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Abstract
Background Transactivating DNA-binding protein 43 (TDP-43) is intimately associated with tumorigenesis and progression 
by regulating mRNA splicing, transport, stability, and non-coding RNA molecules. The exact role of TDP-43 in lung adeno-
carcinoma (LUAD) has not yet been fully elucidated, despite extensive research on its function in various cancer types. An 
imperative aspect of comprehending the underlying biological characteristics associated with TDP-43 involves investigating 
the genes that are co-expressed with this protein. This study assesses the prognostic significance of these co-expressed genes 
in LUAD and subsequently explores potential therapeutic strategies based on these findings.
Methods Transcriptomic and clinical data pertaining to LUAD were retrieved from open-access databases to establish 
an association between mRNA expression profiles and the presence of TDP-43. A risk-prognosis model was developed to 
compare patient survival rates across various groups, and its accuracy was also assessed. Additionally, differences in tumor 
stemness, mutational profiles, tumor microenvironment (TME) characteristics, immune checkpoints, and immune cell infiltra-
tion were analyzed in the different groups. Moreover, the study entailed predicting the potential response to immunotherapy 
as well as the sensitivity to commonly employed chemotherapeutic agents and targeted drugs for each distinct group.
Results The TDP-43 Co-expressed Gene Risk Score (TCGRS) model was constructed utilizing four genes: Kinesin Family 
Member 20A (KIF20A), WD Repeat Domain 4 (WDR4), Proline Rich 11 (PRR11), and Glia Maturation Factor Gamma 
(GMFG). The value of this model in predicting LUAD patient survival is effectively illustrated by both the Kaplan–Meier 
(K–M) survival curve and the area under the receiver operating characteristic curve (AUC-ROC). The Gene Set Enrich-
ment Analysis (GSEA) revealed that the high TCGRS group was primarily enriched in biological pathways and functions 
linked to DNA replication and cell cycle; the low TCGRS group showed primary enrichment in immune-related pathways 
and functions. The high and low TCGRS groups showed differences in tumor stemness, mutational burden, TME, immune 
infiltration level, and immune checkpoints. The predictions analysis of immunotherapy indicates that the Tumor Immune 
Dysfunction and Exclusion (TIDE) score (p < 0.001) and non-response rate (74% vs. 51%, p < 0.001) in the high TCGRS 
group are higher than those in the low TCGRS group. The Immune Phenotype Score (IPS) in the high TCGRS group is 
lower than in the low TCGRS group (p < 0.001). The drug sensitivity analysis revealed that the half-maximal inhibitory 
concentration (IC50) values for cisplatin, docetaxel, doxorubicin, etoposide, gemcitabine, paclitaxel, vincristine, erlotinib, 
and gefitinib (all p < 0.01) in the high TCGRS group are lower than those in the low TCGRS group.
Conclusions The TCGRS derived from the model exhibits a reliable biomarker for evaluating both prognosis and treatment 
effectiveness among patients with LUAD. This study is anticipated to offer valuable insights into developing effective treat-
ment strategies for this patient population. It is believed that this study is anticipated to contribute significantly to clinical 
diagnostics, the development of therapeutic drugs, and the enhancement of patient care.
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Introduction

Lung cancer is recognized as a prominent contributor to 
cancer-associated deaths, and it stands among the most 
prevalent malignancies globally (Siegel et  al. 2021). 
Future projections indicate that the United States will 
encounter approximately 1.9 million new cancer cases 
and 610,000 deaths linked to cancer by 2023 (Siegel et al. 
2023). Among these cases, lung cancer is projected to 
account for approximately 25% of newly diagnosed can-
cer cases, carrying a mortality rate of around 42% (Siegel 
et al. 2023). Consequently, timely diagnosis and develop-
ment of treatment strategies for lung cancer are crucial.

Among the various types of lung cancer, non-small 
cell lung cancer (NSCLC) emerges as the most prevalent 
form (Herbst et al. 2018). Within the realm of NSCLC, 
the specific subtype identified as lung adenocarcinoma 
(LUAD) exhibits the highest prevalence accounting for 
around 50% of all reported lung cancer cases (Bray et al. 
2018). Surgery is the preferred treatment for LUAD; 
however, some patients experience postoperative recur-
rence and metastasis, resulting in suboptimal treatment 
outcomes. Additionally, identifying patients with early-
stage LUAD can be challenging due to factors such as 
ambiguous symptoms. By the time the disease progresses 
to an advanced stage, the optimal window for surgical 
intervention may have already passed. Therefore, sur-
gical intervention for LUAD has certain limitations. In 
addition to surgery, treatment options for LUAD include 
chemotherapy, molecular targeting, and immunotherapy. 
Approximately 30% of LUAD cases possess molecular 
targets that can be addressed with targeted drugs (Peng 
et al. 2023). For patients with advanced LUAD who are 
not eligible for molecularly targeted treatment, immune 
checkpoint inhibitors (ICIs) are administered, resulting in 
a substantial increase in 5-year survival rates from under 
5% during chemotherapy to around 30% (Reck et  al. 
2021). As a result, immunotherapy has been recognized 
as a viable approach for managing various malignancies, 
including LUAD. It represents the most promising treat-
ment modality for improving the survival rate of cancer 
patients (Riley et al. 2019). Despite significant advance-
ments in targeted therapies and immunotherapy, LUAD 
patients continue to exhibit poor overall survival (OS) 
rates (Denisenko et al. 2018). Based on literature sources, 
the relative survival rate of lung cancer over a span of five 
years is estimated to be around 22% (Siegel et al. 2022). 
It is crucial to note that only a subset of patients, approxi-
mately 40%, exhibit a positive response to ICIs treatment, 
with even fewer patients achieving long-term remission. 
This, combined with immune-related adverse effects and 
issues of primary or secondary resistance, diminishes the 

efficacy of immunotherapy (Peng et al. 2023; Miller and 
Hanna 2021; Herbst et al. 2020). As a result, identifying 
new treatment targets or biomarkers for LUAD is crucial 
to understand the underlying processes that promote the 
onset and progression of LUAD.

