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Abstract
Purpose At present, dysfunctional  CD8+ T-cells in the nasopharyngeal carcinoma (NPC) tumor immune microenvironment 
(TIME) have caused unsatisfactory immunotherapeutic effects, such as a low response rate of anti-PD-L1 therapy. Therefore, 
there is an urgent need to identify reliable markers capable of accurately predicting immunotherapy efficacy.
Methods Utilizing various algorithms for immune-infiltration evaluation, we explored the role of EIF3C in the TIME. We 
next found the influence of EIF3C expression on NPC based on functional analyses and RNA sequencing. By performing 
correlation and univariate Cox analyses of  CD8+ Tcell markers from scRNA-seq data, we identified four signatures, which 
were then used in conjunction with the lasso algorithm to determine corresponding coefficients in the resulting EIF3C-related 
 CD8+ T-cell signature (ETS). We subsequently evaluated the prognostic value of ETS using univariate and multivariate 
Cox regression analyses, Kaplan–Meier curves, and the area under the receiver operating characteristic curve (AUROC).
Results Our results demonstrate a significant relationship between low expression of EIF3C and high levels of  CD8+ T-cell 
infiltration in the TIME, as well as a correlation between EIF3C expression and progression of NPC. Based on the expression 
levels of four EIF3C-related  CD8+ T-cell marker genes, we constructed the ETS predictive model for NPC prognosis, which 
demonstrated success in validation. Notably, our model can also serve as an accurate indicator for detecting immunotherapy 
response.
Conclusion Our findings suggest that EIF3C plays a significant role in NPC progression and immune modulation, particularly 
in  CD8+ T-cell infiltration. Furthermore, the ETS model holds promise as both a prognostic predictor for NPC patients and 
a tool for adjusting individualized immunotherapy strategies.
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Introduction

Nasopharyngeal carcinoma (NPC), which originates from 
epithelium cells, is predominantly endemic to southeastern 
Asia, notably in south China’s Guangdong province, where 
the highest incidence has persisted without decline in the 
past 2 decades (Chen et al. 2019; Wei et al. 2010). With 
the infection with EPV prevalent in the NPC population, 
EBV-associated NPC is recognized as “immune-hot” tumors 
characterized by dense infiltration of immune cells in the 
tumor immune microenvironment (TIME), which is sup-
posed to be beneficial for the efficacy of immunotherapy 
(Tsao et al. 2014; Wong et al. 2021). Therefore, the rise of 
an evolutionary wave of NPC immunotherapies, especially 
immune checkpoint inhibitors (ICIs) has become a research 
hotspot (Li et al. 2022a). Nevertheless, the response rates of 
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immunotherapies in NPC remain unsatisfactory, with 33% 
of PD-L1-positive cases and 13% of PD-L1-negative cases 
(Xu et al. 2022; Ma et al. 2018). The immunoediting-based 
optimized neoantigen load (ioTNL) model has been reported 
to identify immunosuppressive tumor clones, and a subset 
of NPC subtypes (E-IS and A-IS) can predict the objective 
response rate and clinical outcomes of NPC patients’ immu-
notherapy to guide subsequent immunotherapeutic strate-
gies (Su et al. 2022; Chen et al. 2021). Given the dynamic, 
complex, and interactive nature of the NPC TIME, which 
remains incompletely understood, it is imperative to identify 
additional biomarkers that can accurately predict the benefits 
derived from ICIs. Previous studies have proved that the 
infiltration levels of  CD8+ T cells in the tumor microen-
vironment (TME) is correlated with ICI therapy response 
(Leun et  al. 2020). With advancements in technology, 
including spatial transcriptomics and single-cell transcrip-
tomics, novel insights are emerging, providing opportuni-
ties for more in-depth investigations into the heterogene-
ity and functional changes of  CD8+ T cells, as well as the 
mechanisms of intercellular interactions within the TIME 
(Leun et al. 2020; Philip and Schietinger 2022). Researchers 
assessed the immune landscape of NPC through sequencing 
data and demonstrated that the dysfunctional and exhausted 
 CD8+ T cells can create suppressive TME, thereby hin-
dering long-term immunotherapy response in patients 
(Wong et al. 2021; Philip and Schietinger 2022). Recently, 
scRNA-seq data have been utilized to reveal features and 
dysfunctional statuses of  CD8+ T cells in NPC patients. For 
example, research has shown that high expression of CD74 
significantly increases the number of exhausted  CD8+ T 
cells, while another study constructed an immune score of 
36 genes to indicate the dysfunction of  CD8+ T cells (Ka-
Yue Chow et al. 2022; Jin et al. 2020). However, questions 
regarding the regulatory mechanisms of  CD8+ T cells in 
the context of NPC immunotherapy response have yet to be 
answered. Therefore, identifying subtypes of  CD8+ T cells 
along with their molecular mechanisms of NPC immuno-
therapy counts for much.

