xi = ⟨xi,1, xi,2,… , xi,j,… , xi,M⟩ 
represents the i-th sample with M features.

Applying each �k to X results in a partition with multiple 
clusters. We assume that pk =

[
ck,1, ck,2,… , ck,l,… , ck,|pk|

]
 

is the partition obtained by applying �k on X with ||pk|| clus-
ters. Here, ck,l represents the l-th cluster of the k-th partition. 
Considering ensemble clustering, applying set Π on X results 
i n  P =

{
p1, p2,… , pZ

}
 .  W e  a s s u m e  t h a t 

p∗ = Γ⟨p1, p2,… , pZ⟩ is the final partition obtained by con-
sensus of set P . Here, Γ represents a consensus function such 
as majority vote. Let p∗ =

[
c1, c2,… , cK

]
 be the details of 

the final partition, where K represents the total number of 
clusters.

Hierarchical clustering

Clustering is an unsupervised learning mechanism for 
grouping data, where samples belonging to each group have 
the highest similarity to each other and samples from dif-
ferent groups have the lowest similarity to each other. Par-
titional clustering and hierarchical clustering are two com-
mon types of clustering (Rostami et al. 2023). Partitional 
clustering clusters samples based on an objective function, 
where each sample belongs to only one cluster and the total 
number of clusters is known in advance. The k-means is one 
of the most common partitional clustering algorithms that 
performs clustering with the objective of minimizing the 
average distance to the center of each cluster (Torabi et al. 
2022; Cao et al. 2023a). Meanwhile, hierarchical clustering 
can show a hierarchy of samples by dendrogram.

There are two general types of hierarchical clustering: 
(1) Divisive hierarchical clustering (DHC) or top-down 
approach where all samples belong to the same cluster at 
first. After that, each cluster is divided into smaller clusters 
so that finally each sample has its own cluster. (2) Agglom-
erative hierarchical clustering (AHC) or bottom-up approach 
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where each sample represents a cluster at first. After that, 
each pair of clusters with the highest similarity are merged 
until finally all samples belong to the same cluster (Farah-
bakhsh et al. 2021). As shown in Fig. 1, the final result for 
both DHC and AHC is in the form of a dendrogram. Each 
level in the dendrogram represents a partition as the result 
of clustering.

Linkage-based metrics are one of the most common AHC 
methods, which are defined by inter-cluster distance metrics 
(Rostami et al. 2023). Single linkage, average linkage, cen-
troid linkage, and complete linkage are examples of linkage-
based AHC clustering. A summary of these methods is pre-
sented in Table 1. In this table, x ∈ ci represents sample x 
from cluster ci , ||ci|| indicates the number of cluster members 
ci and dx,y indicates the distance between x and y based on 
a distance measure such as Euclidean (Sivadas et al. 2022). 
Basically, the difference between these methods is in the 
distance calculation metric.

Semi‑supervised clustering

In unsupervised clustering, the learning algorithm has 
no knowledge about the labels of the samples. However, 
semi-supervised clustering can use prior knowledge such 
as labels of samples for clustering (Wang et al. 2023; Yue 
et al. 2023). Usually, the prior knowledge used by semi-
supervised learning is known as constraint information 
(Sangeetha and Prakash 2021). Constraint information can 
include dependencies between samples or an additional set 

of labeled samples. Pairwise constraints information is the 
most common prior knowledge used for semi-supervised 
learning. Pairwise constraints include pairs of samples that 
are labeled as belonging to the same or different clusters. 
Therefore, the quality of the partition created by semi-super-
vised clustering should be improved compared to unsuper-
vised clustering, because semi-supervised clustering uses 
prior knowledge.

Basically, the constraint information can be based on met-
rics, clusters, and samples (Rostami et al. 2023). Metric-based 
constraint information allows the use of different distance/
similarity measures in the learning process. Cluster-based 
constraint information provides the possibility of using clus-
ter characteristics such as shape, size, and diameter. Also, 
sample-based constraint information includes must-link 
and cannot-link parameters (Jannesari  et al. 2023). Here, 
must-link indicates the possibility of assigning two samples 
to one cluster, while cannot-link indicates the impossibility 
of assigning two samples to one cluster. Selecting the most 
potential sample for semi-supervised clustering is an impor-
tant challenge for using information constraints (Shahidinejad 
et al. 2021). Since the labels of samples are not available in 
clustering, dense groups should be identified in order to find 
samples that definitely belong to the same cluster.