Currently, a careful pathological examination stands as 
the primary determinant in the clinical decision-making pro-
cess. Conventional clinical models rely on indicators such 
as tumor lymph node metastasis (TNM), the staging sys-
tem, and microvascular invasion to predict the prognosis of 
LUAD individuals. However, due to the inherent heterogene-
ity of LUAD, these models prove inadequate, as they merely 
offer insights into the anatomical location of the lesion 
and the malignancy level, while neglecting the underlying 
molecular mechanisms driving the tumor. Consequently, 
it becomes imperative to develop comprehensive models 
that cater to the diverse requirements of LUAD treatment 
protocols. Such models should adequately evaluate therapy 
effectiveness and accurately predict patient outcomes, facili-
tating advancement in biological therapeutics for tumors, the 
development of novel therapeutic strategies for LUAD, and, 
ultimately, the enhancement of patient outcomes.

Transactivating DNA-binding protein 43 (TDP-43), also 
called transactivating DNA-binding protein (TARDBP), is a 
43 kDa protein capable of binding to DNA and RNA molecules. 
The TARDBP gene encodes this protein (Nonaka and Hasegawa 
2018; Chhangani et al. 2021; Klim et al. 2021; Lye and Chen 
2022). TDP-43, belonging to the heterogeneous nuclear ribo-
nucleoprotein (hnRNP) family, exhibits a high level of con-
servation and expression abundance while exerting multiple 
functions. Comprising 414 amino acid residues, the protein pos-
sesses an N-terminal domain (NTD) and two RNA recognition 
motifs (RRM1 and RRM2) responsible for the specific recogni-
tion of nucleic acids containing TG/UG repeats. Additionally, 
a complex domain is located at the C-terminus (LCD) (Nonaka 
and Hasegawa 2018; Chhangani et al. 2021; Klim et al. 2021; 
Lye and Chen 2022). The NTD of TDP-43 demonstrates self-
oligomerization and facilitates RNA recruitment for splicing 
(Jiang et al. 2017). Both a nuclear export signal and a nuclear 
localization signal are present on TDP-43, which enables it to 
serve as a link between the nucleus and cytoplasm (Winton et al. 
2008). Furthermore, the LCD consists of disordered glycine-
rich regions crucial for protein–protein interactions, including 
hnRNP binding (Buratti et al. 2005). TDP-43 plays essential 
roles in multiple physiological processes, such as alternative 
splicing, RNA transcription, and mRNA stability regulation, 
based on their structural components and corresponding func-
tions (Ma et al. 2021a). Extensive investigations have explored 
the involvement of TDP-43 in neurodegenerative disorders (de 
Boer et al. 2020; Suk and Rousseaux 2020; Carlos and Josephs 
2022). In recent years, TDP-43 has emerged as a vital factor 
in the advancement of malignant tumors, including breast can-
cer (Ke et al. 2018; Guo et al. 2022), lung cancer (Yang et al. 
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2020; Guo et al. 2015; Chen et al. 2018), melanoma (Zeng et al. 
2017), liver cancer (Liu et al. 2022), and ovarian cancer (He 
et al. 2023). Studies have demonstrated that TDP-43 interacts 
with Fas ligand mRNA in lung cancer, enhancing the stability 
of the Fas ligand mRNA, promoting apoptosis, and ultimately 
impeding lung cancer growth (Yang et al. 2020). According to 
in vitro studies, TDP-43 regulates the expression of the metasta-
sis-associated lung adenocarcinoma transcript-1, which affects 
NSCLC cell proliferation, migration, and infiltration (Guo et al. 
2015). Moreover, TDP-43 plays a dual role in lung cancer; it 
promotes cell migration by regulating mir-423-3p while simul-
taneously inhibiting lung cancer development by regulating mir-
500a-3p (Chen et al. 2018). These studies suggest that TDP-43 
likely participates in the diverse mechanisms underlying lung 
cancer development.

There remains a significant knowledge gap regarding the 
specific contribution of TDP-43 to lung cancer, necessitating 
further research in this area. Previous investigations have pri-
marily focused on the role of a single gene, whereas carcino-
genesis often arises from complex interactions among multiple 
genes. To gain new insights and develop effective treatment 
strategies, a comprehensive investigation into the prognostic 
significance of genes co-expressed with TDP-43 in LUAD and 
their relationship with the tumor microenvironment (TME) 
is necessary. Moreover, it is crucial to identify patients who 
exhibit responsiveness to immune-based therapies, targeted 
therapies, and chemotherapy drugs. Notably, there needs to be 
more research centered on the bioinformatic analysis of gene 
signatures co-expressed with TDP-43 in LUAD. Therefore, 
conducting such studies will be instrumental in advancing our 
comprehension of the intricate molecular mechanisms under-
lying LUAD and paving the way for developing new thera-
peutic strategies.

In this current investigation, publicly available data were 
retrieved to analyze genes co-expressed with TDP-43, with 
the aim of constructing a risk score model to predict the prog-
nosis of patients diagnosed with LUAD. The model was sub-
sequently validated using three independent cohorts. Further-
more, additional investigations were conducted to explore the 
characteristics of the model regarding tumor stemness, tumor 
mutational burden (TMB), TME, and immune responses. The 
study also predicted the therapeutic potential of the model. 
These findings offer novel insights into the treatment strategies 
and prognostic assessment of LUAD.

Materials and methods

Sources of research information

In the current study, The Cancer Genome Atlas (TCGA) data-
base (https:// portal. gdc. cancer. gov/) was searched (Tomczak 
et al. 2015) to gather clinical information, mRNA expression 

data, and somatic mutation data for both normal tissues 
(n = 59) and LUAD tissues (n = 535). TMB was determined by 
analyzing the somatic mutation data. The primary dataset ana-
lyzed in this study was The Cancer Genome Atlas Lung Ade-
nocarcinoma (TCGA-LUAD), and supplementary LUAD data 
were sourced from the Gene Expression Omnibus (GEO) data-
base (http:// www. ncbi. nlm. nih. gov/ geo/), including GSE72094 
(n = 442) (Schabath et al. 2016), GSE68465 (n = 443) (Shed-
den et al. 2008), and GSE41271 (n = 181) (Sato et al. 2013). 
Copy number variations (CNVs) data for the TCGA-LUAD 
cohort were retrieved from the UCSC Xena database (https:// 
xena. ucsc. edu/) (Goldman et al. 2020). Furthermore, the CEO 
database was searched to retrieve single-cell RNA-seq data 
for 42 patients with NSCLC (GSE148071) (Wu et al. 2021a).