In the initiation stage of translation, a process for most 
translation regulators playing a role, eukaryotic transla-
tion initiation factors (EIFs) are essential. Furthermore, they 
have a significant impact on the expression of cancer genes 
(Sonenberg and Hinnebusch 2009). Among these factors, 
the core subunit C of eukaryotic translation initiation factor 
3 (EIF3C) is involved in assembling the core EIF3 com-
plex, which is essential for translation initiation. It has been 
demonstrated that the reduction of EIF3C expression inhib-
its the proliferation and metastasis of various cancer types 
through modulation of cell cycle progression (Sizova et al. 
1998; Zhou et al. 2008; Emmanuel et al. 2013; Liu et al. 
2020). So far, overexpressed EIF3C has been determined in 
a variety of tumors, such as ovarian cancer, colon cancer, 

renal cell carcinoma and cervical cancer, but few studies 
have mentioned NPC (Liu et al. 2020; Song et al. 2013; Fan 
et al. 2019; Hu et al. 2019). Zhao et al. have investigated the 
role of EIF3C in NPC by examining the expression levels of 
genes in apoptosis-related signaling pathways, and discov-
ered that downregulation of EIF3C made an impact on the 
expression of phosphorylated P44/p42 MAPK, phosphoryl-
ated AKT, and phosphorylated SMad2, promoting apoptosis 
of pharyngeal squamous carcinoma cells by downregulat-
ing these genes’ expression (Zhao et al. 2022). However, 
there have been no research elucidating the regulatory role 
of EIF3C in the TIME and immunotherapy response predic-
tion of NPC patients. In this study, in addition to investigat-
ing the role of EIF3C in NPC, we establish the relationship 
between EIF3C and infiltrated  CD8+ T cells and construct 
the EIF3C-related  CD8+ T-cell signature (ETS) in predicting 
the prognosis and immunotherapy response of NPC patients.

Materials and methods

Data collection and reprocessing

In this study, a training set consisting of RNA-seq data 
and corresponding clinical-pathologic data from 113 
nasopharyngeal carcinoma (NPC) patient samples was 
acquired from the Gene Expression Omnibus (GEO) data-
base (http:// www. ncbi. nlm. nih. gov/ gds/; GSE102349). The 
Illumina HiSeq 2000 sequencing platform was utilized in 
GSE102349. To validate our results, transcriptome data, 
mutation data, and corresponding clinical information from 
head and neck squamous cell carcinoma (HNSC) patients 
were obtained from The Cancer Genome Atlas (TCGA) 
database (https:// portal. gdc. cancer. gov/ explo ration/), involv-
ing a total of 493 patient samples. In TCGA-HNSC, RNA-
seq profiling was provided in fragments per kilobase mil-
lion (FPKM). We transformed the FPKM values into the 
transcripts per kilobase million (TPM) values to reduce 
the biased values FPKM caused when comparing multiple 
samples (Vera Alvarez et al. 2019). Furthermore, single-cell 
RNA sequencing (scRNA-seq) data from 15 NPC patient 
samples and normal nasopharyngeal epithelial tissue from 
1 patient were obtained from GEO dataset (GSE150430), 
utilizing the HiSeq X Ten sequencing platform.

Analysis for the relationship between EIF3C 
and the TIME landscape

The “IOBR” R package was used to analyze immune infil-
tration (Zeng et al. 2021). Within this package, the “ESTI-
MATE” method was utilized to calculate the immune scores, 
stromal scores, and ESTIMATE scores (Yoshihara et al. 
2013). In addition, we employed a number of algorithms 
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including “MCPcounter” (Becht et al. 2016), “EPIC” (Racle 
et al. 2017), “quanTIseq” (Finotello et al. 2019), and “xCell” 
(Aran et al. 2017) to assess the abundance of immune cells 
and stromal cells in NPC microenvironment. Based on 
EIF3C’s expression and clinical data from GSE102349, 
we further utilized these immunocyte-infiltrating scores to 
respectively conduct correlation analysis and univariate Cox 
regression analysis. In the scoring and correlation analy-
ses related to immune infiltration, we divided patients from 
TCGA-HNSC and 88 samples with survival information in 
GSE102349 into high (upper 25%) and low (lower 25%), as 
well as high (upper 25%) and low (lower 20%) groups based 
on the expression levels of EFI3C. And in univariate Cox 
regression analysis, we used the median of EIF3C expres-
sion to group 88 patients from GSE102349.

Cell lines and cell culture

We selected two human NPC cell lines, HONE1 and 
SUNE1, which were both cultured in RPMI 1640 (Invitro-
gen, Grand Island, NY, USA) supplemented with 10% fetal 
bovine serum (FBS; Gibco, Grand Island, NY, USA). The 
human NPC cell line S18 was cultured in DMEM (Invitro-
gen) supplemented with 10% FBS. These cell lines were 
incubated in a humidified chamber with 5%  CO2 at 37 °C.