According to the above, semi-supervised clustering 
simultaneously uses both labeled and unlabeled samples, 
as shown in Fig. 2. Typically, semi-supervised clustering 
is configured based on a small number of labeled samples 
compared to a large number of unlabeled samples. Con-
straint-based semi-supervised clustering and distance-based 
semi-supervised clustering are two common categories of 
semi-supervised clustering (Hayashi et al. 2018). The for-
mer uses constraint information to support the algorithm and 
improve clustering, while the latter includes adaptive dis-
tance metrics to extract constraints in supervised learning.

Ensemble clustering

It has been proven that no individual clustering method can 
provide the best performance for all contexts (Sivadas et al. 
2022). Since each individual clustering method has its own Fig. 1  An example of hierarchical clustering

Table 1  AHC clustering methods based on linkage

Linkage method Distance function Description

Single linkage min
x∈ci ,y∈cj

dx,y This method measures the distance between two clusters by considering the closest members between 
them

Average linkage 1

�ci�×�cj�
∑

x∈ci ,y∈cj
dx,y

This method measures the distance between two clusters by considering the average distance between 
all their members

Centroid linkage max
x∈ci ,y∈cj

dx,y This method measures the distance between two clusters by considering the distance between their 
mean center vectors

Complete linkage d�∑
x∈ci

x)

�ci�
�
,

�∑
y∈cj

y)

�cj�
� This method measures the distance between two clusters by considering their farthest neighbor
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advantages and disadvantages, combining several methods 
can provide more stable, scalable and accurate results com-
pared to each of the individual methods. Ensemble cluster-
ing-based methods combine the results of several clustering 
methods to avoid the disadvantages of each of them and 
enable effective clustering for more datasets. As shown in 
Fig. 3, ensemble clustering consists of a number of individ-
ual homogeneous or heterogeneous clustering algorithms. 
These algorithms are considered as members of ensemble 
clustering. Selecting suitable members that can achieve qual-
ity and diversity in the final consensus is an important chal-
lenge in ensemble clustering.

Each individual clustering algorithm �k is applied as a 
weak method on the dataset and outputs a partition pk . The 
partitions created in this step are merged by a consensus 
function Γ to create the final partition p∗ . Although all par-
titions can participate in the consensus process, a subset of 
primary partitions or part of their associated clusters can be 
candidates for the consensus function. This is a major chal-
lenge to address in ensemble clustering. Therefore, ensemble 
clustering has two main phases: creating primary partitions 

and merging them by a consensus function (Forouzandeh 
et al. 2023). The consensus function is an important issue in 
ensemble clustering, for which various methods have been 
introduced so far. The most common consensus functions 
include simple voting, iterative voting, weighted similarity, 
mixture model, correlation matrix, meta-clustering, etc.

In various studies, the superiority of semi-supervised 
clustering algorithms against unsupervised clustering has 
been proven (Sangeetha and Prakash 2021). Meanwhile, 
ensemble clustering provides better performance than 
individual clustering. With this motivation, we focus on 
SSEC-based approaches. The use of constraint information 
in SSEC is a hot research topic in machine learning. Here, 
prior knowledge such as pairwise constraints and labels of 
samples are incorporated into ensemble clustering in order 
to improve efficiency. Most of the existing SSEC approaches 
use constraint information only to create primary partitions, 
while the use of this information is ignored in the consensus 
function (Rezaeipanah and Ahmadi 2022). Figure 4 shows a 
schematic framework of SSEC-based approaches consider-
ing prior knowledge.

Feature sampling

Today, the number of large-scale datasets has increased sig-
nificantly due to the growth of data collection devices (Zhao 
et al. 2023b; Cao et al. 2023b). Machine learning algorithms 
for effective analysis of these datasets face serious chal-
lenges. Meanwhile, clustering algorithms face issues such 
as feature correlation, noise, sparseness, and computational 
complexity when processing big data, which may lead to 
their failure. Reducing the dimensions of the data by select-
ing a subset of the original features is one of the most com-
mon solutions to address this problem (Rezaeipanah and 
Ahmadi 2022).