Screening of genes and CNVs analysis

To identify genes co-expressed with TDP-43, the "limma" 
package of R (3.54.0) was employed to assess the TCGA-
LUAD mRNA expression data. Genes were categorized as 
positively associated (correlation coefficient > 0.3 and p < 0.05) 
or negatively associated (correlation coefficient < −0.3 and 
p < 0.05). These TDP-43 co-expressed genes were further 
analyzed in three additional LUAD datasets. The R package 
"VennDiagram" (1.7.3) was employed to visualize overlapping 
genes among the four datasets. Differentially expressed genes 
(DEGs) in TCGA-LUAD were assessed using the "limma" 
package of R (3.54.0), with a selection threshold of an absolute 
value of log2 fold change (|log2FC|) > 1.0 and a false discov-
ery rate (FDR) < 0.05. Prognostic-related genes (p < 0.05) were 
identified utilizing the R package "survival" (3.4–0). The R 
package "Venn" (1.11) assisted in visualizing the genes with 
differential expression and prognostic-related characteristics. 
CNVs for the characteristic genes were presented in CNVs 
frequency plots. The distribution of these characteristic genes 
across different chromosomes was visualized using the R pack-
age "RCircos" (1.2.2).

Construction and validation of the prognostic 
model, independent prognostic risk factor analysis, 
and nomogram establishment

The "least absolute shrinkage and selection operator" 
(LASSO) regression analysis was carried out using the R 
package "glmnet" (4.1–6) (Friedman et al. 2010), with ten-
fold cross-validation being used for gene selection and model 
development. Risk scores were computed based on the for-
mulas below:

TDP − 43Co − expressed Gene Risk Score (TCGRS)

=

n
∑

i=1

Coef (i) × Exp(i)

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
https://xena.ucsc.edu/
https://xena.ucsc.edu/
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The regression coefficient (Coef ( i ) and gene expres-
sion level Exp ( i ) were used in the current investigation. 
Patients were categorized into high and low TCGRS groups 
based on the cutoff value derived from the receiver oper-
ating characteristic (ROC) curve. The high TCGRS group 
was considered high risk, while the low TCGRS was con-
sidered low risk. The R package "pheatmap" (1.0.12) was 
employed to generate survival scatter plots, heat maps, and 
risk curve plots. To analyze the overall survival (OS) rates 
and create survival curves for patients in the high and low 
TCGRS groups, the R packages "survival” (3.4–0) and “sur-
vminer” (0.4.9) were utilized. The R package "timeROC" 
(0.4) was used to plot 1, 3, and 5-year ROC curves and cal-
culated the corresponding area under the curve (AUC) val-
ues. The GSE72094, GSE68465, and GSE41271 datasets 
were employed for further model validation. Cox regres-
sion analysis, performed using the R package "survival" 
(3.4–0), assessed TCGRS as an independent prognostic fac-
tor for LUAD. A nomogram based on TCGA-LUAD was 
established using a combination of R packages, including 
"survival" (3.4–0), "survminer" (0.4.9), "timeROC" (0.4), 
"rms" (6.3–0), and "regplot" (1.1). The clinical utility of the 
nomogram was evaluated using 1-, 3-, and 5-year clinical 
decision analysis (DCA) curves generated by the R package 
"ggDCA" (1.2).

Meta‑analysis of genes used in model construction

The "Lung Cancer Explorer" (LCE) visualization platform 
(https:// lce. biohpc. swmed. edu/ lungc ancer/) (Cai et al. 2019) 
was employed to perform a meta-analysis of the model 
genes, presenting the results as forest plots. For gene expres-
sion comparisons, the standardized mean difference (SMD) 
was used as the analytical statistic, while the hazard ratio 
(HR) served as the analytical statistic for survival compari-
sons. A random-effects model was implemented for statisti-
cal testing, with the 95% confidence interval (CI) providing 
the interval estimate for each statistic.

Gene set enrichment analysis (GSEA)

GSEA is a computational technique that evaluates prede-
fined gene subsets to determine whether gene sets in vari-
ous risk groups are differentially enriched across certain 
phenotypic categories. This powerful approach can enable 
the identification of common biological pathways (Sub-
ramanian et al. 2005). The R packages "clusterProfiler" 
(4.6.0), "enrichplot" (1.18.3), and "org.Hs.eg.db" (3.16.0) 
(Yu et al. 2012) were employed to perform GSEA analysis 
on the different TCGRS groups. This research facilitated the 
determination of potential biological activities and pathways 
linked to the groups using Gene Ontology (GO) and Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) gene sets 
as references.

Analysis of the correlation between the TCGRS 
and stemness characteristics

The high expression of biomarkers correlated with tumor 
stem cells is strongly linked to tumor proliferation, cancer 
recurrence, and drug resistance (Luo and Vögeli 2020). 
Stemness scores, which characterize the similarity between 
tumor cells and stem cells, can be derived using the "one-
class logistic regression" (OCLR) algorithm (Malta et al. 
2018). The stemness score calculated from mRNA expres-
sion data is referred to as "mRNAss,” while the score cal-
culated from methylation data is denoted as "mDNAss.” To 
evaluate and visualize the differences in "mRNAss" and 
"mDNAss" between the high and low TCGRS groups, the 
R package "ggpubr" (0.5.0) was employed.

TMB analysis

The top 20 mutated genes in the high- and low- TCGRS 
groups were displayed, and the TMB was calculated 
using the R package "maftools" (2.14.0). The differences 
in TMB between the high- and low- TCGRS groups were 
assessed  and visualized using the R package "ggpubr" 
(0.5.0).

TME, immune cell infiltration, and immune 
checkpoint analyses

The "ESTIMATE" method was used to estimate the pro-
portion of immune and stromal cells in the TME of tumor 
samples (Yoshihara et al. 2013). The R package "estimate" 
(1.0.13) was used to determine stromal scores, immune 
scores, and tumor purity based on TCGA-LUAD data. The 
"ESTIMATE" score is obtained by the sum of the stromal 
and immune scores. The "CIBERSORT" algorithm, a decon-
volution technique, can predict the relative abundance of 
immune cell populations (Newman et al. 2015). To esti-
mate the abundance of 22 tumor-infiltrating immune cells 
in TCGA-LUAD samples, the R package "CIBERSORT" 
(1.03) was utilized. Additionally, the expression levels of 
multiple immune checkpoints (Danilova et al. 2019) were 
compared to analyze potential differences between high and 
low TCGRS groups.