Transfection assay

We seeded and cultured these cells in six-well plates at 37 °C 
for 24 h. When the cells reached 50–70% confluence, they 
were infected with a small interfering EIF3C-1 RNA (si-
eIF3c-1, siRNA: 5′-GCA GGA CAA CAT TCA GCA T-3′), a 
small interfering eIF3c-2 RNA (si-eIF3c-2, siRNA: 5′-GCA 
CAC CTA CTA CAA GTT T-3′) and a negative control siRNA 
(si-SCR) which were all constructed by RiboBio (Guang-
zhou, China). Lipofectamine 3000 (Invitrogen) was used for 
transfections according to the manufacturer’s instructions. 
The efficiency of the transfections was investigated after 
48–72 h using real-time PCR (RT-PCR).

RNA extraction and RT‑PCR

Total RNA from cultured cells was isolated with TRIzol 
reagent (Invitrogen). Then we performed reverse transcrip-
tion of total RNA using reverse transcriptase (Promega, 
Madison, WI, USA) and random primers (Promega). SYBR 
Green–based (Invitrogen) RT-PCR analysis was carried out 
in a CFX96 Touch sequence detection system (Bio-Rad, 
Hercules, CA, USA). Real-time PCR primers for EIF3C 
and GAPDH were as follows: forward: 5′ TGA AGA TTC 
GTG ATG TCA CCAAG-3′, reverse: 5′-AGA TAG TCC TCT 
AGG TCA GCCA-3′; forward: 5′-GTC TCC TCT GAC TTC 
AAC AGCG-3′, reverse: 5′-ACC ACC CTG TTG CTG TAG 

CCAA-3′. GAPDH was regarded as an endogenous control 
for all the genes. The  2−ΔΔCT equation was utilized to calcu-
late the relative gene expression.

CCK8 and colony formation assays

HONE1 and SUNE1 cells were seeded at 1000 cells per well 
in 96-well plates after transfection. Cell viability was meas-
ured using a CCK8 assay (TargetMol, Shanghai, China) at 
five time points (0 h, 24 h, 48 h, 72 h, and 96 h, respectively) 
at OD450 nm. For the colony formation assay, HONE1 and 
SUNE1 cells were plated at 1000 cells per well in 6-well 
plates after transfection, and cultured for 14 days. Colonies 
were fixed with methanol/acetic acid (3:1, v/v), stained 
with 0.5% crystal violet, and counted under the inverted 
microscope.

Transwell migration and invasion assays

For migration and invasion assays, we resuspended 5 ×  104 
or 1 ×  105 transfected cells in serum-free medium and 
plated in the upper Transwell chamber (8-μm pores; Corn-
ing, Corning, NY, USA) with 8-mm pore size membrane 
with or without Matrigel (BD Biosciences, NJ, USA). Then 
the medium supplemented with 20% FBS was placed in the 
lower chamber. After 12 or 24 h of incubation, the cells 
that migrated or invaded through the upper membrane 
were fixed, stained with hematoxylin, and counted using an 
inverted microscope.

RNA sequencing (RNA‑seq)

RNA-seq was processed according to the instructions of 
NEBNext Ultra RNA Library Prep Kit for Illumina. Briefly, 
total RNA was isolated from EIF3C knock-down or con-
trol S18 cells using Trizol reagent. Poly(A) RNA was sub-
sequently purified by PolyTtract mRNA Isolation System 
and used to generate cDNA libraries. All samples were 
sequenced on Illumina HiSeq X Ten platform and sequence 
reads were mapped to the human genome version hg38 by 
utilizing the Illumina sequence analysis pipeline. The aver-
age gene expression values of three independent studies 
were used for following analysis.

Identification of  CD8+ T‑cell marker genes

The scRNA-seq data were analyzed via R package “Seu-
rat” (Slovin et al. 2284). To ensure data quality, we filtered 
out cells with less than 201 or more than 9000 genes, as 
well as cells containing greater than 20% unique molecular 
identifiers (UMIs) originating from mitochondrial genome. 
Principal component analysis (PCA) and Uniform Manifold 
Approximation and projection (UMAP) were conducted 
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to cluster cells in linear and nonlinear dimension reduc-
tion manners, respectively. During the process of screen-
ing marker genes, we applied log2 fold change > 1 and p 
value < 0.05 as filtering criteria.

Construction and verification of the EIF3C‑related 
 CD8+ T‑cell signature

In this study, we utilized the RNA sequencing (RNA-seq) 
profiling data from GSE102349 as the training set to exam-
ine the correlation between EIF3C and  CD8+ T-cell marker 
genes using Spearman’s coefficient correlation. The prog-
nostic values of the marker genes were evaluated by univari-
ate Cox regression analysis using the “survival” and “sur-
vminer” R packages. Subsequently, we performed Lasso Cox 
regression analysis using the “glmnet” R package, with a 
parameter setting of alpha = 1. The formula of the risk score 
was constructed as follows: risk score = β1 × 1 + β2 × 2 + ··
· + βi xi, where xi represents normalized expression of the 
candidate gene, and βi represents the corresponding coeffi-
cient derived from LASSO analysis. Kaplan–Meier method 
was employed for survival analysis, including overall sur-
vival (OS) and progression-free survival (PFS). Finally, the 
accuracy of our prognostic model was evaluated by calcu-
lating the area under the receiver operating characteristic 
curve (AUROC) using the “pROC” R package, and the 
enriched pathways in the low-risk group were analyzed by 
gene set enrichment analysis (GSEA) via “ClusterProfiler” 
and “enrichplot” R packages.