Techniques based on randomization such as random pro-
jection (Rostami et al. 2023) and random feature sampling 
(Sangeetha and Prakash 2021) are among the most common 
methods for selecting the subset of suitable features. How-
ever, randomization-based techniques do not consider corre-
lations between features and cannot select effective features 
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for clustering. Stratified feature sampling mechanism was 
introduced by Jing et al. (2015) to address this issue. This 
mechanism uses the k-means algorithm to cluster features 
into a specified number of groups. After that, a number of 
features are randomly selected from each cluster with the 
same proportion to obtain several subsets of features. The 
ensemble clustering architecture considering feature sam-
pling is shown in Fig. 5.

Proposed clustering framework

The proposed clustering framework has four general phases. 
In the first phase, stratified feature sampling mechanism is 
applied. This mechanism clusters the features of the dataset 
using the K-means algorithm to create an independent subset 
of features for each individual clustering algorithm. Here, 
feature selection probabilities are adjusted with the aim of 
reducing the risk of not selecting some features for the clus-
tering task. The second phase is related to the generation of 
primary partitions by Z individual clustering algorithms. We 
use AHC-based algorithms for the clustering task, where 
each algorithm creates its own partition based on a subset of 
specified features. The output partition in each AHC-based 
algorithm is determined from the dendrogram by Bayesian 
PAC theory (Abddallah and Yousef 2018).

The third phase consists of presenting a new similarity 
metric that uses a wide range of information to calculate 
the similarity between each sample pair, cluster pair and 

meta-cluster pair. The consensus function is configured in 
the fourth phase. Since not all primary clusters and not all 
primary partitions have the same strength, we develop a 
weighting policy in which the merits of clusters and the 
strength of partitions are considered to contribute to the 
final consensus. Finally, the meta-clustering technique is 
applied as a consensus function to create the final parti-
tion. We configure each AHC-based clustering algorithm 
with semi-supervised learning and use the information of 
pairwise constraints to improve the clustering performance 
in both parts of creating primary partitions and the con-
sensus function. An overview of the proposed clustering 
framework is shown in Fig. 6.

The proposed algorithm for large-scale data clustering 
uses the stratified feature sampling mechanism. In this mech-
anism, each �k ∈ Π performs clustering based on a subset of 
the main features. Let �k form an primary partition based on 
sk , where sk ∈ S represents the subset of the k-th selected fea-
ture. The mechanism of stratified feature sampling can pro-
vide the most suitable set S for ensemble clustering. Here, 
the features of the dataset X are clustered by K-means, and 
then a number of features are sampled from each cluster to 
form sk . This process is applied to all sk ∈ S,∀k = 1, 2,… , Z.

To reduce the risk of not selecting some features, we cal-
culate the probability of selecting the features by consider-
ing the sampling history. Let rj refer to the sampling rate of 
the j th feature from the dataset X . Here, the sampling rate 
for selecting the first subset is the same for all features, for 
example, rj = 1∕M . The sampling rate is updated to select 

Fig. 4  SSEC framework consid-
ering prior knowledge
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the second subset, where the sampling rate of unselected 
features is halved. This process is repeated for other subsets 
to reduce the risk of not selecting features.

Let si,j ∈ S be the similarity between samples xi and xj . 
We use a new similarity metric considering a wide range of 
information to calculate the similarity matrix S . The Eq. (1) 
defines the similarity for si,j.

where Z is the total number of partitions, pk is the detail 
of the kth partition, P is the set of all partitions, ||pk|| is the 
number of clusters in pk , ck,l is the detail of the l th cluster in 
pk , ||ck,l|| is the number of samples of ck,l , di,j is the Euclidean 
distance between xi and xj , Mck,l

 is the merit associated with 
ck,l , Wpk

 is the strength/weight associated with pk , and � is 
a damping factor to reduce the effect of large cluster sizes.