Anticipation of the immune therapeutic reaction 
and drug sensitivity

The assessment of immunotherapy efficacy in patients 
often involves the calculation of the "Tumor Immune Dys-
function and Exclusion" (TIDE) score, which is obtained 

https://lce.biohpc.swmed.edu/lungcancer/
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from the TIDE website (http:// tide. dfci. harva rd. edu/), and 
the "Immune Phenotype Score" (IPS), acquired from the 
"Cancer Immune Atlas" website (https:// tcia. at/). A lower 
TIDE score and a higher IPS indicate favorable immuno-
therapy outcomes. The R package "pRRophetic" (0.5.1) was 
employed to predict the half-maximal inhibitory concentra-
tion (IC50) value of the target drug utilizing the "Cancer 
Drug Sensitivity Genomics" database (https:// www. cance 
rrxge ne. org/). A higher IC50 value suggests lower drug 
sensitivity.

Single‑cell analysis

The "Tumor Immune Single-cell Hub" (TISCH) data-
base (http:// tisch. comp- genom ics. org/) comprises high-
quality transcriptome data with single-cell level cell type 
annotations (Sun et al. 2021). The "GSE148071" dataset 
was retrieved from the database, and "Uniform Manifold 
Approximation and Projection" (UMAP) plots were utilized 
to display the expression and distribution of model genes in 
different immune cell types.

Analysis of protein expression levels

The protein expression of the model genes was analyzed 
utilizing the "Human Protein Atlas" (HPA) database (https:// 
www. prote inatl as. org/), which provides free access to immu-
nohistochemical slides. A positive immune response can be 
determined when nuclear staining is observed in tumor cells.

Statistical analysis

The Wilcoxon test was conducted to evaluate variations 
between the two groups, with the exception of the evalua-
tion of immunotherapy (categorical data), which was com-
pared by means of the chi-square test. The Kaplan–Meier 
(K–M) method was employed to estimate the survival rates 
for high and low TCGRS groups. Numerical variables or 
combinations of categorical and numerical variables were 
analyzed utilizing univariate and multivariate Cox regres-
sion. TDP-43 co-expressed correlated genes were analyzed 
using Pearson’s method, while correlations between tumor 
stemness score, TMB, TME, immune cell infiltration, TIDE 
score, and TCGRS were analyzed using Spearman’s method. 
Statistical significance was defined as p < 0.05.

Results

Workflow and clinical characteristics of the research 
data

The study workflow is depicted in Fig. 1. TCGA-LUAD 
dataset comprises clinical data from 522 patients with 

LUAD (13 patients with unknown survival time were 
excluded). Table 1 presents the clinical information for four 
LUAD datasets.

Screening genes co‑expressed with TDP‑43 
and prognosis‑related genes and CNVs analysis

In TCGA-LUAD, a total of 306 co-expressed genes with 
TDP-43 were identified. Further analysis of gene expression 
using GEO datasets revealed 188 genes that were consist-
ently co-expressed across the four datasets (Figs. 2A and B). 
Among these 188 genes, 39 were identified as DEGs, and 
49 were identified as prognostic-related genes in TCGA-
LUAD, resulting in a set of 20 genes that were both differ-
entially expressed and prognostically relevant (Fig. 2C). Cox 
regression analysis revealed that high expression of 18 genes 
was associated with poor prognosis, while low expression 
of two genes was also linked to poor prognosis (Fig. 2D). 
The expression patterns of these 20 genes in the samples are 
illustrated in Fig. 2E, and their correlations are depicted in 
Fig. 2F. Analysis of CNVs revealed that the amplification 
frequency was higher for 12 genes, while the deletion fre-
quency was higher for eight genes (Fig. 2G). Additionally, 
Fig. 2H provides the visualization of the chromosomal loca-
tions of these 20 genes.

TCGRS model construction and validation 
and nomogram establishment

Through LASSO regression, a model was constructed 
from 4 genes selected from the 20 differentially expressed-
prognostic genes based on TCGA-LUAD, namely Kine-
sin Family Member 20A (KIF20A), WD Repeat Domain 
4 (WDR4), Proline Rich 11 (PRR11), and Glia Maturation 
Factor Gamma (GMFG), as shown in Fig. 3. The pertinent 
data and regression coefficients for these model genes are 
presented in Table 2. The model formula is given below:

TCGRS = (0.165598899115021) × (KIF20A expression 
levels) + (0.126214693287426) × (WDR4 expression lev-
els) + (0.00639771240580875) × (PRR11 expression lev-
els) + (-0.10373143883509) × (GMFG expression levels).

Using a cut-off value of 0.614, the samples were divided 
into a high TCGRS group (≥ 0.614) and a low TCGRS group 
(< 0.614). As TCGRS increased, the number of deaths also 
increased (Fig. 4A). In the high TCGRS group, KIF20A, 
WDR4, and PRR11 expression increased, while in the low 
TCGRS group, GMFG expression increased (Fig. 4B). The 
high TCGRS group exhibited a shorter survival duration 
compared to the low TCGRS group (Fig. 4C). The perfor-
mance of the model was evaluated using ROC curves at 1, 
3, and 5 years, as shown in Fig. 4D. To validate the model, 

http://tide.dfci.harvard.edu/
https://tcia.at/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
http://tisch.comp-genomics.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Fig. 1  The workflow and approach of this study
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three GEO datasets were utilized, highlighting its robust pre-
dictions capability for survival (Fig. 5). Cox regression anal-
ysis performed on the four datasets confirmed that TCGRS 
could serve as an independent prognostic factor (Fig. 6). 
By combining the clinical parameters of the TCGA-LUAD 
cohort with TCGRS, a nomogram was developed to improve 
survival prediction, yielding a reliable tool with a good pre-
diction value (Fig. 7A–D). DCA analysis revealed that while 
the net benefit of the nomogram was not significant at 1 year 
OS, it was better than other clinical characteristics at 3 years 
and 5 years (Fig. 7E–G).

Meta‑analysis of gene expression and survival 
differences

The meta-analysis demonstrated an upregulation of KIF20A, 
WDR4, and PRR11 expression levels in LUAD tissues, 
whereas GMFG expression level was found to be decreased 
(Fig. 8). Survival analysis further revealed that high expres-
sion of KIF20A, WDR4, and PRR11 was considerably cor-
related with unfavorable prognosis, whereas low expression 
of GMFG was linked to poor prognosis (Fig. 9).