Collection of data of immunological checkpoint 
inhibitor therapy

In this study, RNA-seq data and corresponding clini-
cal–pathological information of patients who underwent 
anti-PD-1/PD-L1 treatment for melanoma were obtained 
from the GSE78220 (n = 26) and GSE91061 (n = 51) data-
sets. The platforms used for GSE78220 and GSE91061 
were Illumina HiSeq 2000 and Illumina Genome Analyzer, 
respectively. Moreover, we obtained a urothelial carcinoma 
dataset, IMvigor, through the “IMvigor210CoreBiologies” 
R package, containing 348 samples with complete RNA-seq 
profiling and clinical characteristics (Balar et al. 2017). The 
count values in IMvigor were converted to FPKM, which 
were then transformed into TPM.

Statistical analysis

Student’s t test or the Wilcoxon rank-sum test was employed 
for differential comparison between two groups. The sig-
nificance of disparity was accessed through the log-rank 
test. In the GSE102349 and TCGA-HNSC cohorts used for 
survival analysis, patients were divided into high-risk and 

low-risk groups based on the median, while the GSE78220, 
GSE91061I, and Mvigor210 cohorts were stratified using 
their optimal cutpoints. All statistical analyses were con-
ducted using R software (version 4.2.3) with statistically 
significance of p < 0.05.

Result

The correlation between EIF3C and infiltrated 
immunocytes

To examine the impact of EIF3C in the TIME, we first 
applied MCPcounter and ESTIMATE algorithms in 
GSE102349 cohort and found that low expression of EIF3C 
was associated with higher immune scores and T cells, 
CD8 + T cells, B lineage, NK cells, myeloid dentritic cells 
were more abundant in the EIF3C-low group (Fig. 1A, B), 
suggesting that NPC patients with lower EIF3C expression 
may possess a more favorable TIME. To investigate the 
most relevant immune cells for EIF3C, correlation analy-
sis and univariate COX regression analysis were conducted 
on GSE102349-MCPcounter. The result showed that the 
levels between CD8 + T cells infiltration and EIF3C were 
most correlated, and the level of CD8 + T cells infiltration 
was the most important protective factor for PFS in NPC 
(Fig. 1C, D). To further validate our findings, we performed 
comprehensive analysis of TIME to analyze the association 
with EIF3C and CD8 + T cells infiltration and the CD8 + T 
cells showed the same performance like MCPcounter in 
GSE102349 (Fig. S1A–E, F). More importantly, CD8 + T 
cells were also enriched in EIF3C-low patients in TCGA-
HNSC cohort and was similarly negatively correlated with 
EIF3C in the TCGA-HNSC and GSE53819 cohorts (Fig. 1E, 
F; Fig. S1G, H). As  CD8+ T cells are known for their excep-
tional cytotoxic activity to tumor cells (St Paul and Ohashi 
2020), overexpression of EIF3C in NPC patients might hin-
der anti-tumor immune response by potentially suppress-
ing  CD8+ T cells. Taken together, our findings suggest that 
EIF3C affects the infiltration of  CD8+ T cells, which is cru-
cial for its regulatory effect on the TIME of NPC patients.

EIF3C facilitated NPC cell proliferation, migration, 
and invasion

To explore the biological role of EIF3C, we conducted 
functional analyses including cell proliferation, migra-
tion, and invasion. We observed that the endogenous 
EIF3C expression was sharply increased in NPC cell 
lines compared with a nasopharyngeal epithelial cell 
line (Fig. 2A). Then HONE1 and SUNE1 cell lines were 
selected for further experiments. We transfected si-
eIF3c into HONE1 and SUNE1 cells to reduce EIF3C 
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expression. Simultaneously, siSCR was transfected 
into these cells as a control group. Then we employed 
quantitative real-time PCR to validate the efficiency of 

transfection and confirmed that the EIF3C inhibitor sig-
nificantly suppressed expression of EIF3C in HONE1 and 
SUNE1 cells (Fig. 2B).