In addition to the similarity between each pair of sam-
ples, we calculate the similarity between each pair of 

(1)

si,j =
1

Z
×
�
pk∈P

⎡
⎢⎢⎢⎣

1
��pk��

×
�
ck,l∈pk

⎧
⎪⎨⎪⎩

Mck,l
+Wpk

di,j
× ��ck,l� (xi, xj) ∈ ck,l

1

di,j
× ��ck,l� otherwise

⎤
⎥⎥⎥⎦
,

clusters and each pair of meta-clusters. Let each meta-
cluster be a set of several clusters. Equation (2) formu-
lates the similarity between two clusters ck,1 and ck,2 as 
CSck,1,ck,2 . Also, Eq. (3) formulates the similarity between 
two meta-clusters �1 =

{
c1,1, c1,2,… , c1,u,… , c1,|�1|

}
 and 

�2 =
{
c2,1, c2,2,… , c2,v,… , c2,|�2|

}
 as MS�1,�2

.

Finally, we use a consensus function based on the meta-
clustering technique to create the final partition. According 
to this technique, candidate clusters are considered from all 
partitions in a set and then re-clustered by average linkage 
to create meta-clusters. Here, the number of meta-clusters 
represents the number of final clusters. Eventually, the final 
partition is created by assigning each sample of the dataset 

(2)CSck,1,ck,2 =

∑�ck,1�
i=1

∑�ck,2�
j=1

si,j

��ck,1��.��ck,2��
,

(3)MS�1,�2
=

∑��1�
u=1

∑��2�
v=1

CSc1,u,c2,v
���1

�� × ���2
��

.

Fig. 6  An overview of the pro-
posed clustering framework
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X to a meta-cluster with the highest similarity. In this paper, 
candidate clusters are selected to participate in the final 
consensus based on the merit of the primary clusters and 
the strength of the primary partitions. In extensive studies, 
normalized mutual information (NMI) is used to evaluate 
the partition generated from a clustering algorithm (Rezaei-
panah and Ahmadi 2022). NMI can calculate the similarity 
between two partitions such as pu and pv by Eq. (4).

where Nij is the number of identical samples in cu,i ∈ pu and 
cv,j ∈ pv and Niu is the number of samples in cu,i.

If pv is assumed as the reference partition, then 
NMI

(
pu, pv

)
 represents the strength of the partition pu . Let 

the strength of partition pu be formulated as the weight of 
partition pu by Wpu

 . In addition to robustness, we use the 
merit of the clusters to determine the candidate clusters in 
the final consensus. Law et al. (2004) developed the NMI 
criterion and used it to calculate the merit of clusters. The 
authors converted a cluster into a partition in order to use 
NMI for evaluation work. Let ck be a cluster with all sam-
ples not in ck . ck is considered a positive cluster if at least 
half of its samples are found in another cluster. According 
to these definitions, the cluster ck is considered as a par-
tition p̂k =

{
ck, ck

}
 with the union of all positive clusters. 

With converting ck to p̂k , cluster merit of ck is formulated 
by Eq. (5). According to the aforementioned concepts, each 
ck,l ∈ pk with a predefined threshold can participate in the 
final consensus. The Eq. (6) defines the condition for ck,l to 
be a candidate for participating in the final consensus.

where p0 is defined as the reference partition. Also, � is the 
influence coefficient of the cluster level with respect to the 
partition level and � is a threshold for determining the con-
sensus candidates.

Each �k ∈ Π is an individual clustering algorithm based 
on AHC such as average linkage. Here, all �k ∈ Π are con-
figured using average linkage and based on semi-supervised 
learning. Also, the algorithm used in the consensus function 
is applied using average linkage and based on semi-super-
vised learning. Let di,j be the distance between samples xi 
and xj . We use the information of pairwise constraints such 
as must-link and cannot-link to define di,j in semi-supervised 
learning. If the sample pair (xi, xj) is covered by the must-
link, then it belongs to the set ΔM . Meanwhile, if the sample 

(4)

NMI
�
pu, pv

�
=

2
∑�pu�

i=1

∑�pv�
j=1

Nijlog
�

N.Nij

Ni1.N2j

�

∑�pu�
i=1

Ni1log
�

Ni1

N

�
+
∑�pv�

j=1
N2jlog

�
N2j

N

� ,

(5)Mck
= NMI

(
p0, p̂k

)
,

(6)
(
� ×Wpk

+ (1 − �) ×Mck,l

)
≥ �,

pair (xi, xj) is covered by cannot-link, then it belongs to the 
set ΔC . Let all members of sets ΔM and ΔC have symmetry 
and transitivity properties. The symmetry property is formu-
lated by Eq. (7) and the transitivity property is formulated by 
Eq. (8). Considering semi-supervised learning in the average 
linkage algorithm, di,j is formulated by pairwise constraints 
information with Eq. (9).