Table 1  Clinical baseline 
characteristics of LUAD 
patients involved in this study

NA Not available

Characteristics TCGA-LUAD GSE72094 GSE68465 GSE41271

Cases 522 442 443 181
Age (years), Median 66 70 65 63
 < 65 223 (42.72%) 115 (26.02%) 214 (48.31%) 99 (54.70%)
 ≥ 65 280 (53.64%) 306 (69.23%) 229 (51.69%) 82 (45.30%)
 Unknown 19 (3.64%) 21 (4.75%) 0 0

Gender
 Female 280 (53.64%) 240 (54.30%) 220 (49.66%) 90 (49.72%)
 Male 242 (46.36%) 202 (45.70%) 223 (50.34%) 91 (50.28%)

Clinical Stage NA
 I 279 (53.45%) 265 (59.95%) 100 (55.25%)
 II 124 (23.76%) 69 (15.61%) 28 (15.47%)
 III 85 (16.28%) 63 (14.25%) 49 (27.07%)
 IV 26(4.98%) 17 (3.85%) 4 (2.21%)
 Unknown 8 (1.53%) 28 (6.34%) 0

T Stage NA NA
 T1 172 (32.95%) 150 (33.86%)
 T2 281 (53.83%) 251 (56.66%)
 T3 47 (9.00%) 28 (6.32%)
 T4 19 (3.64%) 12 (2.71%)
 Unknown 3 (0.58%) 2 (0.45%)

N Stage NA NA
 N0 335 (64.18%) 299 (67.49%)
 N1 98 (18.77%) 88 (19.87%)
 N2 75 (14.37%) 53 (11.96%)
 N3 2 (0.38%) NA
 Unknown 12 (2.30%) 3 (0.68%)

M Stage NA NA NA
 M0 353 (67.62%)
 M1 25 (4.79%)
 Unknown 144 (27.59%)

Survival time(days), Median 551 824 1410 1178
Unknown 0 44 (9.95%) 1 (0.23%) 0
Survival State
 Alive 355 (68.01%) 298 (67.42%) 207 (46.73%) 112 (61.88%)
 Dead 167 (31.99%) 122 (27.60%) 236 (53.27%) 69 (38.12%)
 Unknown 0 22 (4.98%) 0 0
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Fig. 2  Screening for co-expressed genes with TDP-43 and analysis 
of CNVs in LUAD. A Using data from four LUAD cohorts (TCGA-
LUAD, GSE72094, GSE68465, and GSE41271), we identified 188 
genes co-expressed with TDP-43. A positive correlation is depicted in 
red, whereas a negative connection is shown in blue. B The correla-
tion between TDP-43 and 188 genes. C Utilizing the TCGA-LUAD 
cohort, 20 genes associated with differential expression and progno-
sis were identified. D Findings from a survival study using univari-

ate Cox regression on 20 genes. E Expression of 20 genes in normal 
and tumor samples from the TCGA-LUAD cohort. High expression is 
indicated by red, whereas low expression is indicated by blue. F The 
correlation analysis network diagram of 20 genes. G CNVs frequency 
changes in LUAD for 20 genes. The amplification frequency is shown 
in red, and the deletion frequency is shown in green. H Location on 
LUAD chromosomes of 20 genes with altered CNVs
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Fig. 3  LASSO regression analysis were utilized to construct the 
TCGRS model. A The process of constructing the LASSO regression 
coefficient route for the model. B Cross-validation curves for model 

construction. C Regression coefficients for participating model genes. 
D The model determined the ROC curve to get the best possible cut-
off value for TCGRS

Table 2  Basic information for constructing model genes

Gene Symbol Description TDP-43 Relevance P-value Type Log2FC FDR LASSO Coefficient

KIF20A Kinesin Family Member 20A 0.400313 5.22E-22 Positive 3.308652 3.34E-32 0.165598899115021
WDR4 WD Repeat Domain 4 0.315061 8.57E-14 Positive 1.060900 1.85E-24 0.126214693287426
PRR11 Proline Rich 11 0.330059 4.61E-15 Positive 2.393045 8.62E-24 0.00639771240580875
GMFG Glia Maturation Factor Gamma −0.37769 1.39E-19 Negative −1.326675 2.00E-27 -0.10373143883509
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GSEA

To study the various biological processes and pathways 
linked to the high and low TCGRS groups, GSEA was per-
formed using GO and KEGG gene sets as references. The 
study revealed that the high TCGRS group was primarily 
enriched in biological pathways and functions linked to 
DNA replication, cell cycle, and DNA templated. In con-
trast, the low TCGRS group showed primary enrichment in 
immune-related pathways and functions (Fig. 10).

Tumor stem cell signature and TMB analysis

The high TCGRS group exhibited elevated levels of both 
"RNAss" and "DNAss" compared to the low TCGRS group, 
with a positive correlation between TCGRS and these 

measures (Fig. 11). Mutation frequencies of the top 20 genes 
in somatic cells were also higher in the high TCGRS group 
(Figs. 12A and B). Additionally, TMB analysis showed that 
TCGRS and TMB had a positive correlation, with the high 
TCGRS group demonstrating higher levels than the low 
TCGRS group (Figs. 12C and D).

Immunological characterization analysis

TME analysis revealed distinct characteristics between 
the high and low TCGRS groups. The low TCGRS group 
exhibited higher stromal, immune, and "ESTIMATE" scores, 
indicating the increased number of stromal and immune 
cells within the TME. Conversely, the high TCGRS group 
showed higher tumor purity (Fig. 13A). Correlation analysis 
demonstrated a negative association between TCGRS and 

Fig. 4  The prognostic value of the TCGRS model was constructed 
using the TCGA-LUAD cohort. A The distribution of TCGRS and 
survival status among patients in this cohort. B Compares model gene 
expression levels between patients with high and low TCGRS groups. 