Fig. 1  Function of the core subunit C of eukaryotic translation ini-
tiation factor 3 (EIF3C) in nasopharyngeal carcinoma (NPC) tumor 
microenvironment (TME). A, E Comparison of the immune-evalua-
tion results in EIF3C-high and EIF3C-low groups by the ESTIMATE 
algorithm in GSE102348 and TCGA-HNSC cohorts (ns: not signifi-
cant, *p < 0.05, **p < 0.01, ****p < 0.0001). B, F Comparison of the 
proportion of cells related to TME between EIF3C-high and EIF3C-

low groups by the MCPcounter algorithm in GSE102349 and TCGA-
HNSC cohorts (ns: not significant, *p < 0.05, ****p < 0.0001). C The 
spearman correlation analysis between immune cell infiltration levels 
(MCPcounter) and expression levels of EIF3C in GSE102349. D The 
univariate COX regression analysis of immune cell infiltration levels 
(MCPcounter) in GSE102349
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According to CCK8 and colony formation assays, we 
found that the knock-down of EIF3C suppressed HONE1 
and SUNE1 cell proliferation (Fig. 2C, D). Furthermore, 
we performed Transwell migration and invasion experi-
ments, and the results showed that the migratory and inva-
sive capacities of HONE1 and SUNE1 cells were also 
remarkably inhibited by the downexpression of EIF3C 
(Fig. 2E). To, sum up, these data indicated EIF3C as a 
tumor-promoting factor.

Transcriptional response in NPC cells 
to the transfection of si‑eIF3c

To reveal the functional mechanism of EIF3C, we next 
applied bulk RNA-sequencing to S18 cells with (n = 3) 
or without (n = 3) transfection of si-eIF3c. Based on 
data of gene expression, we carried out principal com-
ponent analysis (PCA) and found samples clustered by 
treatment (Fig. 3A). Then we screened 106 differentially 

Fig. 2  Functional analyses for the role of EIF3C in cell prolifera-
tion, migration, and invasion. A Relative EIF3C expression in NPC 
cell lines. B The transfection efficiency of si-eIF3c was verified in 
HONE1 and SUNE1 cells (*p < 0.05). C, D CCK8 and colony forma-

tion assays showed that EIF3C facilitated cell proliferation in HONE1 
and SUNE1 (*p < 0.05). E Representative and quantified results of 
Transwell migration and invasion assays in HONE1 and SUNE1 cells 
with transfection of si-eIF3c or si-SCR (*p < 0.05)
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expressed genes (DEGs), top 25 of which are presented 
in Fig. 3B. Since false discovery rates (FDRs) of EIF3C 
 (log10FDR = − 53.433,  log2FC = − 2.332), EIF3CL 
 (log10FDR = − 52.304,  log2FC = − 2.321), and MYC 
 (log10FDR = − 24.189,  log2FC = 2.603) far exceeded FDRs 
of other DEGs, there were only 41 out of 42 upregulated 
and 62 out of 64 downregulated genes exhibited in Fig. 3C. 
Since the top 25 of DEGs were almost genes related to the 
occurrence and development of various tumors, to explore 
the function of these DEGs, we performed KEGG enrich-
ment analysis and further selected top 30 enriched path-
ways identified to be associated with DEGs using all these 
DEGs at 5% FDR. As shown in Fig. 3D, besides many 
pathways related to a variety of human cancers, two NPC 

related pathways, the Wnt signaling (Rich Factor = 7.165, 
p = 0.008, FDR = 0.052) and Hippo signaling (Rich Fac-
tor = 7.804, p = 0.006, FDR = 0.049), were relevant to 
DEGs (Wu et al. 2022a; Peng et al. 2022). What iss more, 
the activation of Wnt signaling pathway and deregulation 
of Hippo signaling pathway have been proved to hinder the 
development and functioning of effector  CD8+ T cells in 
many tumors (Takeuchi et al. 2021; Gattinoni et al. 2009; 
Mohajan et al. 2021; Du et al. 2018), which might be two 
crucial ways for EIF3C to exert its immunosuppression 
effect. In brief, these results derived from sequencing 
revealed that the variation in EIF3C expression levels had 
an impact on the progression of NPC.

Fig. 3  Transfection of si-eIF3c induces a transcriptional response 
in S18 cells. A PCA analysis of all six samples, grouped by si-SCR 
(NC, pink) and si-eIF3c (blue). B Heatmap of top 25 DEGs ranked by 
p value and clustered by treatment. C Volcano plot of DEGs, which 

were colored by upregulated (red) and downregulated (blue) DEGs. 
Genes with │log2FC│ > 1 and FDR < 0.05 were regarded as DEGs. 
D A bubble plot of top 30 enriched KEGG pathways in the order of 
q-value using 106 DEGs
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Construction of EIF3C‑related  CD8+ T‑cell signatures

To further explore the clinical value and molecular mech-
anism underlying the changes in  CD8+ T-cell activity 

influenced by EIF3C, we identified 210  CD8+ T-cell related 
marker genes (Fig. 4A, Fig. S2A, Table S1) from a NPC 
scRNA-seq dataset (GSE150430) using FindAllMarkers 
analysis. Among them, 21 genes exhibited a significant 