Experiments

We validate the performance of the proposed framework 
with several numerical experiments considering the UCI 
dataset and then use it to extract intercellular communica-
tion on the FANTOM5 dataset. The proposed clustering 
algorithm has been implemented using the MATLAB 2021a 
simulator on a personal computer with Intel® Core™ i7 
Processor up to 3.4.00 GHz and 16 GB DDR3 Memory.

Datasets

The evaluations are based on 10 datasets from the UCI 
machine learning repository, as shown in Table 2. We use 
a mean replacement policy when dealing with missing val-
ues. All datasets used have class labels, which are used as 
reference partitions in clustering. Since the proposed clus-
tering framework is based on semi-supervised learning, we 
consider 5% of the supervised samples as the constraint 
information.

In addition, we use the FANTOM5 dataset to analyze 
gene expression data and extract intercellular communica-
tion. FANTOM5 was compiled in collaboration with the 
University of Sydney, Australia. In addition to cell informa-
tion, this dataset also contains tissue information, which is 
not considered in the current study. Details of this dataset are 
available at http:// fantom. gsc. riken. jp/5. The full version of 
the FANTOM5 dataset contains 1836 samples per column, 
where each sample contains information related to a cell 
or tissue from a single patient. For each sample, 201,802 
promoters from different regions of a gene from a specific 
cell are available. With filtering data related to tissues, we 

(7)
{

(xi, xj) ∈ ΔM → (xj, xi) ∈ ΔM

(xi, xj) ∈ ΔC → (xj, xi) ∈ ΔC,

(8)
{

(xi, xk)&(xk, xj) ∈ ΔM → (xi, xj) ∈ ΔM

(xi, xk)&(xk, xj) ∈ ΔC → (xi, xj) ∈ ΔC,

(9)di,j =

{
0 (xi, xj) ∈ ΔM

∞
(
xi, xj

)
∈ ΔC.

http://fantom.gsc.riken.jp/5
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found 108 unique cells. Here, there are 702 examples related 
to cells.

Meanwhile, the rows in this dataset represent the numbers 
of promoters, which are identified using “entrezgene_id”. 
Some promoter values are not specified and specifically 
have the value “NA”. Unavailable promoter information is 
removed. After that, 86,428 promoters are available for each 
sample. The columns related to cells are taken from differ-
ent samples of the human body and there may be several 
samples of the same cell. In general, the first 7 columns 
related to the promoter information have been sampled and 
the 8th columns are samples. In addition, the ID of each 
sample includes details such as disease type, time point, cell 
name and patient ID. For example, the ID of a sample from 
the FANTOM5 dataset is: “239SLAM rinderpest infection, 
00hr, biol_rep1.CNhs14406.13541-145H4”. Here, “SLAM” 
represents a family of cell surface receptors and other coding 
are related to the patient. An overview of the FANTOM5 
dataset for cells is shown in Table 3.

Evaluation metrics

A partition generated by a clustering algorithm is ideal if it has 
a maximum inter-cluster distance and a minimum intra-cluster 
distance. We use criteria such as NMI, Adjusted Rand Index 

(ARI) and silhouette coefficient to evaluate the clustering 
results (Talatian Azad et al. 2021). NMI is a common criterion 
for evaluating the performance of clustering algorithms that 
can measure the similarity between two independent partitions. 
NMI is defined according to Eq. (4). ARI is another criterion 
for evaluating the performance of clustering algorithms. ARI 
uses the Rand Index (RI) to calculate the similarity between 
two independent partitions. ARI can calculate the similarity 
between two partitions such as pu and pv by Eq. (10).

The silhouette coefficient is an internal index to calculate 
the performance of clustering algorithms, which performs the 
evaluation process based on density and separation charac-
teristics. In silhouette, the validity of a partition is calculated 
based on the combination of intra-cluster and inter-cluster 
similarity for each pair of independent clusters. The obtained 
value of the silhouette coefficient is between − 1 and + 1, and 
a silhouette with a value of + 1 represents an ideal clustering. 
The silhouette coefficient for xi ∈ cl from the pk partition is 
calculated by Eq. (11).

where ai and bi are calculated by Eqs. (12) and (13), 
respectively.