C The K–M survival curves for high and low TCGRS groups. D The 
ROC curves for 1-, 3-, and 5-year survival predictions are based on 
the TCGRS model
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Fig. 5  Assessing the prognostic value of the TCGRS model using 
three validation cohorts. A Distribution of TCGRS and survival sta-
tus in the GSE72094 cohort. B Model gene expression in high and 
low TCGRS groups in the GSE72094 cohort. C Survival curve of 
the GSE72094 cohort. D ROC curve of the GSE72094 cohort. E 
Distribution of TCGRS and survival status in the GSE68465 cohort. 
(F) Model gene expression in high and low TCGRS groups in the 

GSE68465 cohort. G Survival curve of the GSE68465 cohort. H 
ROC curve of the GSE68465 cohort. I Distribution of TCGRS and 
survival status in the GSE41271 cohort. (J) Model gene expression 
in high and low TCGRS groups in the GSE41271 cohort. (K) Sur-
vival curve of the GSE41271 cohort. L ROC curve of the GSE41271 
cohort
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stromal, immune, and "ESTIMATE" scores, and a positive 
correlation was observed with tumor purity (Fig. 13B). Fur-
thermore, immune infiltration analysis revealed contrasting 
profiles between the two groups. The high- TCGRS group 
exhibited elevated levels of activated CD4 memory T cells, 
T-cell follicular helper cells, resting natural killer (NK) cells, 
and M0 and M1 macrophages. In contrast, the low- TCGRS 
group exhibited increased levels of memory B cells, resting 
CD4 memory T cells, monocytes, resting dendritic cells, 

and resting and activated mast cells (Fig. 13C). The correla-
tion between model genes and immune cell populations is 
depicted in Fig. 13D. Moreover, an examination of immune 
checkpoints revealed differential expression of 31 out of 
47 known immune checkpoints between the high and low 
TCGRS groups. CD276 exhibited higher expression levels 
in the high- TCGRS group, while other immune checkpoints 
showed higher expression levels in the low TCGRS group.

Fig. 6  Cox regression analysis of TCGRS in four LUAD cohorts: 
results from univariate and multivariate analyses. The findings 
of a univariate Cox regression analysis are displayed on the left, 

while those of a multivariate analysis are displayed on the right. A 
TCGA-LUAD cohort. B GSE72094 cohort. C GSE68465 cohort. D 
GSE41271 cohort
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Fig. 7  A nomogram for predicting OS in LUAD is constructed using 
clinical data and TCGRS from the TCGA-LUAD cohort. A 1-, 3-, 
and 5-year OS of LUAD patients were predicted using combined gen-
der, age, clinical stage, T stage, N stage, M stage, and TCGRS con-
structed nomograms from the TCGA-LUAD cohort. B ROC curves 
reflect the ability of nomograms to assess 1-, 3-, and 5-year survival 
outcomes in LUAD patients. C The calibration curves reflect the 

accuracy of the nomograms in assessing the 1-, 3-, and 5-year sur-
vival outcomes of LUAD patients. D The K–M curve compared the 
survival difference between the high and low risk groups based on the 
nomogram. E–G DCA to evaluate the clinical utility of nomograms 
for predicting 1-, 3-, and 5-year OS of LUAD. * p < 0.05, ** p < 0.01, 
*** p < 0.001
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Fig. 8  Meta-analysis of model gene expression differences. A KIF20A. B WDR4. C PRR11. D GMFG 
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Immunotherapy prediction and drug sensitivity 
analysis

The analysis of immune therapy prediction indicated that 
the high TCGRS group exhibited considerably higher 
TIDE scores in comparison to the low TCGRS group 
(p < 0.001) (Fig. 14A). Additionally, the non-response 
rate was remarkably higher in the high TCGRS group 
as opposed to the low TCGRS group (74% vs. 51%, 
p < 0.001) (Fig. 14B). The ROC curve demonstrated the 
favorable predictions capability of TCGRS for immune 
therapy (Fig.  14C), and a positive association was 
observed between TCGRS and TIDE scores (Fig. 14D). 
Moreover, IPS analysis showed that the low TCGRS group 
exhibited higher scores for “ips_ctla4_neg_pd1_neg”, 
“ips_ctla4_pos_pd1_neg”, “ips_ctla4_neg_pd1_pos”, 
and “ips_ctla4_pos_pd1_pos” compared to high TCGRS 
group (all p < 0.001) (Figs. 14E–H). Furthermore, the 
analysis of drug sensitivity analysis demonstrated that the 

low TCGRS group demonstrated increased IC50 values for 
cisplatin, docetaxel, doxorubicin, etoposide, gemcitabine, 
paclitaxel, vincristine, erlotinib, and gefitinib in compari-
son to the high TCGRS group (all p < 0.01). This indicates 
lower drug sensitivity in the low- TCGRS group for these 
specific drugs (Fig. 15).

Single‑cell analysis and protein expression

Based on GSE148071, single-cell data analysis showed that 
four model genes were expressed across multiple immune 
cell types (Fig.  16). Protein expression analysis using 
the HPA database showed increased expression levels of 
KIF20A and PRR11 in LUAD tissues. Conversely, GMFG 
exhibited lower expression levels in LUAD tissues. How-
ever, LUAD tissue and normal tissue showed no difference 
in WDR4 (Fig. 17).

Fig. 9  Meta-analysis of survival differences by model genes. A KIF20A. B WDR4. C PRR11. D GMFG 
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Discussion

In this investigation, public databases were searched to 
identify genes that exhibit co-expression with TDP-43 in 
TCGA-LUAD. Subsequently, KIF20A, WDR4, PRR11, and 
GMFG were chosen based on LASSO regression analysis to 
construct a risk-scoring model known as the TCGRS model. 
The TCGRS model demonstrates a high- level of accuracy 

in predicting the prognosis of LUAD patients. Furthermore, 
GSEA analysis uncovered a potential association between 
the high- TCGRS group and various cellular processes, 
such as the cell cycle, DNA replication, and TP53-related 
functions and pathways, suggesting a potential influence on 
tumor stemness and TMB characteristics. The low TCGRS 
group may be associated with immune-related processes and 
ways, indicating a more important role for immune cells 

Fig. 10  The biological characteristics of different TCGRS groups 
were assessed by GSEA based on the TCGA-LUAD cohort. A GO 
enrichment analysis of the high TCGRS group. B GO enrichment 

analysis of the low TCGRS group. C KEGG enrichment analysis 
in the high TCGRS group. D KEGG enrichment analysis in the low 
TCGRS group
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in this group. According to the examination of TME and 
immune checkpoints, individuals in the low TCGRS group 
showed more significant levels of immune cell infiltration 
and immune checkpoint molecule expression levels in the 
TME than those in the high TCGRS group. Moreover, the 
prediction of immune therapy outcomes indicated that the 
patients in the low TCGRS group displayed lower TIDE 
scores and more favorable IPS analysis results, suggesting 
an attenuated immune evasion capacity and a potential for 
enhanced response to immunotherapy. Analysis of cisplatin, 

docetaxel, doxorubicin, etoposide, gemcitabine, paclitaxel, 
vincristine, erlotinib, and gefitinib showed that individu-
als in the high TCGRS group showed lower IC50 values 
as compared to those in the low TCGRS group, indicating 
greater sensitivity to these drug treatments. The high sensi-
tivity of the high TCGRS group to chemotherapy drugs may 
be due to their involvement in DNA replication- and cell 
cycle-related pathogenic pathways, as these pathways are the 
primary targets of most chemotherapy drugs. The expression 
of four genes was further confirmed at the single-cell level 