Fig. 4  Construction of the EIF3C-related  CD8+ T-cell signa-
ture (ETS) in GSE102349. A UMAP plot showed cell types in the 
GSE150430 dataset. B Coefficients of candidate genes were selected 
regarding lambda by lasso regression. Each curve meant a predic-
tor. C NPC patients in GSE102349 were separated into two groups 
according to the median of the risk score. D The distribution of 

patients’ survival time and risk score in GSE102349. E, F Kaplan–
Meier curves of PFS between the high- and low-risk groups, and 
the 1-, 2-, and 3-year area under the receiver operating characteris-
tic (AUROC) curves depicted the performance of ETS for prognostic 
prediction efficacy in GSE102349
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correlation with EIF3C (p < 0.05) in GSE102349 dataset 
(Table S2). Then we still utilized GSE102349 cohort as 
a training set to estimate the prognostic values of the 21 
EIF3C-related genes, and eventually got 4 genes (CXCR6, 
ZAP70, PSTPIP1, and LYAR ) contributing to the OS by the 
univariate COX regression analysis (Fig. S2B). Given that 
the four candidate genes could be used to construct a prog-
nostic model, we next carried on the lasso regression analy-
sis to calculate the corresponding coefficient for each gene 
(Fig. 4B, Fig. S2C). And the prognostic EIF3C-related  CD8+ 
T cell signature (i.e., ETS) was created whose risk score 
should follow this formula: ETS risk score = CXCR6 expres-
sion × (− 0.9391) + ZAP70 expression × (− 1.0279) + PST-
PIP1 expression × (1.3725) + LYAR  expression × (0.2262) 
(Table 1).

Patients were divided into high- (n = 44) and low-risk 
(n = 44) groups by the median of risk scores (Fig.  4C). 
Analysis of the distribution of ETS risk scores revealed 
superior survival outcomes for the low-risk group compared 
to the high-risk group (Fig. 4D). We observed the signifi-
cantly longer progression-free survival observed in patients 
with low risk through survival analysis (p = 0.01, Fig. 4E). 
Moreover, the AUROCs of 1-year, 2-year, and 3-year sur-
vival were 0.806, 0.723, and 0.692, respectively (Fig. 4F), 
indicating a favorable performance of the ETS risk score in 
predicting the prognosis of NPC patients.

Validation of ETS risk score in TCGA cohort

To examine the robustness of ETS as a prognostic predic-
tor, we utilized the TCGA-HNSC cohort as a validation set. 
The procedure for survival analysis was analogous to that of 
the training set. First, the ETS risk scores were calculated 
for each patient, and the patients were then classified into 
high- (n = 246) and low-risk (n = 247) groups based on the 
median ETS score (Fig. 5A). As observed in the training set, 
the low-risk patients in the validation set also demonstrated 
better overall survival than their high-risk counterparts 
(Fig. 5B). Consistent with this observation, a significant 
difference in overall survival was found between the two 
groups, with patients in the low-risk group exhibiting longer 
survival time (p < 0.001, Fig. 5C). Moreover, the ETS risk 
score exhibited favorable reproducibility in the validation 
set, with AUROCs of 0.591, 0.619, and 0.602 for predicting 
1-year, 3-year, and 5-year survival, respectively (Fig. 5D). 

These findings provide further confirmation of the effective-
ness of ETS as a prognostic predictor.

In addition, GSEA for GSE102349 and TCGA-HNSC 
datasets were conducted for the further research, which 
showed that there were five immune-related pathways 
(PD − L1 expression and PD − 1 checkpoint pathway in 
cancer, T cell receptor signaling pathway, Th1 and Th2 cell 
differentiation, Natural killer cell mediated cytotoxicity, 
and Th17 cell differentiation) enriched in both two low-risk 
groups (Fig. 5E, F). These findings provide additional sup-
port for the validity of the ETS risk score as a prognostic 
predictor and offer guidance for future research aimed at elu-
cidating the mechanisms underlying the association between 
EIF3C and immune function in NPC patients.

Identifying the ETS risk score as an independent 
predictor

To evaluate the prognostic value of the ETS risk score in 
NPC patients as compared to other clinical characteristics, 
both univariate and multivariate Cox regression analyses 
were conducted. The univariate analysis revealed that the 
low-risk ETS score was significantly associated with good 
survival outcomes. Specifically, the hazard ratios were 
3.000 (95% CI = 1.600–5.400, p < 0.001; Fig. 6A) in the 
GSE102349 training set and 1.300 (95% CI = 1.100–1.400, 
p < 0.001; Fig. 6B) in the TCGA validation set. And the 
multivariate analysis showed that even after adjusting for 
other clinical features, the association between the low-risk 
ETS score and favorable survival outcomes remained signifi-
cant with a hazard ratio of 4.900 (95% CI = 1.900–13.000, 
p = 0.001; Fig. 6A) in GSE102349 and a hazard ratio of 
1.300 (95% CI = 1.100–1.500, p < 0.001; Fig. 6B) in TCGA-
HNSC. Based on the above evidence, it can be concluded 
that the ETS risk score is most likely an independent prog-
nostic factor for NPC patients.