(10)

ARI
(

pu, pv
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)
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2
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.

(11)Sili =
ai − bi

max(ai, bi)
,

(12)ai =
1
||cl||

∑
xj∈X|xj∈cl

di,j,

(13)bi = min
cq∈pk�cq≠cl

⎛⎜⎜⎝
1
���cq

���

�
xj∈X�xj∈cq

di,j

⎞⎟⎟⎠
.

Table 2  Details of the datasets used in the simulations

Dataset Number of 
samples

Number of 
features

Number 
of classes

Iris 150 4 3
Titanic 24 2 2
Brain 42 5597 5
Laryngeal1 213 16 2
Colon 62 2000 2
ORL32 400 1024 40
Pendigits 10,992 16 10
Banana 5300 2 2
Digits 5620 63 10
Splice 2991 60 3

Table 3  Overview of the FANTOM5 dataset

Gene 
region

Cell 1 Cell 2 … Cell i … Cell 108

Sample 1 Sample 2 … Sample j Sample 
j + 1

… … … … … Sample 702

1 Promoter Promoter … Promoter Promoter … Promoter … … … Promoter
2 Promoter Promoter … Promoter Promoter … Promoter … … … Promoter
3 Promoter Promoter … Promoter Promoter … Promoter … … … Promoter
… … … … … … … … … … … …
86,428 Promoter Promoter … Promoter Promoter … Promoter … … … Promoter
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Analysis of results

The proposed clustering algorithm is compared with several 
equivalent algorithms such as MWAMLP (Rezaeipanah and 
Ahmadi 2022), ECIDB (Mojarad et al. 2021), SSAE (Sang-
eetha and Prakash 2021), and TCGA (Sivadas et al. 2022). 
Before the comparisons, we prove that the proposed cluster-
ing algorithm using the average linkage algorithm provides 
the best performance in both the creation of primary parti-
tions and the consensus function. We compare the average 
linkage algorithm with other AHC-based algorithms such 
as single linkage, centroid linkage and complete linkage. 
Table 4 shows the results of this comparison. The results 
of this comparison are presented based on accuracy and the 
best results are bolded. Also, each row presents the results 
associated with a dataset, while the last row is the average 
of the results. The results clearly prove the superiority of 
the average linkage algorithm and its use in the proposed 
clustering framework.

The comparison of the proposed algorithm based on NMI 
and ARI criteria compared to MWAMLP, ECIDB, SSAE 
and TCGA is presented in Tables 5 and 6, respectively. 
The best results of these tables are highlighted in bold. The 

proposed algorithm performs better than all existing algo-
rithms in many datasets. However, the simulation results 
show that ECIDB produces quite competitive results with 
the proposed algorithm. Among the 10 existing ECIDB 
datasets, the proposed algorithm outperforms the proposed 
algorithm considering the NMI criterion in the Iris and 
Colon datasets. Also, ECIDB performs best considering the 
ARI criterion on the Titanic, Banana and Splice datasets. 
On average, in the NMI criterion, the proposed algorithm 
is 8.8%, 1.7%, 12.9%, and 16.5% superior compared to 
MWAMLP, ECIDB, SSAE, and TCGA, respectively. This 
superiority for the ARI criterion is 4.6%, 1.8%, 11.5%, and 
8.1%, respectively.

Although the proposed clustering algorithm performs 
better in terms of accuracy, NMI and ARI compared to 
equivalent algorithms, runtime analysis is also important. 
High-complexity clustering algorithms are not capable of 
processing large-scale datasets. The proposed clustering 
algorithm is equipped with a stratified feature sampling 
mechanism to deal with big data. This mechanism leads to 
the reduction of computational complexity and it is expected 
that the runtime in the proposed algorithm is lower than 
other algorithms. Figure 7 shows the runtime results of 

Table 4  Comparison of average 
linkage algorithm compared to 
other AHC-based algorithms