Fig. 11  Evaluated differences in RNAss and DNAss between TCGRS 
groups in the TCGA-LUAD cohort and examined the correlation 
between TCGRS and stemness scores. A Analysis of differences 
between high and low TCGRS groups in RNAss. B Analysis of cor-

relations between TCGRS and RNAss. C Analysis of differences 
between high and low TCGRS groups in DNAss. D Analysis of cor-
relations between TCGRS and DNAss
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across various immune cell types, highlighting their poten-
tial link to immune characteristics. Among these genes, the 
protein expression levels of KIF20A, PRR11, and GMFG 
were consistent with their corresponding mRNA expression 
levels. However, in the case of WDR4, the protein expres-
sion did not align with its mRNA expression level, and 
further investigation is needed on the protein expression of 
WDR4. This analysis showed that a model developed using 
genes co-expressed with TDP-43 could predict the prognosis 

of LUAD in an accurate manner and help select the appro-
priate treatment for LUAD patients.

This study is the first to use bioinformatics methods to 
reveal the role of TDP-43 co-expressed genes in LUAD. 
Investigating these genes is crucial for understanding the 
biological significance of TDP-43 in tumors. The Kine-
sin family, discovered in 1985, comprises 14 superfami-
lies, including kinesin-1 to kinesin-14 (Vale et al. 1985). 
KIF20A, a member of Kinesin family member 20A, also 
called Mitotic Kinesin-Like Protein 2 (MKLP2) and RAB6 

Fig. 12  Somatic mutation signatures and TMB analysis in high and 
low TCGRS groups. A Top 20 gene signatures of somatic muta-
tions in high TCGRS group. B Top 20 gene signatures of somatic 

mutations in low TCGRS group. C Analysis of differences in TMB 
between high- and low- TCGRS groups. D Analysis of correlations 
between TCGRS and TMB



Journal of Cancer Research and Clinical Oncology (2024) 150:44 Page 19 of 27 44

Fig. 13  Analysis of TCGRS and immune-related signatures. A Anal-
ysis of differences in the stromal score, immune score, estimate score, 
and tumor purity between high and low TCGRS groups. B Analysis 
of correlations between TCGRS and stromal score, immune score, 
estimate score, and tumor purity. C Analysis of differential expression 

of 22 immune cells in high and low TCGRS groups. D Analysis of 
correlations between model genes and 22 immune cells. E Differen-
tial expression analysis of multiple immune checkpoints in high and 
low TCGRS groups. * p < 0.05, ** p < 0.01, *** p < 0.001
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Interacting, Kinesin-Like (Rabkinesin6) (RAB6KIFL), 
is located on chromosome 5q31.2 and belongs to Kinesin 
superfamily-6 (Echard et al. 1998). Members of this gene 
superfamily play crucial roles in various cellular processes 
like intracellular transport, spindle assembly, and mitosis 
(Zhang et al. 2019). Through analysis of public databases 

and subsequent in vitro and in vivo validation, it has been 
demonstrated that KIF20A expression is upregulated in 
LUAD tissues compared to normal tissues. KIF20A is 
believed to modulate cell proliferation and apoptosis by 
influencing the cell cycle, thereby producing a malig-
nant phenotype on LUAD (Zhao et al. 2018). WDR4, in 

Fig. 14  Predicting the effectiveness of immunotherapy based on cal-
culated TCGRS from the TCGA-LUAD cohort model. A Analysis of 
differences in TIDE scores between high and low TCGRS groups. B 
Comparison of response and non-response rates between high- and 
low- TCGRS groups C The ROC curves reflect the accuracy of the 
TCGRS in predicting immunotherapy. D Analysis of correlations 
between TCGRS and TIDE scores. E Analysis of differences in “ips_

ctla4_neg_pd1_neg” between high- and low TCGRS groups. F Anal-
ysis of differences in “ips_ctla4_pos_pd1_neg” between high- and 
low TCGRS groups. G Analysis of differences in “ips_ctla4_neg_
pd1_pos” between high- and low TCGRS groups. H Analysis of dif-
ferences in “ips_ctla4_pos_pd1_pos” between high- and low TCGRS 
groups. *** p < 0.001
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conjunction with methyltransferase-like 1 (METTL1), forms 
a methyltransferase complex responsible for catalyzing the 
N7-methylguanosine (m7G) modification in eukaryotic 
transfer RNAs (tRNAs) (Alexandrov et al. 2002; Lin et al. 
2018). Studies have shown that METTL1/WDR4 exhibits 

high expression levels in lung cancer tissues and that the 
loss of m7G tRNA modification impairs cell proliferation, 
colony formation, and cell invasiveness, ultimately reducing 
the tumorigenic potential of cancer cells both in vitro and 
in vivo (Ma et al. 2021b). Additionally, enhanced expression 