The prognostic value of ETS for immunotherapy

According to the correlation between ETS and immune sta-
tus, we next examine the prognostic value of the ETS risk 
score for immunotherapy. Immune checkpoint inhibitors, 
particularly anti-PD-1/PD-L1 immunotherapy, are increas-
ingly used as a promising cancer treatment strategy (Wu 
et al. 2022a). We assessed the effectiveness of our ETS 
risk score in prognostic prediction for patients receiving 
anti-PD-1/PD-L1 therapy using the data from GSE78220, 
GSE91061, and IMvigor210 cohorts. Similarly to our previ-
ous findings, low-risk patients who had received immuno-
therapy also had longer OS than high-risk patients after the 
same treatment in all cohorts (Fig. 7A, Fig. S3A, C). And 
AUROC values were 0.726, 0.585, and 0.602 for GSE78220, 
GSE91061, and IMvigor210 cohorts, respectively (Fig. 7B, 

Table 1  Genes and 
corresponding coefficients in 
the GSE102349 cohort for ETS

Gene Coefficient

CXCR6 − 0.939117253
ZAP70 − 1.027889222
PSTPIP1 1.372532002
LYAR 0.226168806
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Fig. 5  Validation of the 
prognostic values of ETS risk 
score in the validation set. A 
NPC patients in TCGA-HNSC 
were divided into two groups 
according to the median of the 
risk score. B The distribution 
of patients’ survival time and 
risk score in TCGA-HNSC. C, 
D Kaplan–Meier curves of OS 
between the high- and low-risk 
groups, and the AUROC for 
predicting 1-, 3-, and 5-year 
OS showed the performance 
of ETS for prognostic predic-
tion efficacy in TCGA-HNSC. 
E, F GSEA plot showed five 
immune-related pathways were 
enriched in both GSE102349 
and TCGA-HNSC cohorts
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Fig. S3B, D). Moreover, a favorable immunotherapeutic 
response was observed in low-risk patients in the GSE91061 
and IMvigor210 cohorts (Fig. 7C, D), thus confirming the 
relationship between low-risk patients and better survival 
outcomes following treatment. Therefore, we came to a con-
clusion that the ETS risk score also owned important value 
to predict prognosis of the patients after immunotherapy.

Discussion

In this study, we first identified the role of EIF3C in the 
TIME of NPC through many algorithms, involving ESTI-
MATE, EPIC, quanTIseq, xCell, and MCPcounter, to evalu-
ate the abundance of immune cells and stromal cells in NPC 
TIME. Our analysis revealed that overexpression of EIF3C 
has an immunosuppressive effect on infiltrating immune 
cells, particularly  CD8+ T cells, an immune cell type which 

was also identified as an important prognostic factor for NPC 
patients. Moreover, functional assays and sequencing results 
stated EIF3C’ facilitation on NPC progression, also reinforc-
ing our viewpoint on the role of EIF3C in NPC TIME.

By analyzing scRNA-seq data, we confirmed 21 EIF3C-
related  CD8+ T-cell marker genes and then selected 4 of 
them (CXCR6, ZAP70, PSTPIP1, and LYAR ) to build the 
ETS prognostic model. It has been proven that CXCR6 
plays a prominent role in CD8 + T-cell enrichment and 
maintenance in various tissues including NPC, which was 
previously attributed to its nuclear factor NF-kB activation 
and CXCR6-mediated cellular interactions such as IL-15 
trans-presentation via IL-15Rα (Parsonage et al. 2012; Pilato 
et al. 2021). Similarly, as a predominant component of the 
TCR signaling pathway, ZAP70 is essential for CD8 + T-cell 
proliferation and maturation by activating NF-kB (Wang 
et al. 2010; Hu et al. 2018). And in some reports, silenc-
ing ZAP70 has been demonstrated to significantly suppress 

Fig. 6  Identification of ETS risk score as an independent prognostic factor. Univariate and multivariate Cox regression analysis of the ETS risk 
score in the training (A) and validation (B) datasets
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the anti-tumor capability of CD8 + T cells (Hu et al. 2018; 
Cheng et al. 2023). And PSTPIP1, upregulated in a number 
of tumors, has been determined to undergo a dephospho-
rylation process to form the CD2-PSTPIP complex, which 
inactivates most src kinases and then inhibits the activa-
tion of CD8 + T cells (Li et al. 2022b; Bai et al. 2001). As 
for LYAR, a nucleolar oncoprotein originally isolated from 
T-cell leukemia line, it has been reported to contribute to 
worse survive as well as less CD8 + T-cell infiltration in 
cancer, and own a negative correlation with the degree of 
CD8 + T-cell exhaustion in TIME, so we deduce that LYAR 
may act as an obstacle to the maturation of CD8 + T cells 
(Su et al. 1993; Baitsch et al. 2011; Sun et al. 2021; Wang 

et al. 2021). The coefficients of our model were in line with 
previous findings, corroborating the rationality of our ETS 
risk score. In subsequent validation analysis, this model also 
represented good performance in predicting prognosis of 
NPC patients. Moreover, ETS proved to be an effective pre-
dictor of immunotherapy response across three verification 
datasets.