Dataset Single linkage Average linkage Centroid linkage Complete linkage

Iris 0.8706 ± 0.017 0.9073 ± 0.014 0.9105 ± 0.018 0.8940 ± 0.019
Titanic 0.7718 ± 0.009 0.7990 ± 0.022 0.7985 ± 0.023 0.7820 ± 0.029
Brain 0.5215 ± 0.025 0.5274 ± 0.011 0.4846 ± 0.010 0.5169 ± 0.008
Laryngeal1 0.9101 ± 0.023 0.9184 ± 0.012 0.9183 ± 0.017 0.9166 ± 0.006
Colon 0.7370 ± 0.018 0.7375 ± 0.018 0.7313 ± 0.015 0.7460 ± 0.017
ORL32 0.5952 ± 0.021 0.6067 ± 0.006 0.6034 ± 0.018 0.5842 ± 0.018
Pendigits 0.4775 ± 0.016 0.4893 ± 0.036 0.4889 ± 0.019 0.4687 ± 0.009
Banana 0.7419 ± 0.027 0.7743 ± 0.011 0.7714 ± 0.019 0.7608 ± 0.011
Digits 0.8413 ± 0.011 0.8550 ± 0.012 0.8580 ± 0.029 0.8382 ± 0.028
Splice 0.5907 ± 0.009 0.5958 ± 0.027 0.5953 ± 0.013 0.5952 ± 0.015
Average 0.7058 0.7211 0.7160 0.7103

Table 5  Comparison of 
different algorithms in terms of 
NMI criterion

Dataset MWAMLP ECIDB SSAE TCGA Proposed algorithm

Iris 0.8860 ± 0.014 0.8952 ± 0.017 0.8706 ± 0.023 0.8737 ± 0.014 0.8851 ± 0.026
Titanic 0.2781 ± 0.020 0.3141 ± 0.015 0.2709 ± 0.023 0.2442 ± 0.012 0.3315 ± 0.026
Brain 0.4819 ± 0.028 0.4989 ± 0.018 0.3729 ± 0.010 0.2235 ± 0.023 0.5322 ± 0.029
Laryngeal1 0.3991 ± 0.015 0.4195 ± 0.027 0.4166 ± 0.028 0.3290 ± 0.019 0.4464 ± 0.027
Colon 0.5115 ± 0.025 0.7873 ± 0.023 0.6825 ± 0.027 0.6616 ± 0.012 0.7329 ± 0.008
ORL32 0.6023 ± 0.014 0.5688 ± 0.009 0.5177 ± 0.010 0.5088 ± 0.023 0.5549 ± 0.026
Pendigits 0.6699 ± 0.012 0.6997 ± 0.025 0.5813 ± 0.012 0.7507 ± 0.034 0.7185 ± 0.028
Banana 0.7379 ± 0.027 0.7355 ± 0.013 0.6977 ± 0.020 0.7237 ± 0.027 0.7770 ± 0.017
Digits 0.8381 ± 0.012 0.8610 ± 0.010 0.7444 ± 0.021 0.7786 ± 0.029 0.8949 ± 0.028
Splice 0.3748 ± 0.016 0.4101 ± 0.018 0.4187 ± 0.024 0.3098 ± 0.009 0.4234 ± 0.025
Average 0.5780 0.6190 0.5573 0.5404 0.6297
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different clustering algorithms. The results clearly show that 
our algorithm has lower runtime in all datasets. On average, 
the proposed clustering algorithm provides 6.1%, 34.6%, 
43.5%, and 30.8% less runtime compared to MWAMLP, 
ECIDB, SSAE, and TCGA algorithms, respectively.

We proved that the proposed clustering framework has 
ideal performance for clustering real-world datasets. Hence, 
we apply it to clustering the FANTOM5 dataset and extract-
ing cell-to-cell biological communications. The FANTOM5 
dataset is multifaceted, where multiple samples from the 
same cell with multiple patients are available. Also, there 
are different samples of the same cell in different diseases. 
Therefore, each cell may be related to other cells through 
various diseases. The concept of communication in FAN-
TOM5 is expressed with promoters. A high value of a pro-
moter indicates the reproduction or disruption of a part of 
gene expression related to a cell. The activation threshold 
of promoters has a significant effect on the discovery of 
intercellular communication. Here, we cluster with differ-
ent thresholds from 500 to 4000 samples of the FANTOM5 
dataset and report the results in terms of the silhouette 
coefficient. We compare the presented results with ECIDB 
(Mojarad et al. 2021), as this algorithm was also applied to 
the FANTOM5 dataset. The results of this comparison are 
presented in Table 7. The results show the superiority of the 

proposed algorithm in most thresholds. Meanwhile, the best 
results are obtained for the silhouette factor with a threshold 
of 1000. Here, the proposed algorithm with a silhouette coef-
ficient of 0.952 and 19 clusters of samples related to cells 
have been clustered. These results were obtained for ECIDB 
with silhouette coefficient equal to 0.809 and 20 clusters.