Fig. 15  Drug sensitivity analysis of high- and low TCGRS groups in different chemotherapeutic and molecularly targeted drugs. A cisplatin. B 
docetaxel. C doxorubicin. D etoposide. E gemcitabine. F paclitaxel. G vinorelbine. H erlotinib. I gefitinib
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of METTL1 and WDR4 has been linked to enhanced sen-
sitivity to certain chemotherapy drugs (Duan et al. 2023), 
potentially explaining the observed chemotherapy sensitiv-
ity in the high TCGRS group. PRR11, a proline-rich pro-
tein-coding gene on chromosome 17q22-23, consists of ten 

exons and nine introns (Lee et al. 2020; Ji et al. 2013). It 
participates in various cellular processes of NSCLC cells, 
including proliferation, migration, cell cycle progression, 
invasion, apoptosis, and autophagy (Ji et al. 2013; Zhang 
et al. 2018). Consequently, PRR11 represents a potential 
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Fig. 16  Single-cell analysis of model genes to characterize the micro-
environment of the tumor immune system. A A UMAP plot is pre-
sented to display the ten significant cell populations found in the 
TME of NSCLC using the GSE148071 dataset. B Distribution of 
KIF20A in cell populations. C Distribution of WDR4 in cell popula-

tions. D Distribution of PRR11 in cell populations. E Distribution of 
GMFG in cell populations. F Expression of KIF20A in 10 cell types. 
G Expression of WDR4 in 10 cell types. H Expression of PRR11 in 
10 cell types. I Expression of GMFG in 10 cell types
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therapeutic target for lung cancer treatment. GMFG, a gene 
located on chromosome 19q13.2, comprises seven exons 
(Tang et al. 2022). It belongs to the actin depolymerizing 
factor (ADF)/cofilin family, which is crucial in remodeling 
the actin cytoskeleton (Tang et al. 2022). A previous study 
suggests that GMFG expression is downregulated in LUAD 
tissues compared to normal lung tissues and that it may exert 
anti-cancer effects by activating the p53 signaling pathway, 
thereby inhibiting the progression of lung cancer (Tang 
et al. 2022). Furthermore, GMFG has been implicated in 
immune responses across various cancer types, exhibiting 
a positive association with immune regulation (Lan et al. 
2021). Therefore, the differential biological functions and 
pathways observed based on GMFG expression levels may 
offer new insights for personalized treatment approaches in 
LUAD patients.

Epidemiological studies suggest a close relationship 
between tumors and neurodegenerative diseases. However, 
the molecular mechanisms of this relationship still need 
to be better understood (Campos-Melo et al. 2014). RNA-
binding protein (RBP), which exerts a key function in RNA 
metabolism by participating in the formation of ribonucleic 
acids, is considered a molecular bridge between these two 
diseases (Campos-Melo et al. 2014). TDP-43, a multifunc-
tional RNA/DNA-binding protein, plays essential roles in 
neuronal survival, cell cycle progression, and apoptosis 
regulation (Han et al. 2013). Its role in tumors has made it a 
current research hotspot. In NK cells, TDP-43 is a binding 
target of YTH N6-Methyladenosine RNA Binding Protein 
F2 (YTHDF2), a member of the YTH domain-containing 
family. It regulates cell proliferation and survival, thereby 
influencing the function of NK cells in tumorigenesis (Ma 
et al. 2021c). TDP-43 might have a role in controlling immu-
nological features in the TME, given that NK cells are a 
kind of immune cell. In breast cancer, TDP-43 modulates the 
majority of splicing events via the serine/arginine-rich splic-
ing factor 3 (SRSF3), thereby regulating the progression of 
triple-negative breast cancer (Ke et al. 2018). Another study 
demonstrated that TDP-43 might enhance the stemness of 
breast cancer stem cells through alternative splicing of the 
CD44 variant (CD44v) (Guo et al. 2022). TDP-43 has been 
identified in melanoma as a novel oncogene that may regu-
late tumor growth and metastasis by modulating glucose 
metabolism (Zeng et al. 2017). In soft tissue sarcomas, bio-
informatics analyses have revealed TDP-43 as an essential 
cancer-promoting gene and its association with prognosis 
(Wu et al. 2021b). The role of TDP-43 in hepatocellular 
carcinoma is significant as it regulates glycolysis in cancer 
cells through transcriptional repression, ultimately leading 
to a poor prognosis for patients (Park et al. 2013). TDP-43 
may regulate tumor progression in cervical cancer through 
necroptosis-related pathways, with high expression lev-
els indicating a favorable prognosis (Zhan et al. 2022). In 

conclusion, the relationship between TDP-43 expression and 
tumor progression has been established (Campos-Melo et al. 
2014). However, the exact role of TDP-43 in lung cancer, 
specifically in LUAD, is not well understood. Exploring the 
genes co-expressed with TDP-43 could provide valuable 
insights into its underlying mechanisms in LUAD, as these 
genes may participate in similar biological functions and 
pathways. At present, there are no reports in the literature on 
this topic. Therefore, it is imperative to investigate the genes 
co-expressed with TDP-43 to enhance understanding of the 
role played by TDP-43 in LUAD.

This study has several limitations. Firstly, utilizing data 
from the TCGA and GEO databases may introduce inherent 
biases associated with data selection. Secondly, to enhance 
the comprehensive evaluation of the clinical significance of 
the risk model, it would be beneficial to incorporate addi-
tional clinical information and pathological characteristics 
into the analysis. Additionally, as all data included were 
obtained from public databases, this study is retrospective; 
using prospective research methods for survival assessment 
and treatment prediction would yield more accurate conclu-
sions. Furthermore, the findings of this investigation need 
to be further verified by more datasets, cell lines, and tissue 
samples. Lastly, due to the lack of an immunotherapy cohort 
for LUAD patients, it is not possible to further evaluate the 
benefits of the constructed model in immunotherapy. Explor-
ing the regulatory mechanisms of immune cell function in 
the TME has important clinical significance. Moreover, this 
study has yet to fully elucidate the biological function of 
TDP-43 co-expressed genes in LUAD, so further explora-
tion is still needed.

Conclusion

The findings of this study demonstrate the effectiveness of 
the TDP-43 co-expressed gene model in accurately predict-
ing the prognosis of LUAD individuals while shedding light 
on the stemness characteristics, TMB, TME, and treatment 
response of distinct risk groups. The calculated risk score 
holds promise as a potential biomarker for survival predic-
tion in patients with LUAD, enabling the development of 
personalized therapeutic approaches. Notably, this study 
pioneers the construction of a LUAD risk model based on 
genes co-expressed with TDP-43. These findings provide a 
theoretical basis for a deeper understanding of the mecha-
nism driving TDP-43 in LUAD, providing opportunities 
for future developments in novel therapeutic approaches for 
this disease. By detecting gene expression and calculating 
risk scores, monitoring these biomarkers in clinical practice 
can enable the assessment of survival risk and the select-
ing of appropriate treatment strategies for LUAD patients. 
This study will likely provide certain assistance in clinical 
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diagnosis and drug development. Additionally, implement-
ing personalized treatment plans based on monitoring these 
biomarkers can help prevent unnecessary drug-related 
adverse reactions in patients. This will contribute to patient 
care and alleviate the economic burden on patients.
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