CD8+ T cells are key effector immune cells to eliminate 
malignant cells in the TME. Nevertheless, after long-term 
antigen exposure, T cells turn toward differentiation, and 
then eventually change into a dysfunctional and exhausted 
phenotype (Verdon et al. 2020; McLane et al. 2019). Cur-
rently, there is limited research exploring the effect of 

Fig. 7  Performance of ETS for patients with immunotherapy. A, B 
Kaplan–Meier curves of OS between the high- and low-risk groups, 
and the AUROC depicted the performance of ETS for predicting 
immunotherapy efficacy in the IMvigor210 cohort. C, D Responses 

of high- and low-risk patients from IMvigor210 and GSE91061 
cohorts to anti-PD-L1 therapy [complete response (CR), progres-
sive disease (PD), partial response (PR), and stable disease (SD); 
*p < 0.05]
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EIF3 subunits on the TIME, and there is no EIF3C-related 
research on T cells specifically because of the complex 
structure of the EIF3 complex. Therefore, analyzing the 
process of EIF3C affecting  CD8+ T cells by combining 
multiple molecules or cells is necessary. It has been dis-
covered that EIF3D plays its part of cap binding in pro-
moting the development of regulatory T (Treg) cells by 
binding to DAP5, while the ligand–receptor interactions 
between Treg cells and exhausted T cells (Tex), such as 
CCL4-CCR8 and TTGAL-ICAM1, facilitate the forma-
tion of an immune-suppressive microenvironment and the 
depletion of  CD8+ T cells (Liu et al. 2021; Volta et al. 
2021). Based on the role of EIF3D mentioned above and 
the capability of EIF3C in recruiting EIF3D for the EIF3 
complex, we may deduce a pathway about EIF3C affect-
ing  CD8+ T cells (Zhou et al. 2008), which also accords 
with the distribution of the certain proportion of Treg cells 
in our scRNA-seq data analysis (Fig. 4A). Moreover, an 
earlier study verified that EIF3B, as a key gene of the 
subtype of melanoma with the worst prognosis, has the 
ability of inducing immune-depletion and reducing  CD8+ 
T-cell infiltration (Wu et al. 2022b). Although EIF3B has 
been confirmed as a scaffold connecting EIF3C and other 
EIF3 subunits, further exploration is needed to determine 
whether EIF3C can exert its influence on  CD8+ T cells 
through EIF3B (Zhou et al. 2008). In our study, the ETS 
risk score, a model derived from EIF3C and  CD8+ T cells, 
represented a significant reduction in PFS and OS for high-
risk patients, possibly due to the lower immune scores and 
decreased  CD8+ T-cell infiltration associated with high 
EIF3C expression.

In our study, we conducted GSEA on both training and 
validation cohorts and identified five immune-related path-
ways enriched in low-risk patients. Among these pathways, 
except for three pathways associated with  CD4+ T cells, one 
of the remaining two is the T cell receptor (TCR) signaling 
pathway which is necessary for activating T cells by combin-
ing EIF3 and mRNAs of TCR subunits (Silva et al. 2021), 
another one is about the increased expression of PD-L1. To 
evaluate the efficacy of our model in predicting the prog-
nosis of patients undergoing anti-PD-1/PD-L1 therapy, we 
utilized three datasets and concluded that low-risk patients 
exhibited longer overall survival rates and a more favorable 
response to immunotherapy. Similar to EIF3C, the expres-
sion of EIF3B is negatively related to the infiltration of 
immunocytes and represents a poorer prognosis (Wu et al. 
2022b). Meanwhile, the patients with lower EIF3B expres-
sion have been proven to get better response to anti-PD-1 
treatment, which is approximately the same as the response 
proportion of EIF3C in this study (Wu et al. 2022b). These 
findings lend support to the predictive capacity of our model 
and suggest that further investigation into the interaction 
between EIF3C and EIF3B is essential.

There were several limitations in our research. First, 
while our model performed well on training and validation 
cohorts, further examinations of additional datasets are nec-
essary to enhance persuasiveness and generalizability of our 
findings. Second, as a retrospective study, our research needs 
experimental verification to explore more exact molecular 
mechanism of EIF3C functioning on  CD8+ T cells and 
the TIME, which is also an important aspect of our future 
research.

Conclusion

In summary, our study has identified EIF3C as a key regu-
lator of  CD8+ T cell distribution within the TIME of NPC. 
The ETS risk score constructed in our model exhibited 
strong predictive utility for patient prognosis and immu-
notherapy response. These findings offer valuable insights 
into potential prognostic strategies for NPC and illuminate a 
novel mechanism regarding the regulatory effects of EIF3C 
on the tumor immune microenvironment.
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