We analyzed the clustering of the FANTOM5 dataset 
with different thresholds. A suitable threshold is equal to 
1000, considering it leads to the identification of strong com-
munications between cells. In each cluster, the pair of cells 
with the strongest correlation may indicate a relationship 
between different diseases. We extracted pairs of cells from 
different clusters with the highest correlation, whose sam-
ples belong to different diseases. Table 8 shows some of the 
strongest cell-to-cell communications, along with disease 
names and genes sampled. It shows the hereditary behavior 
between which diseases, based on which genes and in which 
cells.

Conclusions

Gene expression data contain important information 
of various diseases. The gene expression data of some 
diseases may be similar. Indeed, some cells in different 

Table 6  Comparison of 
different algorithms in terms of 
ARI criterion

Dataset MWAMLP ECIDB SSAE TCGA Proposed algorithm

Iris 0.7852 ± 0.027 0.7799 ± 0.024 0.7733 ± 0.017 0.7722 ± 0.016 0.7841 ± 0.010
Titanic 0.4464 ± 0.016 0.4872 ± 0.022 0.3103 ± 0.022 0.4377 ± 0.026 0.4870 ± 0.023
Brain 0.3185 ± 0.022 0.3325 ± 0.011 0.3160 ± 0.012 0.3185 ± 0.012 0.3499 ± 0.027
Laryngeal1 0.4217 ± 0.018 0.4224 ± 0.024 0.4158 ± 0.028 0.4103 ± 0.029 0.4592 ± 0.027
Colon 0.7757 ± 0.019 0.7624 ± 0.010 0.7493 ± 0.008 0.7592 ± 0.025 0.7722 ± 0.012
ORL32 0.5175 ± 0.018 0.5525 ± 0.021 0.5026 ± 0.021 0.5087 ± 0.023 0.5601 ± 0.010
Pendigits 0.5866 ± 0.027 0.6244 ± 0.024 0.5776 ± 0.008 0.5746 ± 0.019 0.6479 ± 0.027
Banana 0.7357 ± 0.011 0.7561 ± 0.028 0.7157 ± 0.012 0.7239 ± 0.017 0.7546 ± 0.022
Digits 0.8429 ± 0.028 0.8572 ± 0.036 0.7386 ± 0.023 0.7681 ± 0.025 0.8728 ± 0.011
Splice 0.4290 ± 0.012 0.4591 ± 0.018 0.4072 ± 0.024 0.4055 ± 0.028 0.4528 ± 0.018
Average 0.5869 0.6034 0.5506 0.5679 0.6141

Fig. 7  Comparison of different 
algorithms in terms of running 
time
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diseases may contain similar gene expression data. There-
fore, discovering the relationships between diseases 
through the extraction of cell-to-cell biological communi-
cations is challenging and can change our understanding of 
how diseases such as cancer develop. The communication 
between two cells occurs when the number of promoters is 
significantly expressed in a number of cells. It is obvious 
that designing a method to discover cell-to-cell biologi-
cal communications and identify the real communication 
between diseases is important for the medical society. 
A clustering algorithm based on semi-supervised learn-
ing and ensemble technique was proposed in the paper 
to identify intercellular communication. This framework 
is equipped with a stratified feature sampling mechanism 
to deal with high-dimensional data. Also, in this frame-
work, a new similarity metric is developed that uses a 
wide range of primary partition information to estimate 
similarity. Our proposed framework uses the constraints 
information in both the phases of creating the primary par-
titions and the consensus function. The performance of the 
proposed framework has been validated through clustering 
of the UCI dataset. Therefore, the proposed framework 
for extracting intercellular communication was success-
fully applied to the FANTOM5 dataset. The results of the 
simulations show that the most promoters between cancer 
and diseases such as inflammation, monocytosis and aortic 
aneurysm occur on the “ABLIM1” gene.
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